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Abstract— Stability of the particle swarm optimization algo-
rithm is analyzed without any simplifying assumptions made
in the previous works. To evaluate the convergence speed of
the algorithm, the decay rate is introduced, and a method for
finding the largest lower bound of the decay rate is presented.
Moreover, it is pointed out that the l2 gain of the algorithm
can be used to measure exploration ability of the algorithm,
and a method for finding of the smallest upper bound of the l2

gain is provided. The above methods are based on linear matrix
inequality techniques and therefore are carried out efficiently
by using convex optimization tools. Numerical examples are
given to show that the analysis methods are reasonable and
effective to select the parameters in the algorithm.

I. INTRODUCTION

Particle swarm optimization (PSO) is a kind of stochastic

optimization, which is based on swarm intelligence such as

bird flocking and fish schooling [4]. Recently, the PSO has

been applied to various nonconvex optimization problems

[5], [8] because it is not only effective to nondifferentiable

problems but also easy to implement.

The PSO algorithm is described as a simple dynamical

system with stochastic variables, and therefore, we can

analyze the behavior of the PSO algorithm by control theo-

retic approaches [6], [3], [2]. Trelea showed a convergence

condition of the PSO algorithm when the stochastic variables

are assumed to be constant, which leads to the limitations of

the results [6]. Kadirkamanathan et al. showed a more precise

convergence condition based on a model with the stochastic

variables [3]. However, additive time-varying noise involved

in the state variable of the model is assumed to be time-

invariant, which is still different from the exact behavior of

the PSO algorithm.

To resolve the above problems, we propose a method

for the stability analysis of the PSO algorithm without

any simplifying assumptions on the stochastic variables.

At first, we model the PSO dynamics as a system with

multiplicative noise. Then we provide a stability condition

by applying a linear matrix inequality (LMI) technique [1].

Also, to evaluate the convergence speed of the algorithm, we

introduce the decay rate of the PSO dynamics, and present a

method for finding the largest lower bound of the decay rate.

Moreover, we point out that the l2 gain of the algorithm can

be used to measure exploration ability of the algorithm, and

provide a method for finding of the smallest upper bound

of the l2 gain. The proposed methods are based on LMI
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techniques, and therefore, the computation for the analysis

can be carried out efficiently by convex optimization tools.

This paper is organized as follows. In Section II, we

briefly describe the results of stability and l2 gain analysis

for systems with multiplicative noise via LMI techniques.

Next we address the basic PSO algorithm, and show the two

previous works on the stability analysis of the PSO algorithm

in Section III. In Sections IV and V, we present the main

results on stability and l2 gain analysis, respectively. Then,

we provide numerical examples to show the effectiveness

of the presented analysis methods in Section VI. Finally,

Section VII concludes the paper.

II. PRELIMINARIES

In this section, we briefly provide the results on stability

and l2 gain analysis of systems with multiplicative noise [1].

The results are applied to analysis of the PSO algorithm in

Sections IV and V.

A. Stability analysis of systems with multiplicative noise

We consider the discrete-time stochastic system

ξk+1 =

(

A +
L

∑

i=1

Aiθi,k

)

ξk, (1)

where ξk ∈ ℜnξ is the state, A, A1, . . . , AL ∈ ℜnξ×nξ

are the coefficient matrices, and θk := [θ1,k, . . . , θL,k]T is

a random variable. Especially, denoting the expectation by

E, we assume that θ0, θ1, . . . are independent identically

distributed random variables with

E θk = 0

E θkθT
k = diag(σ2

1 , . . . , σ2
L),

where, for i = 1, . . . , L, σ2
i denotes the variance of θi,k. We

also assume that ξ0 is independent of the process θk.

For the state ξk, we define the state correlation matrix as

Mk := E ξkξT
k .

From (1), we see that Mk satisfies the linear recursion

Mk+1 = AMkAT +
L

∑

i=1

σ2
i AiMkAT

i (2)

M0 = E ξ0ξ
T
0 .

If this linear recursion is stable, i.e., regardless of ξ0,

limk→∞ Mk = 0, we say the system is mean-square stable.

Mean-square stability implies, for example, that ξk → 0
almost surely. The following theorem holds for system (1)
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Theorem 1: System (1) is mean-square stable if and only

if there exists a matrix P > 0 satisfying the LMI

AT PA − P +
L

∑

i=1

σ2
i AT

i PAi < 0.

Theorem 1 is derived by applying the Lyapunov stability

theorem to system (2) as shown in [1].

B. l2 gain analysis of systems with multiplicative noise

Next we show the result of the l2 gain analysis. We

consider the following system with ξ0 = 0 and with the

same assumptions on θk as in the previous subsection.

ξk+1 = Aξk + Bwk +
L

∑

i=1

(Aiξk + Biwk)θi,k

zk = Cξk + Dwk +
L

∑

i=1

(Ciξk + Diwk)θi,k,

(3)

where wk ∈ ℜnw is the exogenous input, zk ∈ ℜnz is

the output, and B, B1, . . . , BL ∈ ℜnξ×nw , C,C1, . . . , CL ∈
ℜnz×nξ , D, D1, . . . ,DL ∈ ℜnz×nw are the coefficient ma-

trices. We assume that wk is deterministic.

We define the l2 gain η of this system as

η2 := sup

{

E

∞
∑

k=0

zT
k zk

∣

∣

∣

∣

∣

∞
∑

k=0

wT
k wk ≤ 1

}

.

Suppose that V (ξ) = ξT Pξ, with P > 0, satisfies

E V (ξk+1) − E V (ξk) ≤ γ2wT
k wk − E zT

k zk. (4)

Then γ ≥ η. The condition (4) can be shown to be equivalent
to the LMI

[

A B
C D

]T [

P 0

0 I

][

A B
C D

]

−

[

P 0

0 γ2I

]

+

L
∑

i=1

σ
2

i

[

Ai Bi

Ci Di

]T [

P 0

0 I

][

Ai Bi

Ci Di

]

≤ 0. (5)

Therefore, we can obtain the following theorem shown in

[1].

Theorem 2: Minimizing γ2 subject to P > 0 and LMI (5)

yields an upper bound on the l2 gain η of system (3).

III. PARTICLE SWARM OPTIMIZATION AND THE

PREVIOUS RESULTS

In the PSO algorithm, each particle position is a potential

solution to an optimization problem in n-dimensional space,

and its previous best position and the best position among

all particles are stored. Since each dimension of a particle

position vector is updated independently of the others, the

analysis of particle behavior can be carried out on one

dimension without loss of generality as in [6], [3]. The basic

PSO algorithm in one dimension is given by

vk+1 = αvk + β
(p)
k (x

(p)
k − xk) + β

(g)
k (x

(g)
k − xk)

xk+1 = xk + vk+1,
(6)

where vk is the particle velocity at the kth iteration, xk

is the particle position at the kth iteration, x
(p)
k is the

Fig. 1. Stability regions by the conventional stability analysis; union of
the light and deep gray regions: stability region by Trelea [6]; deep gray
region: stability region by Kadirkamanathan et al. [3].

personal best position, i.e., the best position of an individual

particle achieved up to the kth iteration, x
(g)
k is the global

best position among all particles, α is the inertia factor,

and β
(p)
k ∼ U [0, c(p)] and β

(g)
k ∼ U [0, c(g)] are random

parameters according to uniform distributions with constants

c(p) and c(g) known as acceleration coefficients.

To simplify the PSO dynamics (6), we use the following

notation:

βk := β
(p)
k + β

(g)
k

qk :=
β

(p)
k

β
(p)
k + β

(g)
k

x(p) +
β

(g)
k

β
(p)
k + β

(g)
k

x(g).

Then, (6) can be represented as the system in state-space

form

[

xk+1

vk+1

]

=

[

1 − βk α
−βk α

] [

xk

vk

]

+

[

βk

βk

]

qk. (7)

In the previous stability analysis [6], βk is assumed to be

constant as shown by βk = β, ∀k. Namely, β = (c(p) +

c(g))/2 is assumed by setting the expected values of β
(p)
k

and β
(g)
k . System (7) is a simple linear time-invariant second-

order dynamic model. Therefore, the convergence condition

derived in [6] in our notation is given by

α < 1

β > 0 (8)

2α − β + 2 > 0.

The parameter region for (8) is triangular, and is shown with

the union of the light and deep gray regions in Fig. 1.

In another previous stability analysis [3], the PSO algo-
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rithm (6) is represented by
[

xk+1

vk+1

]

=

[

1 α
0 α

] [

xk

vk

]

+

[

1
1

]

uk

yk = [1 0]

[

xk

vk

]

uk = −βk(yk − qk),

where uk and yk are interpreted as the control input and

output, respectively. By assuming that qk is constant, i.e.,

qk = q,∀k, and by introducing the state vector

ζk :=

[

xk − q
vk

]

,

the resulting state-space representation is

ζk+1 =

[

1 α
0 α

]

ζk +

[

1
1

]

uk

yk = [1 0]ζk (9)

uk = −βkyk.

In [3], the sufficient condition for stability of system (9)

is derived by using the concept of passive systems and

Lyapunov stability. As a result, the sufficient condition for

convergence of the PSO algorithm is given by

|α| < 1

α 6= 0 (10)

β <
1 − 2|α| + α2

1 + α
.

The parameter region for (10) is shown with the deep gray

region in Fig. 1.

Note that the two methods for stability analysis mentioned

above make assumptions that the random variables are con-

stant, and therefore, the results are approximate and may be

far from a real convergence condition.

IV. STABILITY ANALYSIS

We are now ready to analyze the PSO algorithm via the

LMI techniques described in Section II. We first introduce

the following 2-dimensional vectors:

ξk+1 :=

[

xk

xk+1

]

, wk :=

[

x
(p)
k

x
(g)
k

]

.

Using these vectors, the PSO algorithm can be expressed as

follows:

ξk+1 =

[

0 1

−α 1 + α − β
(p)
k − β

(g)
k

]

ξk

+

[

0 0

β
(p)
k β

(g)
k

]

wk. (11)

System (11) is a system whose coefficient matrices contain

random variables. To analyze system (11) more easily, we

also express the random variables β
(p)
k , β

(g)
k as

β
(p)
k = c(p)θ1,k +

c(p)

2

β
(g)
k = c(g)θ2,k +

c(g)

2
,

-1 0 1

0

1

2

3

4

α

β

Fig. 2. Stability region (dotted region) by the proposed stability analysis.

where θ1,k, θ2,k ∼ U [−1/2, 1/2] are both random variables

with uniform distributions. Here system (11) is represented

by

ξk+1 = Aξk + Bwk +
2

∑

i=1

(Aiξk + Biwk)θi,k, (12)

where

A =

[

0 1

−α 1 + α − c(p)

2 − c(g)

2

]

B =

[

0 0
c(p)

2
c(g)

2

]

A1 =

[

0 0
0 −c(p)

]

, A2 =

[

0 0
0 −c(g)

]

B1 =

[

0 0
c(p) 0

]

, B2 =

[

0 0
0 c(g)

]

.

Since system (12) is a system with multiplicative noise, we

can analyze the stability of the PSO algorithm via the LMI

technique.

Although the exogenous input wk in the PSO algorithm

depends on the state ξk, we can assume this dependence is

neglected in the case where x
(p)
k and x

(g)
k are not updated

so frequently. Also, we may regard θk := [θ1,k, θ2,k]T as an

independent, identically distributed random variable with

E θk = 0, E θkθT
k = diag(1/12, 1/12).

Then we obtain the following theorem from Theorem 1.

Theorem 3: The PSO algorithm (12) is asymptotically

stable in the mean-square sense, if and only if there exists a

matrix P > 0 satisfying the LMI

AT PA − P +
2

∑

i=1

1

12
AT

i PAi < 0. (13)

Note that the condition (13) is derived without any sim-

plifying assumptions on the random variables of the PSO

algorithm, while such stochastic variables are assumed to be

constant in [6], [3].
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Fig. 3. Contours of the parameters giving the largest lower bound of the
decay rate of the PSO algorithm.

Fig. 2 shows the stability region by the proposed stability

analysis. In this analysis, the constants c(p) and c(g) are set

as c(p) = c(g) = β. We see from the figure that the region by

the conventional analysis in [6] includes that by the proposed

analysis. This fact means that the proposed method is more

strict than the conventional one in [6], which is confirmed

by a numerical example in Section VI.

As an extension of this analysis, we consider a decay

rate ν [1], [7] for system (12) that can be used as a

measure for the convergence speed of the PSO algorithm.

The decay rate is defined as the largest ν > 1 such that

limk→∞ νk(E ξkξT
k ) = 0. After the same discussion as in

[1], [7], we can obtain the fact that ν̃ = 1/µ is a lower bound

of the decay rate for system (12) if and only if there exists

a matrix P > 0 satisfying the LMI

AT PA − µP +
2

∑

i=1

1

12
AT

i PAi < 0. (14)

We can compute the largest lower bound of the decay rate

by applying a bisection algorithm for µ and checking the

feasibility of LMI (14).

Note that the decay rate corresponds to the convergence

speed of the PSO algorithm. Fig. 3 shows the contours for

the largest lower bound of the decay rate. As expected, the

parameters α and β around the center of the stability region

give fast convergence, while those close to the boundary give

slow convergence.

V. l2 GAIN ANALYSIS

To analyze the l2 gain of the PSO algorithm, we use the

state equation (12) and simply set the output equation by

zk = ξk. (15)

Thus, the PSO algorithm corresponds to C = I , D = Ci =
Di = 0 ∀i in system (3). For this system, the l2 gain η is

-1 0 1

0

1

2

3

4

α

β

2

3

3

3

10 10

1
0

10

10

50 50

5
0

50

Fig. 4. Contours of the parameters giving the smallest upper bound of the
l
2 gain of the PSO algorithm.

defined as

η2 = sup

{

E

∞
∑

k=0

(x2
k + x2

k+1)

∣

∣

∣

∣

∣

∞
∑

k=0

{

(

x
(p)
k

)2

+
(

x
(g)
k

)2
}

≤ 1

}

. (16)

The performance index (16) can be used to estimate how

large the search region is against the trajectories of the

personal best position and the global best position in the

worst case. In general, to improve search ability of global

optimization algorithms, it is important to take a balance

between exploration and exploitation. The l2 gain can be

interpreted as the exploration ability of the PSO algorithm,

while the decay rate can be interpreted as the exploitation

ability.

Then we obtain the following theorem from Theorem 2.

Theorem 4: Minimizing γ2 subject to P > 0 and the

following LMI yields an upper bound of the l2 gain η of

system (12), (15).
[

AT

BT

]

P [A B] +

[

I − P 0
0 −γ2I

]

+
2

∑

i=1

1

12

[

AT
i

BT
i

]

P [Ai Bi] ≤ 0. (17)

Fig. 4 shows the contours for the smallest upper bound of

the l2 gain. In [6], it is pointed out that the domain around

α = 0.75 and β = 1.6 provides good results for some

examples. We can see from Fig. 4 that this fact is reasonable

because the l2 gain is large for the parameter couple.

VI. NUMERICAL EXAMPLES

A. Example for the stability analysis

We first test stability region for four benchmark functions

used in [6]. In particular, the parameter sets (A) α = 0.9,

β = 3.5 (c(p) = c(g) = 3.5) and (B) α = 0.75, β = 1.6
(c(p) = c(g) = 1.6) are examined. The parameter set (A)
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TABLE I

PSO ALGORITHM PERFORMANCE WITH THE PARAMETER SET (A).

Function Average Minimum Maximum

Sphere 0.8090 0.3797 1.6074

Rosenbrock 48.8574 16.0215 125.5004

Rastrigin 22.0112 10.9469 28.2953

Griewank 0.1168 0.0351 0.1725

TABLE II

PSO ALGORITHM PERFORMANCE WITH THE PARAMETER SET (B).

Function Average Minimum Maximum

Sphere 0 0 0

Rosenbrock 0.5058 0.0339 3.9967

Rastrigin 1.3929 0 2.9849

Griewank 0 0 0

is in the stability region by the conventional method [6],

while it is not in that by the proposed method. Also, the

parameter set (B) is in the stability region by the propose

method, while it is not in that by the conventional method

[3]. The test functions are as follows.

fSphere =
n

∑

i=1

x2
i

fRosenbrock =
n−1
∑

i=1

(

100(xi+1 − x2
i )

2 + (xi − 1)2
)

fRastrigin =
n

∑

i=1

(

x2
i − 10 cos(2πxi) + 10

)

fGriewank =
1

4000

n
∑

i=1

x2
i −

n
∏

i=1

cos

(

xi√
i

)

+ 1.

We consider a minimization problem for each function

in 5 dimensional space. The optimal values of the four

functions are all 0. Let the number of particles be 10, and

the number of iterations be 1000. Initial particle positions are

randomly given from U [−1, 1]. Under the above settings, we

performed the PSO algorithm 10 times for each function. The

average, minimum and maximum values obtained from the

PSO algorithms are shown in Tables 1 and 2.

From Table 1, we see that the PSO algorithm with the

parameter set (A) does not converge in some cases, while the

parameter set (A) is in the stability region by [6]. Also, we

see from Table 2 that the PSO algorithm with the parameter

set (B) converges, while the parameter set (B) is not in the

stability region by [3]. Therefore, the conventional analysis

methods are not reasonable. In contrast, the proposed analy-

sis method gives a more reasonable stability region than the

conventional ones.

B. Example for the l2 gain analysis

To show that the l2 gain of the PSO algorithm can be used

for a measure of the exploration ability of the algorithm, the

two parameter sets (B) and (C) α = 0.5, β = 1.0 (c(p) =

-3 -2 -1 0 1 2 3
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Fig. 5. Particles (·) and the global best particles (◦) for the parameter set
(B).
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Fig. 6. Trajectory of the first particle for the parameter set (B).

c(g) = 1.0) are examined. The l2 gain for the parameter sets

(B) and (C) are 331.43 and 2.74, respectively.

We consider a simple minimization problem of fSphere

in 2 dimensional space. Let the number of particles be 3,

and the number of iterations be 50. We set initial particle

positions randomly from U [1, 3].

Figs. 5 and 6 show the distribution of the particles and the

global best particles by the PSO algorithm with the parameter

set (B), and the trajectories of the first particle, respectively.

Fig. 7 shows the best function values corresponding to the

global best particles for the parameter set (B). Figs. 8–10

show the results for the parameter set (C).

The particles of the PSO algorithm with the parameter

set (B) are widely spread in comparison with those with the

parameter set (C). Consequently, the global best particle for

the parameter set (B) can reach the global optimal point, i.e.,

the origin. This observation shows that the exploration ability

of the PSO algorithm is high when its l2 gain is large.
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Fig. 7. Best function value for the parameter set (B).
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Fig. 8. Particles (·) and the global best particles (◦) for the parameter set
(C).
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Fig. 9. Trajectory of the first particle for the parameter set (C).
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Fig. 10. Best function value for the parameter set (C).

VII. CONCLUSION

In this paper, we have proposed a method for the stability

analysis of the PSO algorithm without any simplifying

assumptions on the stochastic variables. Also, to evaluate

the convergence speed of the algorithm, we have introduced

the decay rate of the PSO dynamics, and have presented a

method for finding the largest lower bound of the decay rate.

Moreover, we have shown that the l2 gain of the algorithm

can be used to measure exploration ability of the algorithm,

and provided a method for finding of the smallest upper

bound of the l2 gain.

We have considered the case for c(p) = c(g) = β in

this paper. However, the contours of the l2 gain of the PSO

algorithm with c(p) 6= c(g) can be different from those with

c(p) = c(g). Further research on this property will be needed.
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