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Abstract— In this paper the synthesis of switching multiple 

static output-feedback controllers for discrete-time LTI 

systems with state-multiplicative noise is considered which 

achieves a minimum bound on either the stochastic H2 or the 

H
�

performance levels. The proposed hybrid control scheme is 

based on a fuzzy supervisor which manages the combination of 

controllers. A convex formulation of the two controllers leads 

to a structure which benefits from the advantages of both 

controllers to ensure a good tracking performance in both the 

transient state (H2) and the steady state (H
�
). The stability 

analysis uses the Lyapunov technique, inspired from switching 

system theory, to prove that the system with the proposed 

controller remains globally stable despite the configuration 

changing. 

 

I. INTRODUCTION 

YSTEMS with stochastic nature have received much 

attention in the last decade, mainly in the H# control 

theory framework. Solutions to various control and 

estimation problems that ensure a worst case performance 

bound in the H# sense have been derived, in both, the 

continuous-time framework and the discrete-time 

counterpart (see [10] and the references therein). The 

modeling of parameter system uncertainties as white noise 

processes in a linear setting is encountered in many areas 

of applications such as: nuclear fission and heat transfer, 

population models and immunology. In control theory, 

such models are encountered in gain scheduling when the 

scheduling parameters are corrupted with measurement 

noise. 

Following the research of the 1960s and 1970s where 

the main issues were stability and control of continuous-

time state multiplicative systems in the stochastic H2

framework (see [17] and the references therein), research 

in the last decade has focused on the H# control setting. 

Thus, the continuous time stochastic state-multiplicative 

bounded real lemma (BRL) was obtained in [19] and the 

discrete-time counterpart was derived in [8]. 1
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The problem of H# state-multiplicative state- and 

measurement feedback control was solved in [13, 22, 17] 

and [2, 8], respectively. In [9], a discrete-time stochastic 

estimation for a guidance motivated tracking problem was 

solved and its results were shown to achieve better results 

than those achieved by the Kalman-filter. In [6], a practical 

continuous-time estimation problem was solved where a 

white-noise modeled parameter uncertainty exists in the 

measurement of a radar altimeter. 

Recently, the continuous and discrete-time preview 

tracking control problems were solved by [5, 7]. 

The deterministic static output-feedback problem has 

attracted the attention of many in the past. The main 

advantage of the static output-feedback is the simplicity of 

its implementation and the ability it provides for designing 

controllers of prescribed structure such as PI and PID. An 

algorithm has been presented recently by [20], which under 

some assumptions, is found to converge in stationary 

infinite horizon examples without uncertainty. A sufficient 

condition for the existence of a solution to a special case of 

the static output-feedback problem has been obtained in 

[3]. This condition is in some cases quite conservative. 

A necessary and sufficient condition for the existence 

of a solution to the deterministic problem without 

uncertainty in terms of matrix inequalities readily follows 

from the standard BRL. It is, however, bilinear in the 

decision variable matrices and this is the reason why 

standard convex programming procedures could not be 

used in the past to solve the problem, even in the case 

where the system parameters were all known, and various 

methods have been proposed to deal with this difficulty 

[12]. 

Hybrid dynamical systems include continuous and 

discrete dynamics and a mechanics (supervisor) managing 

the interaction between these dynamics. This paper is 

concerned with a particular class of hybrid systems where 

the hybrid nature of the control scheme developed consists 

of a fuzzy supervisor managing the combination between 

two controllers (H2 and H
#
). The switching action is 

gradual and is related to the system evolution between the 

consecutive transient and steady state modes. 

An abrupt switch is not used in the proposed control 

scheme in order to attenuate the controllability and the 

instability problems related to the induced jump 

phenomenon. So, in this work, the supervisor determines 

the adequate mixing between the two controllers in each 

mode. Furthermore, the proof of the global stability of a 
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closed loop system using the proposed method is related to 

the ones developed for switching systems theory based on 

multiple Lyapunov functions [18]. 

Combination of different techniques to obtain the best 

performances is widely used today. Wong et al. [14] 

proposed a combination of three methods: SMC, fuzzy 

logic control (FLC), and PI control. The resulting 

controller eliminates the chattering and the steady error 

introduced by the FLC. Lin and Chen [19] used Genetic 

algorithms to optimize the mixing of SMC and FLC, and 

hence to reduce chattering in the system. Barrero et al. [11] 

developed a FLC-based hybrid controller to manage the 

switching between a SMC and a fuzzy PI controller. 

Nevertheless, the above-mentioned works use a fixed 

combination or restrictive assumptions for the stability 

analysis. Many combinations of fuzzy logic intelligence 

and H# technique efficiency have been proposed in the 

literature [23, 15, 1, 16].  

In the present paper we solve the switching H2 and the 

H
#

static control problems for discrete-time linear systems 

that contain stochastic white-noise parameter uncertainties 

in the matrices of the state-space model that describes the 

system. 

We apply the simple design method of [21, 10] for 

deriving the static output-feedback gain that satisfies 

prescribed H2 and H# performance criteria. A parameter 

dependent Lyapunov function (LPD) is applied and a 

sufficient condition is obtained by adopting a stochastic 

counterpart of a recent LPD stabilization method. We 

propose a fuzzy supervisor for hybrid combination of H2

and H# controllers to use their advantages, and to ensure 

the robustness and the stability of the closed loop system. 

The contribution of the work presented in this paper is 

combining H2 and H# controllers using a supervisor, which 

manages the gradual transition from one controller to 

another. This method is applied to use the advantages of 

each controller. The control signal is obtained via a 

weighting sum of the two signals given by the H2 and the 

H# controllers. This weighting sum is managed thanks to a 

fuzzy supervisor, which is adapted to obtain the desired 

closed loop system performances by benefiting from the 

robustness of the H2 in the approaching phase, minimizing 

the energy of impulse response and the ability of the H#

control to eliminate the chattering and to guarantee the 

system robustness. So, the 2H mainly acts in the transient 

state providing a fast dynamic response and enlarging the 

stability limits of the system, while the H
#

control acts 

mainly in the steady state to reduce chattering and maintain 

the tracking performances. This method is particularly 

attractive since it can result in many cases in invariant 

control systems, i.e. systems completely insensitive to 

parametric uncertainties and external disturbances. 

Furthermore, the global stability of the system even if the 

system switches from one configuration to another 

(transient to steady state and vice versa) is guaranteed. 

Section 2 presents the system definition, and the 

controllers used. In Section 3, the fuzzy supervisor, and the 

proposed control law and its stability analysis are 

described. An example of a two-output one-input system is 

given in Section 4 to illustrate the efficiency of the 

proposed method. 

Notation: Throughout the paper the superscript ‘T’ 

stands for matrix transposition, nR denotes the n

dimensional Euclidean space, n mR × is the set of all n m×

real matrices, N is the set of natural numbers and the 

notation 0P > , (respectively, 0P � ) for n nP R ×� means 

that P is symmetric and positive definite (respectively, 

semi-positive definite). The variables { }k� and { }k� are 

zero-mean real scalar white-noise sequences that satisfy 

{ } { } { }, , , , 0k j kj k j kj k j kjE E E k j� � 	 � � 	 � � 	= = = � �

We denote by 2 ( , )nL R� the space of square-summable 

nR valued functions on the probability space ( , ,� F ), 

where � is the sample space, F is a � algebra of a 

subset of � called events and  is the probability 

measure on F . By ( )k k N�
F we denote an increasing 

family of � -algebras 
k �F F which is generated by 

, , 1j j j k� � � � . We also denote by 2 ( ; )nl N R% the space 

of non-anticipative stochastic processes { } { }
[ ]0,k k k

f f
� �

=

in nR with respect to ( )
[ ]0,k k� �

F satisfying 

{ } { }2

2 2 2 2

0 0

, ( ; )n

k k k kl
f E f E f f l N R

� �� �
= = < � �� �

� �
� �%

% (1) 

Where . is the standard Euclidean norm. We denote by 

ij	 the Kronecker delta function. 

 

II. PROBLEM FORMULATION 
We consider the following linear system: 

( )1 1 2 0( ) , 0,k k k k k kx A D x B B G u x� � �+ = + + + + =

2 21 ,k k ky C x D n= + (2) 

 With the objective vector 

1 12 ,k k kz C x D u= + (3) 

where { } n

kx R� is the system state vector, { } q

k R� � is 

the exogenous disturbance signal, { } p

kn R� is the 

measurement noise sequence, { } l

ku R� is the control 

input, { } m

ky R� is the measured output and 

{ } r n

kz R R� �  is the state combination (objective 

function signal) to be regulated. The state-multiplicative 

white-noise sequences are defined in the Notation section. 

The matrices in (2), (3) are assumed to be constant 
matrices of appropriate dimensions. 

In each state we seek a constant output-feedback controller 

k ku Ky= (4) 

That achieves a certain performance requirement. We treat 

the following two different performance criteria: 
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• The stochastic H2 control problem: Assuming that 

{ } { },k kn� are realizations of a unit variance, stationary, 

white noise sequences that are uncorrelated 

with{ } { },k k� � , the following performance index should 

be minimized: 

{ }
2

2

2
,

k ln
J E z

�
= %

(5) 
• The stochastic H# control problem: Assuming that the 

exogenous disturbance signal is energy bounded, a static 

control gain is sought which, for a prescribed scalar 0! >

and for all non-zero{ } q

k R� � ,{ } p

kn R� , guarantees 

that 0J� < where 

2 2 2

2 2 22

1k k kl l l
J z n! �� +

" #= � +$ %% % %  (6) 

Augmenting systems (2) and (3) to include the measured 

output 
ky we define the augmented state vector 

{ },k k kcol x y& = and obtain the following representation 

to the closed-loop system: 

1 0
, 0

k k k k k k k

k k

A B D G

z C

& & � & � & � &

&
+

= + + + =

=

% %% %%

%
(7a,b) 

Where 

[ ]

2

1 2 2 2 2

1

1 12

2 2 1 21

0
, , ,

0

0 0
, ,

0

k

k

k

A B K D
A D

n C A C B K C D

GK B
G B C C D K

C GK C B D

�
�

+

" # " # " #
= = =' ( ' ( ' (
$ % $ % $ %

" # " #
= = =' ( ' (
$ % $ %

% %%

% %%

(8a-g) 

We consider the following Lyapunov function: 

T

LV P& &= % With 
1

2

2 1

2

, 0
ˆ

T
P PC

P P
C P P

)

)

�

�

" #�
= >' (
' ($ %

% %  (9a-c) 

Where n nP R ×� and ˆ m mP R ×� . The parameter ) is a 

positive scalar tuning parameter. 

 

A. The stochastic H2 control problem 

Applying (9) to the derivation of the stochastic H2

control results [10] it is obtained that 2

2J 	< for a 

prescribed 	 if there exist a positive definite solution 
1Q P �=% % , where P% is of the structure (9b), and 

( ) ( )q p q pH R + × +� that solve the following linear matrix 

inequalities (LMIs): 

2

0 0 0

*

0,* * 0 0

* * * 0

* * * *

0, ( )

T T T

r

T

Q AQ

Q QC QD QG

I

Q

Q

H B
trace H

B Q
	

" #�
' (

�' (
' ( <�
' (

�' (
' (�$ %

" #
> <' (

$ %

% % %

% % % % % %%

%

%

%

%%

(10a-c) 

We note that the LMIs of (10a–c) provide, in the limit 

where the variances of the multiplicative noise tend to zero 

(i.e. 0, 0D G= =%% ) the standard H2 criterion for 

deterministic systems. 

Applying [21] it is found that Q% possesses the following 

structure: 

2

2

ˆ
,

ˆ ˆ

TQ C Q
Q

QC Q)

" #
= ' (
' ($ %

% (11) 

Where ˆ,n n m mQ R Q R× ×� � .

Substituting for , ,A B C% %% and ,D G%% into the latter LMIs 

we obtain the following: 

Lemma 1. Consider systems (2), (3). The output-feedback 

control law (4) achieves a prescribed H2- norm 

bound 0 	< , if there exist ˆ, ,n n m m l mQ R Q R Y R× × ×� � �  

and ( ) ( )q p q pH R + × +� that, for some tuning scalar 0 )< ,

satisfy the following LMIs: 

2 13 14

23 24

2 35 37 2 39

45 2 47 49

2

2

ˆ 0 0 0 0 0

ˆ* 0 0 0 0 0

ˆ* *

ˆ ˆ* * *

* * * * 0 0 0 0

ˆ* * * * * 0 0

ˆ* * * * * * 0 0

ˆ* * * * * * *

ˆ* * * * * * * *

T

T T T T T

T T T

r

T

T

Q C Q

Q

Q C Q QD C Y G

Q QC D Y G

I

Q C Q

Q

Q C Q

Q

)

) )

)

)

" #� � * *
' (

� * *' (
' (

� � * * *' (
' (

� * * *' (
' (* = �
' (
' (� �
' (

�' (
' (

� �' (
' �$ %

% %

% %

% % %

% % %

%

(

11 12 1 1 2

22 21 2

2

* 0
0, 0, ( )

ˆ* *

ˆ* * *

T T T

T

T

H H B B C

H D
trace H

Q C Q

Q

	

)

" #
' (
' (* < > <' (
' (
' ($ %

% (12a-c)

 
Where

11 12

21 22

,
H H

H
H H

" #
= ' (
$ %

13 2 2 14 2 2

23 2 2 2 2 2 2

ˆ, ,

ˆ ˆ ,

TAQ B Y C B Y AC Q

C AQ C B Y C QC QC

)* = + * = +

" #* = + � +$ %

% %

%

37 2 39 2 2 47 2 2
ˆ, ,T T T T T T T TQD C C Y G C QC D C* = * = * =% % %  (13a-k) 

24 2 2 2 2 49 2

45 12 2 1 35 1 2 12

ˆ ˆ ,

ˆ ,

T T T T

T T T T T T T

C AC C B Y Q Q Y G C

Y D QC C QC C Y D

) ) ) )

)

" #* = + � + * =$ %

* = + * = +

% %

% %
 

If a solution to the latter LMIs exists, the gain matrix K 

that stabilizes the system and achieves the required 

performance is given by 1ˆK Y Q �
= (14) 

 

B. The stochastic H
,

problem  

The LMIs of lemma 1 provide a sufficient condition for 

the existence of a static output-feedback gain that achieves 

a prescribed H2- norm for system (7). A similar result can 

be obtained if the H#-norm of the latter system is 

considered. Given a prescribed desired bound 0 !< on the 

H#- norm of the system, the inequalities in (10) are 

replaced by the following BRL condition [8]. 
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2

0 0 0

* 0

* * 0 0 0
0,

* * * 0 0

* * * * 0

* * * * *

T T T

q p

r

Q AQ B

Q QC QD QG

I

I

Q

Q

!
+

" #�
' (

�' (
' (�

<' (
�' (

' (�
' (

�' ($ %

% % % %

% % % % % %%

%

%

(15) 

Using the definition of (11), multiplying (15), from both 

sides, by { }q+p rdiag Q , Q , I , I  , Q , Q% % % % , where Q% is defined 

in (11), and substituting for , ,A B C% %% and ,D G%% in the latter 

LMI we obtain the following: 

Lemma 2 [10]. Consider the system of (2), (3). The 

control law (4) achieves a prescribed H#-norm 

bound 0 !< , if there exist, ˆ, ,n n m m l mQ R Q R Y R× × ×� � �  

that, for some scalar 0 )< , satisfy the following LMI: 

1

2 1 21

2

0

0
0 0

* q p

B

C B D

I! +

" #" #
' (' (*' (' ( <' (' ($ %' (

�' ($ %

%

(16) 

Where *% is defined in (12a). 

If a solution to the latter LMI exists, the gain matrix K that 

stabilizes the system and achieves the required 

performance is given by (14).  

 
III. FUZZY SUPERVISOR 

H2 control provides a fast dynamic response, a stable 

control system, and a simple implementation. Conversely, 

this control strategy leads to some drawbacks that appear in 

the steady state. The H
#

techniques can be an alternative 

for guaranteeing the robustness and the global stability. In 
order to take advantage of both controllers, H2 during the 

transient time, and H# control during the steady state, their 

control actions are combined by means of a weighting 

factor, [ ]0 1) � , representing the output of a fuzzy logic 

supervisor that takes the tracking error e and its time 

derivatives 1, , , ne e e �& && K as inputs. The global control 

scheme of the proposed approach is illustrated in Fig. 1. 

M

1�ndt

d

dt

d

)�1

Fig. 1 The control scheme of the proposed method 

The fuzzy system is constructed from a collection of fuzzy 

rules whose j th component can be given in the form 

1

1

j n j

n jIf e is H And And e is H Then ) )�
=K

where j

iH is a fuzzy set, and j) is a singleton. 

It is easy to see that it can be considered as a fuzzy rule of 

a Takagi–Sugeno fuzzy system.The fuzzy implication uses 

the product operation rule. The connective AND is 

implemented by means of the minimum operation, whereas 

fuzzy rules are combined by algebraic addition. 

Defuzzification is performed using the centroid method, 

which generates the gravity centre of the membership 

function of the output set. Since the membership functions 

that define the linguistic terms of the output variable are 

singletons, the output of the fuzzy system is given by 

1 1

1 1

nm
j

i i

i j

nm
j

i

i j

) µ

)
µ

= =

= =

=

� ,

�,
(17) 

Where j

iµ is the degree of membership of j

iH , and m is 

the number of fuzzy rules used. 

The objective of this fuzzy supervisor is to determine 

the weighting factor,) , which gives the participation rate 

of each control signal. Indeed, when the norm of the 

tracking error e and its time derivatives 1, , , ne e e �& && K are 

small (near to zero), the plant is governed by the H#

controller, 1) = . Conversely, if the error and its 

derivatives are large, the plant is governed by the H2,

0) = . The variation of ) for 2n = is depicted in Fig. 2. 

Fig. 2 The variation of , in the state space 

The control action,u is determined by  

2
(1 ) H Hu u u) )

�
= � + (18) 

Remark. In the case of a large rule base, some techniques 

can be employed to significantly reduce the number of 

rules activated at each sampled time by using the system 

position in the state space. Indeed, it is demonstrated that 

using a strict triangular partitioning allows guaranteeing 

that, at each sampling time, each input variable is described 

with two linguistic terms at the most [16]. Thus, the output 

generated by the fuzzy system with n inputs is then 

reduced to that produced by the subsystem composed of 

the 2n fired rules. 
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A. Stability analysis 
The theorem of Essounbouli et al. [16] will be used to 

prove the global stability of the system governed by the 

control law (18). Similar to [16], using H2 and H# control, 

this theorem can be rewritten as follows: 

Theorem 1. Consider a combined fuzzy logic control 

system as described in this work. If  

(1) There exists a positive definite, continuously 

differentiable, and radially unbounded scalar function V

(2) Every fuzzy subsystem gives a negative definite V& in 

the active region of the corresponding fuzzy rule, 

(3) The weighted sum defuzzification method is used, such 

that for any output u we have 

2 2
min( , ) max( , )H H H Hu u u u u

� �
� �

Then the resulting control u , given by (18), guarantees 

the global stability of the closed loop system. 
Satisfying the two first conditions guarantees the existence 

of a Lyapunov function in the active region which is a 

sufficient condition for ensuring the asymptotic stability of 

the system during the transition from the H2 control to the 

H# one. 

So, let us consider the Lyapunov function TV P& &� �=

where P P� = is a positive definite matrix and the solution 

of (16) and we have max ( )T TP P& & - & &� �� , where 

max ( )P- � is the maximal eigen value of P� . Section 2.2 has 

shown that the synthesized H# control ensures the decrease 

of the Lyapunov functionV � .

We consider the Lyapunov function 
2 2

TV P& &= where 

2P P= is a positive definite matrix and the solution of 

(12)) and we have
min 2 2( ) T TP P- & & & &� , where 

min 2( )P- is 

the minimal eigen value of 2P . Section 2.1 has shown that 

the synthesized H2 control ensures the decrease of the 

Lyapunov function 2V .

To satisfy the second condition of the theorem, it is enough 

to choose 
2 ,P P� such that 

max min 2( ) ( )P P- -� � (19) 

This condition guarantees that in the neighborhood of 

the steady state (H# control), the value of the Lyapunov 

function 2V is greater than that ofV � .

To guarantee third condition, the balancing term ) takes 

its values in the interval [0 1]. 

Consequently, the three conditions of the above 

theorem are satisfied, and both the global stability of the 

system and the error convergence towards zero are 

guaranteed. 

B. Design procedure 

In order to minimize the on-line computing time of the 

proposed method and to simplify its real time 

implementation, the design procedure implies an off-line 

processing step and an on-line step during control 

execution. In the off-line step, the gains are defined in 

order to satisfy the stability criterion (19). The supervisor 

design is essentially based on the available information of 

the process under study. Indeed, when a sufficient amount 

of information is available, it becomes possible to reduce 

the number of inputs and the fuzzy rules. 

In order to construct the fuzzy supervisor, we define 

firstly the fuzzy sets for each input (the error and its 

derivatives) and output; then the rule base is elaborated. 

For the on-line step, the error vector is computed and then 

injected in the supervisor to determine the value of ) to 

apply the global control signal. 

 

IV. EXAMPLE 

To demonstrate the solvability of the various LMIs in this 

paper we bring a third-order, two-output, one-input 

example where we seek switching output feedback 

controllers. We consider the system of (2), (3), where 

1

2 2 21 1

0.9813 0.342 1.3986 0.0198 0.0034 0.0156

0.0052 0.984 0.1656 , 0.0001 0.0198 0.0018

0 0 0.5488 0 0 0.015

1.47 1 0 0
1 0 0

0.0604 , , 0, 0 1 0
0 1 0

0.4512 0 0 1

A B

B C D C

" # " #
' ( ' (

= � = �' ( ' (
' ( ' ($ % $ %

�" # " #
" #' ( ' (

= � = = =' (' ( ' ($ %' ( ' ($ % $ %

 

12

0 0 0 0

0 , 0 0 0 , 0

1 0 0 0.4

D D G

" # " #
' ( ' (

= = =' ( ' (
' ( ' ($ % $ %

 (26a-i) 

Obtain the following results: 

• The stochastic H2 controller: Applying the result of 

lemma 1 and solving (12) a minimum H2-norm bound of 

0.0449	 = is obtained for 2.4) = . The corresponding 

static output-feedback controller of (14) is 

[ ]0.3469 0.6216K = .

• The stochastic H# controller: Using lemma 2 and solving 

(16) a minimum value of 0.8916! = is obtained for 

2.4) = . The corresponding static output-feedback 

controller of (14) is K = [0.3567 1.2622] .

The fuzzy supervisor is constructed by using three fuzzy 

sets zero, medium, and large for the tracking error and its 

time derivative. The corresponding membership functions 

are triangular, as shown in Fig. 3. For the output, five 

singletons are selected; very large (VL), large (L), medium 

(M), small (S), and zero (Z), corresponding to 1, 0.75, 0.5, 

0.25, and 0, respectively. The fuzzy rule base is depicted in 

Fig. 4. Rules are defined by a table; for example, a rule in 

the table can be stated as follows: “If the norm of the error 

is medium AND the norm of the error derivative is large, 
and then T is zero”.  

Results show that H2 and the combined controller 

provide a fast dynamic response compared to H#, and that 

H# and the combined controller provide a smooth variation 

of the control signal. Hence, the proposed control set-up 

benefits from their advantages of both H
#

and H2, and in 

terms of tracking performance and the robustness to 

external perturbations, which is ensured by H# control in 
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the steady state (The fuzzy supervisor favors H# to reach 

the steady state with a fast dynamic). The applied control 

signal forces the system to remain stable and to attain the 

desired trajectory. Thus, we obtain an intermediate 

dynamics whose advantage is to have a compromise 

between the settling time and the actuator solicitations. 

Comparing the results shows that the proposed controller 

ensures a good convergence towards the desired trajectory. 

The conditions of Theorem 1 are satisfied and the system 

global stability is guaranteed despite the configuration 

changing. 

 

Fig. 3  The structure of the proposed fuzzy supervisor 

 
V. Conclusions 

A convex programming method is presented which 

provides an efficient design of switching robust static 

output-feedback controllers for linear systems with state 

multiplicative noise. Sufficient conditions are derived for 

the existence of switching controller that stabilizes the 

system and achieves a prescribed bound on its 

performance. Both stochastic H2 and H# performance 

criteria have been considered.  

In this work, we have developed a hybrid robust 

controller. The main idea is the use of a fuzzy supervisor to 

manage efficiently the action of two controllers based on 

H2 and H#, such that the system remains stable and robust 

despite the plant switching from one mode to a new one. 

Furthermore, this structure allows us to take advantage of 

both controllers and to efficiently eliminate their 

drawbacks. Simulation results showed the efficiency and 

the design simplicity of the proposed approach. Indeed, the 

H2 provides good performances in the transient state (a fast 

dynamic response, enlarged stability limits of the system), 

while the H# control acts mainly in the steady state to 

reduce chattering and the effect of the external 

disturbances. This work can be generalized to multiple 

controllers, more than two, managed by the same fuzzy 

supervisor. Indeed, the structure of the fuzzy supervisor 

allows partitioning the state into different sub states. An 

adequate controller can be defined for each sub state to 

ensure the desired performances. The rule base of the fuzzy 

supervisor will be reconstructed so that the premise part 

defines the subspace and the conclusion part the 

corresponding control law. Thus the applied control signal 

will be a weighted sum of all the controllers used. 
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