
 
 

 

  

Abstract- In this paper, constrained controller design is 
proposed for a class of nonlinear discrete-time uncertain 
system having matched type system uncertainties, using the 
solution of HJB (Hamilton-Jaccobi-Bellman) equation. The 
discrete-time HJB equation is formulated using a suitable non-
quadratic term in the performance functional to tackle 
constraints on the control input.  Based on the non-quadratic 
functional, a greedy HDP algorithm is used to obtain the 
constrained robust-optimal controller. The constrained robust 
controller requires knowledge of the upper bound of system 
uncertainties. For facilitating the implementation of the 
iterative algorithm, two neural networks are used to 
approximate the value function and to compute the optimal 
control policy, respectively. Their weights have been tuned 
using least squares method. Proposed algorithm has been 
applied on a nonlinear discrete-time system with matched 
uncertainties.   
       

I.   INTRODUCTION 

In recent years, approximate dynamic programming 
(ADP) algorithm has been paid much attention by 
researchers [1–5] in order to obtain approximate optimal 
control law. ADP combines adaptive critic design and 
reinforcement learning technique with dynamic 
programming. ADP approaches were mostly classified into 
four main schemes: Heuristic Dynamic Programming 
(HDP), Dual Heuristic Dynamic Programming (DHP), 
Action Dependent Heuristic Dynamic Programming 
(ADHDP), also known as Q-learning, and Action Dependent 
Dual Heuristic Dynamic Programming (ADDHP). Liu et. al 
[15] proposed action dependent adaptive critic designs for 
nonlinear systems. Si and Wang [6] proposed two new ADP 
schemes known as Globalized-DHP (GDHP) and 
ADGDHP. In [8],[10] a greedy HDP iteration scheme was 
proposed to solve the optimal control problem for nonlinear 
discrete-time systems with known mathematical model. In 
all the above mentioned algorithms, constraints on the 
control input were not taken into account. However, in 
practical systems one should consider at least magnitude 
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constraints on control input due to limitations of the 
actuators. Lysevski [14] suggested a constrained controller 
design for nonlinear discrete-time system. Khalaf et.al. [7] 
proposed similar approach for continuous-time nonlinear 
system with HJB equation based formulation. However, 
constrained optimal controller design for discrete-time 
system has not been much explored in the literature. 

All the HJB based optimal controller designs need exact 
information about the system model. However, all practical 
control systems have to be robust with respect to model 
uncertainty such as unknown or partially known time-
varying process parameters, exogenous disturbances etc. So 
model uncertainty needs to be considered during the time of 
controller design process to avoid the deterioration of 
nominal closed-loop performance. In other words, we need 
to design robust feedback control law to tackle the system 
uncertainty. Berger [12] proposed robust control of linear 
discrete-time systems by minimizing the frequency response 
of the perturbed plant at selected frequencies. Ho and Lu 
[13] proposed a method for robust stabilization of discrete 
nonlinear system with LMI (Linear Matrix Inequality) 
approach. Even though the above mentioned results provide 
systematic methods for robust controller design, they do not, 
in general, lead to controllers that are optimal with respect to 
a meaningful cost. An alternative realistic approach is to 
obtain approximate solution of HJB equation using NN, for 
feedback controller design of discrete-time nonlinear 
uncertain system having constrained input. However, 
constrained robust controller design using NN-based HJB 
solution has not been explored much in the literature. 

In this paper, the main methodological contribution is the 
design of robust controller for nonlinear discrete-time 
uncertain system. In this approach, the robust control 
problem is formulated into an optimal control problem by 
properly choosing a cost functional. The cost functional is 
modified to account for matched system uncertainties and 
constraints on the input. Hence it can be referred to as a 
constrained robust-optimal control design approach. The 
proposed work is realized using iterative HDP algorithm, 
with necessary theoretical justifications. It is implemented 
using two neural networks to approximate the solution of 
discrete-HJB equation. The least squares method has been 
used to find tuning law of neural networks. Convergence 
proof of the present work is supplemented by necessary 
theoretical and simulation results.  
The paper is organized as follows: In section 2, HJB based 

robust-optimal control framework has been developed to 
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design constrained robust controller for discrete-time 
matched uncertain systems. In the section 3, we propose 
HDP algorithm for solving constrained robust control 
problem. Implementation of HDP algorithm with neural 
networks is discussed in section 4. Proposed approach has 
been validated by simulating experiment on a nonlinear 
discrete-time uncertain system having matched type system 
uncertainties. Conclusions follow in section 6. 

II.   ROBUST–OPTIMAL CONTROL FRAMEWORK 
 

Consider a nonlinear discrete-time system  
        ( 1) ( ( )) ( ( )) ( )x k A x k B x k u k+ = +              

where ( ) nx k ∈�  is the state vector and ( )u k ∈� is the 

control input. It is assumed that ( )u k is bounded by a 

positive constant .λ  i.e., ( )ku λ≤ ∈�                            (1)                                               

Suppose that the function ( ( ))A x k  is known only up to an 
additive perturbation which is bounded by a known 
function, and this perturbation is in the range of ( ( ))B x k , 

i.e., ( ( ))A x k  can be written as 
( ( )) ( ( )) ( ( )) ( ( ))A x k A x k B x k f x k= +  with unknown ( ( )).f x k The 

condition that unknown perturbation be in the range space of 
( )( )B kx  is called the matching condition, and can be 

incorporated by expressing the system as 
 ( 1) ( ( )) ( ( )) ( ) ( ( )) ( ( ))x k A x k B x k u k B x k f x k+ = + +             (2)                                                                                                                            

The function ( ( )) ( ( ))B x k f x k  models matched 
uncertainty in the system dynamics. The nominal model 

( ( ))A x k  and ( ( ))B x k are known with (0) 0A =  
and  (0) 0.f = This assumption ensures that origin is the 
equilibrium point of the system (2). It is assumed that the 
function ( )( )kf x  is bounded by a known function, 

max ( )( ) :kf x  

        max( ) ( )( ) ( )k kf x f x≤     .k∀                              (3)                                                                

In this section, design of a constrained optimal control law is 
proposed to ensure the asymptotic stability of the system (2). 
(a) Robust Control Problem: For the open-loop system (2), 
find a feedback control law ( )u k  such that the closed-loop 
system is globally asymptotically stable for all admissible 
uncertainties ( ( )).f x k    

This problem can be formulated into an optimal control of 
the nominal system with appropriate cost functional.  
(b) Optimal control problem: 

 For the nominal system 
         ( 1) ( ( )) ( ( )) ( )x k A x k B x k u k+ = +                        (4)   

find a feedback control  ( )u k  that minimizes the cost 
functional  

( )2
max( ( ), ) ( ( )) ( ) ( ) ( ( ))T

i k

J x k u x k Qf x i x i M u iρ
∞

=

= + +∑   (5)                                  

where ( )
( )

1 1

0

( ( )) 2 ( )
u i

RM u i v dvλϕ λ− −= ∫     

            1 1 2 1 22 ( ) ln(1 ( ) ) 0RRu u uλ ϕ λ λ λ− − −= + − >  (6) 
is non-quadratic term expressing cost related to constrained 
input. Q is positive definite matrix of appropriate 
dimensions, and it is assumed to be diagonal for simplicity 
of analysis. R is a positive constant. ρ is a  positive constant 
and it is used as a design parameter. ( )ϕ ⋅ is a bounded one-

to-one function satisfying 1( )ϕ ≤⋅ and belonging to 

( 1)P pC ≥  and 2 ( ).L Ω  Moreover, it is a monotonic 
increasing odd function with its first derivative bounded by 
a constant N. In this paper, we have considered 

( ) tanh( ).ϕ ⋅ = ⋅  
 Assume that  ( ( )) ( ( )) ( )A x k B x k u k+  is lipschitz continuous 

on set Ω  in n� containing origin, and that the system (4) is 
controllable in the sense that there exists a continuous 
control on Ω  that asymptotically stabilizes the system. For 
optimal control problem, state feedback control ( )u k  must 
not only stabilize the system on Ω  but also guarantee that 
(5) is finite, i.e., admissible control. From now on, we let 

( ( ))V x k∗ denote the minimum value of the performance 
functional ( ( ), ),J x k u which is called value function or 
optimal cost function in the later parts. 
Definition 1. (Admissible Control): A control ( )u k is defined 
to be admissible control with respect to (5) on Ω  if u 
stabilizes (4) on ,Ω  (0) 0,u =  and for all 

(0) ,x ∈Ω ( (0), )J x u is finite. 
In this paper, we address the following problems: 
(i) Solution of the robust control problem (a) and optimal 
control problem (b) are equivalent. 
(ii) Solve the optimal control problem using HDP based 
iterative algorithm and implementation of it through NN.  

According to Bellman optimality principle, we can obtain 

( )* 2
max( )

( ( )) min ( ( )) ( ) ( ) ( ( ))T

u i i k

V x k x i Qf x i x i M u iρ
∞

=

= + +∑

( )2 *
max( )

min ( ( )) ( ) ( ) ( ( )) ( ( 1))T

u i
x k Qf x k x k M u k V x kρ= + + + +   (7)               

According to the first-order necessary condition of the 
optimal control, the following equation holds: 

*
1 1( ( )) 2 tanh ( ( ))

( )
V x k R u k

u k
λ λ− −∂

=
∂

 

                            
*

0
( 1) ( ( 1))

( ) ( 1)

Tx k V x k
u k x k

 ∂ ∂
+ = ∂ ∂ 

+ +
+

   (8) 

It gives 

 ( ) 1* 1 ( ( ))
2

( ) tanh ( ( 1))T
xB x ku k R V x kλ λ − ∗ = −  

 
+          (9)                        

where 
*

.
( ( 1))( ( 1)) ( 1)x

V x kV x k x k
∗ ∂

∂
++ =

+
 

550



 
 

 

The resulting HJB equation is 
* 2 *

max( ( )) ( ( )) (10)( ) ( ) ( ( )) ( ( 1))  TV x k x k Qf x k x k M u k V x kρ ∗= + + + +      

The optimal control *( )u k can be computed if the value 

function ( ( 1))V x k∗ + can be solved from the HJB equation 
(7). In the next section we will discuss how to use the 
approximated dynamic programming algorithm named HDP 
(Heuristic Dynamic Programming) to solve the optimal 
control problem. 
 

III.   HDP ALGORITHM FOR CONSTRAINED 
ROBUST CONTROLLER DESIGN 

 
In this section, we propose an iterative HDP algorithm to 

solve HJB equation having modified performance term 
related to constraint on the input and bound on the system 
uncertainties. Initially we find solution of HJB equation 
using HDP algorithm, which gives constrained optimal 
control and then we will prove that this control is the robust 
control for the system (2). 
 
A. HDP algorithm for constrained optimal control problem 

 
Let the initial cost function is 0 ( ( )) 0V x k = .Now we can 

find the control 0 ( ( ))u x k as follows: 

  
(

)

2
0 max

( )

0

arg min ( ( ))

                             

( ( )) ( ) ( )

( ( )) ( ( 1))

T

u k
x k Qu x k f x k x k

M u k V x k

ρ= +

+ + +
         (11) 

and then update the cost function as  
2

1 max 0 0( ( ))( ( )) ( ) ( ) ( ( )) ( ( 1))Tx k QV x k f x k x k M u k V x kρ += + + + (12)                          
The HDP algorithm iterates between  

(
)

2
max

( )
arg min ( ( ))( ( )) ( ) ( )

               ( ( )) ( ( 1))

T
i

u k

i

x k Qu x k f x k x k

M u k V x k

ρ= +

+ + +
 

       ( ) 11 ( ( ))
2

( ( 1))tanh ( 1)
T iB x k

V x kR x kλ λ − ∂
= −  ∂ 

+
+

     (13)                                      

and,   

(
)

2
1 max( )

min ( ( ))( ( )) ( ) ( )

              ( ( )) ( ( ( )) ( ( )) ( ))

T
i u k

i

x k QV x k f x k x k

M u k V A x k B x k u k

ρ+ = + +

+ +
   

             
2

max ( ( )) ( ) ( ) ( ( ))
   ( ( ( )) ( ( )) ( )))

T
i

i i

x k Qf x k x k M u k
V A x k B x k u k

ρ= + +
+ +

          (14) 

In this way, the cost function and control policy are updated 
by recurrent iteration until they converge to the optimal 
ones, with the iteration number i increasing from 0 to 

.∞ Asma et. al. [8],[10] presented theoretical results for 
unconstrained optimal control design using HDP based 
algorithm. In the following part, we state theoretical results 
to prove the convergence of the iteration between (13) and 
(14) with the cost function iV V ∗→  and iu u∗→ as 

i → ∞ with modified performance terms. 
Lemma 1: Let iµ  be any arbitrary sequence of control 
policies and iu be the policies as (13). Let iV  be as (14) and 

iΛ as 
2

1 max( ( ))( ( )) ( ) ( ) ( ( )) ( ( 1))T
i i ix k Qx k f x k x k M k x kρ µ+ +Λ = + +Λ +  (15) 

If 0 0 0,V A= = then , .i iV i≤ Λ ∀  
Proof: Note that, 1iV +  is a result of minimizing the right-
hand side of (14) with respect to the control input u, while 

1i+Λ is a result of any arbitrary control input. Since 

0 0 0,V A= = it follows that    ,i iV i≤ Λ ∀  by induction. �  

Lemma 2: Let the sequence { }iV be defined as (14). If the 
system is controllable, then following conditions hold: 
(i) There exists an upper bound Y such that 0 iV Y≤ ≤  .i∀   
(ii) If the optimal control problem (7) is solvable, then there 
exists a least upper bound ,V Y∗ ≤ where V ∗  solves (10) and 
that 0   .iV V Y i∗≤ ≤ ≤ ∀  
Proof: Let ( ( ))x kη be any stabilizing and admissible control 

input, and let ( ) ( )0 0 0,V Z⋅ = ⋅ = where iV is updated as (14) 

and iZ  is updated by 
2

1 max( ( ))( ( )) ( ) ( ) ( ( )) ( ( 1))T
i i iZ x k Qx k f x k x k M k Z x kρ η+ += + + + (16) 

Using results of Lemma 1, one can prove similar to the 
lemma 2 of [10].  

      1 1 ,   ( ( )) ( ( ))i iV Z Y ix k x k+ + ≤ ∀≤  
This completes the proof of part 1. Moreover if  

( ( )) ( ( )),x k u x kη ∗=  then 

( )

( )

2
max

0

2
max

0

( ( ))

( ( ))

( ) ( ) ( ( ( )))

( ) ( ) ( ( ( )))

T

j

T

j

x Q

x Q

f k j x k j x k j M u x k j

f k j x k j x k j M x k j

ρ

ρ η

∞
∗

=

∞

=

+

+

+ + + + +

≤ + + + + +

∑

∑
 

and hence, ,V Y∗ ≤ which proves part (2) and shows that 
0   iV V Y i∗≤ ≤ ≤ ∀ and for any Y determined by an 
admissible stabilizing policy ( ( )).x kη   � 
Using results of lemma 1 and lemma 2, in the following 
theorem it has been shown that the HDP algorithm 
converges to the value function of the DT HJB equation. 
Theorem 1: Define the sequence { }iV as (14), with 

( )0 0.V ⋅ =  Then { }iV is a non-decreasing sequence 

satisfying 1( ( )) ( ( )),i iV Vx k x k+ ≥ i∀ and converging to the 
value function of the discrete-time HJB equation (10), i.e, 

iV V ∗→ as .i → ∞  Meanwhile, the control policy also 
converges to the optimal policy (9), i.e., iu u∗→  as .i → ∞  
Proof: For the convenience of analysis, define a new 
sequence iφ as follows: 

2
1 max 1( ( ))( ( )) ( ) ( ) ( ( )) ( ( 1))T

i i ix Qx k f k x k x k M u k x kφ φρ+ ++= + + + (17)                     
with 0 0 0Vφ = = and policies iu defined as (13), the cost 
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function iV is updated by (14). 

In the following, we prove 1( ( )) ( ( ))i ix k V x kφ +≤ by 
mathematical induction. 
First, we prove that it holds for 0.i =  Noticing that 

2
1 0 max 0( ( ))( ( )) ( ( )) ( ) ( ) ( ( )) 0TV x Qx k x k f k x k x k M u kφ ρ +− = + ≥  (18)                        

Thus for 0i = we get, 
 1 0( ( )) ( ( ))V x k x kφ≥                                                                                              

Second, we assume that it holds for 1,i − i.e.,    

1( ( )) ( ( )), ( ).i iV x k x k x kφ −≥ ∀  
Then for i since, 

2
1 max ( ( ))( ( )) ( ) ( ) ( ( )) ( ( 1))T

i i iV x Qx k f k x k x k M u k V x kρ+ += + + +
holds, we obtain  

1 1( ( )) ( ( )) ( ( 1)) ( ( 1)) 0i i i iV Vx k x k x k x kφ φ+ −− = + − + ≥                                           
i.e. following equation holds  

1( ( )) ( ( ))i iVx k x kφ +≤                                                                                              
Furthermore, from lemma 1 we know that 

( ( )) ( ( )),i iV x k x kφ≤ therefore we have 

 1( ( )) ( ( )) ( ( ))i i iV Vx k x k x kφ +≤ ≤                                                 
From part (1) in lemma 2 and the fact that iV is non-
decreasing sequence, it follows that iV V∞→ as .i → ∞   

From part (2) of lemma 2, it also follows that .V V ∗
∞ ≤ It 

now remains to show that, in fact, V∞ is .V ∗ To see this, note 
that, from (14), it follows that 

2
max ( ( ))( ( )) ( ) ( ) ( ( ))

              ( ( ( )) ( ( )) ( )))

TV x Qx k f k x k x k M u k
V A x k B x k u k
ρ∞ ∞

∞ ∞

= + +
+ +

  

and hence,  

2
max ( ( ))

( ( ( )) ( ( )) ( ))) ( ( ))
( ) ( ) ( ( ))T

V

x Q

V A x k B x k u k x k
f k x k x k M u kρ

∞ ∞ ∞

∞= − −

+ −
−

  

Therefore V∞ is a Lyapunov function for a stabilizing and 

admissible policy ( ) ( ).u k kη∞ =  By using part (2) of 

lemma 2, it follows that .V Y V ∗
∞ = ≥ This implies that 

V V V∗ ∗
∞≤ ≤ and, hence V V ∗

∞ = and .u u∗
∞ =       � 

We have proven that the HDP algorithm converges to the 
value function of (10). In the next section we will prove that 
optimal control law design using (9) is the solution of the 
robust control problem discussed in section 2. 
 
B. HDP algorithm for constrained robust control problem 
 
  For the nominal system (2), it has been shown in theorem 1 
that if (13) and (14) are exactly solved then  V V ∗

∞ =  and 

.u u∗
∞ = Hence equation (14) can be written as 

2
max ( ( ))( ( )) ( ) ( ) ( ( ))

                ( ( ( )) ( ( )) ( )))

TV x Qx k f k x k x k M u k
V A x k B x k u k

ρ∗ ∗

∗ ∗

= + +
+ +

   (19)      

It gives, 

2
max

( 1)

        ( ( ))

( ) ( ( ))
( ) ( ) ( ( ))T

x k

x Q

V V V x k
f k x k x k M u kρ

∗ ∗ ∗

∗

= +

= − −

∆ −
−

        (20) 

It means V ∗ is a Lyapunov function and ,u∗ the solution 
of constrained optimal control problem, is stabilizing and 
admissible. It is clear from the equation (20) that ( )x k  has 
been derived from the nominal dynamics.  

Now one can select the design parameter ρ such that 

( ) 0( ( ( )) ( ( )) ( )) ( ( )) ( ))) ( ( ))un fV V A x k B x k u k B x k k V x k∗= ≤∆ + + −
 and an optimal control law u∗ will stabilize the uncertain 
system dynamics (2). It was shown with simulation 
experiment in section V. However, in that experiment ρ is 
selected using a trial and error method. Analytical proof 
related to the conditions for the selection of ρ can be 
considered as the future work. 

To get an optimal control law it is required that the action 
and value update equations (13) and (14) can be exactly 
solved, at each iteration, which is a difficult problem for 
nonlinear system Therefore, for implementation purposes, 
one need to approximate iu  and iV at each iteration, which 
gives the approximate solutions of (13) and (14). In the next 
section NN (Neural Network) based approximation has been 
used to solve equations (13) and (14). 

IV. NN APPROXIMATION FOR HDP ALGORITHM 
 

In this section, implementation of HDP algorithm using 
NN has been discussed. The important point stressed is that 
the use of two NNs, a critic for value function 
approximation and an action NN for the control, allows the 
implementation of HDP without knowing the system matrix 
A(x). It is well known that NNs can be used to approximate 
smooth functions on prescribed sets [9]. Therefore, to solve 
(13) and (14), iV is approximated at each step by a critic NN 

1

ˆ ( ) ( ) ( )
L

j T
i vi j Vi

j
V x w x W x

=

= Φ = Φ∑                                     (21) 

and iu by an action NN 

1

ˆ ( ) ( ) ( )
P

j T
i ui j ui

j
u x w x W xσ σ

=

= =∑                                     (22) 

where the basis functions are 1( ), ( ) ( ),j jx x CσΦ ∈ Ω  

respectively. Because it is required that (0) 0iV = and 
(0) 0,iu = we select activation functions with (0) 0jΦ = and 

(0) 0.jσ =  The NN weights in (21) are ,j
viw  L is the number 

of neurons. The vector [ ]1 2( ) ( ) ( ) ( ) T
Lx x x xΦ ≡ Φ Φ ΦL  is 

the vector activation function, and 1 2 
TL

Vi Vi Vi ViW w w w ≡  L  is 

the weight vector at iteration i. Similarly, the weights of the 
NN in (22) are .j

uiw  P is the number of neurons. 

[ ]1 2( ) ( ) ( ) ( ) T
Px x x xσ σ σ σ≡ L  is the vector activation 
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function, and 1 2 
TP

ui ui ui uiW w w w ≡  L  is the weight vector. 

According to (14), the critic weights are tuned by 

minimizing the residual error between 1
ˆ ( ( ))iV x k+  and the 

target function defined in (24), at each iteration of HDP, in a 
least squares sense for a set of states ( )x k sampled from a 

compact set .nΩ ⊂ �  
2

max( ( ), ( 1), , ) ( ( )) ˆˆ( ) ( ) ( ( )) ( ( 1))T
Vi ui i id x k x k W W x k Qf x k x k M u k V x kρ+ = + + + +

2
max ( ( )) ˆ( ) ( ) ( ( )) ( ( 1))T T

i Vix k Qf x k x k M u k W x kρ= + + + Φ + (23)          
The residual error becomes  

( )( ( ), ( 1), , ) (( ( )) )T
Vi Vi ui Ld x k x k W W eW x k x+ =Φ −     (24)                                     

To find the least squares solution, the method of weighted 
residuals can be used [10]. The weights 1

T
ViW +  are 

determined by projecting the residual error onto 
( )1( ) T

L Vide x dW +  and setting the result to zero x∀ ∈ Ω  

using the inner product, i.e., 

 
1

( ) , ( ) 0L
LT

Vi

de x e xdW +

=                                                 (25) 

where  , Tf g f g dx
Ω

= ⋅∫ is a Lebesgue integral. One has 

( )1 ( ( ), ( 1), , ) ( ) 0( ( )) ( ( ))T T
Vi Vi uiW d x k x k W W dx kx k x k +

Ω

− + =Φ Φ∫      (26) 

Therefore, a unique solution for 1ViW + exists and is computed 
as 

1

1

         ( , , ) ( )

( ( )) ( ( )) ( )

( ( )) ( ( ))

T
Vi

T
Vi ui

W

d W W dx k

x k x k dx k

x k x k

−

+
Ω

Ω

 
= ⋅ 

 
Φ Φ

Φ Φ

∫

∫
                 (27) 

The next assumption is standard in selecting the NN 
activation functions as a basis set. 
Assumption 1: The selected activation functions 

{ }( ( )) L

j x kΦ  are linearly independent on the compact set 

.nΩ∈�  
Assumption 1 guarantees that the excitation condition is 

satisfied, and hence, ( ( )) ( ( )) ( )Tx k x k dx k
Ω

Φ Φ∫ is of full 

rank and invertible, and a unique solution for (27) exists. 
The weights of NN (22) are tuned at each iteration. Using 
ˆ ( ( ), )i uiu x k W  (13) can be rewritten as, 

( )argmin ˆˆ( ) ( ) ( ( ( ), )) ( ( 1))T i
ui i

w
W Qx k x k M u x k w V x k

Ω

= + + +       (28)                             

where ˆ( 1) ( ( )) ( ( )) ( ( ), )i
ix k A x k B x k u x k w+ = + and 

the notation means minimization for a set of points 
( )x k selected from the compact set .nΩ∈�  
Note that the control weights uiW appear in (28) in an 

implicit fashion, i.e., it is difficult to solve explicitly for the 
weights because the current control weights determine 

( 1).x k + Therefore, one can use an LMS algorithm on a 

training set constructed from .Ω  The weight update can be 
written as follows: 

( )
1

ˆˆ( ) ( ) ( ( ( ), )) ( ( 1))

ui m

T
ui im

ui uim m
ui

W

Q W
W W

W

x k x k M u x k V x k
α

+

∂
= −

∂

+ + +
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λ λ− −= −

 ∂Φ
 ∂ 

+
+

   (29) 

where α is a positive step size and m is the iteration number 
for the LMS algorithm. By a stochastic-approximation-type 
[6] argument, the weights ,ui uim

W W→  as ,m→∞  and satisfy 
(28).  

It can be observed from (27) that, neither ( ( ))A x k nor 
( ( ))B x k is needed to update weights of the NN (21) used for 

value function approximation. Only the input coupling term 
( ( ))B x k is needed to update weights of the NN (22). 

Therefore, the proposed algorithm works for a system with 
partially unknown dynamics—no knowledge of the internal 
feedback structure ( ( ))A x k is needed. 
In the next section, simulation experiment carried out on a 
nonlinear discrete-time system to validate proposed 
algorithm, is described. 
 

V. SIMULATION EXPERIMENT 
Consider the following nonlinear discrete-time system: 

( 1) ( ( )) ( ( )) ( ) ( ( )) ( )x k A x k B x k u k B x k f k+ = + +  

where 
2

1 2
3
2

0.2 ( ) exp( ( ))
,

0.3 ( )
( ( )) x k x k

x k
A x k  

 
 

=   

1 2

00
, ;

( )sin( ( ))0.2
( ( )) ( ( ))

px k x k
B x k f x k   

  −   
= =  

p  is the unknown parameter. For simplicity let us assume 
that [ 1,1].p ∈ −  This mathematical model is in the matched 
uncertainty form and  

2
1 1 max( ) ( )( ( )) ( ( )) ( ( )) ( ( ))T k kf x k f x k f x k p x x f x k= ≤ ≤ =

The performance function is defined as 

( )
( )

2 1 1
max
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( ( ), ) ( ( )) ( ) ( ) 2 ( )
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where 0.1 0
0 0.1

Q
 

=  
 

and 0.1 0
0 0.1

R
 

=  
 

and control 

constraint is set to 0.3,i.e., 0.3.( )u k λ≤ =  

The approximation of value function is given as  
ˆ ( ) ( )T
i ViV x W x= Φ  

2 2 4 4 3 2 21 2 3 4 5 6 7
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NN weights can be found from (27). The approximation 
of control input is given as ˆ ( ) ( ),T

i uiu x W xσ=   ( ) ( )x xσ = Φ is 
selected for simplicity. NN weights can be found from 
tuning law (29).                   
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     Figure 1: (a) System states Vs. Time step, 

(b) Control Vs. Time step 

     
     Figure 2: ˆunV∆  Vs. Time step 
 

It is to be noted that an optimal control law (9) has been 
derived for the nominal dynamics only. Then it was used 
with actual uncertain system. We have selected 5ρ = and 

0.4α = for simulation purpose. Results are shown in the 
figure 1. It can be observed from figure 1 (a) that, the system 
states converge to the equilibrium point. Also control input 
remains bounded, i.e., ( ) 0.3u k ≤  as shown in figure 1(b).It 
has been also shown in the figure 2  that 
( )ˆ ˆ( ( ( )) ( ( )) ( )) ( ( )) ( ))) ( ( )) 0.V A x k B x k u k B x k f k V x k∗+ + − ≤   The 

boundedness of control input and convergence of the system 
state to the equilibrium point validates proposed algorithm. 

VI. CONCLUSIONS 
 

In this paper, an algorithm has been proposed to design a 
constrained robust control law for a class of the discrete-
time systems having matched system uncertainties. A non- 
quadratic performance functional is proposed to tackle the 
constraints on the input. HDP based algorithm is developed 
to find the solution of DT-HJB equation with necessary 
theoretical results. Two neural networks have been used to 
approximate the value function and optimal control law, 
respectively. Least squares based method is used in NN 
based HDP algorithm to find the approximate solution of 
DT-HJB equation. Formulation we have developed in this 
paper is for single input case; but one can extend it for 

multiple input cases. However, the analytical proof related 
to the conditions for the selection of the design parameter 
mentioned in the section III-B is can be considered as the 
future work. 
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