
An Event Driven Decision Support Algorithm for Command and

Control of UAV Fleets

Oktay Arslan and Gokhan Inalhan

Abstract— In this work, we focus on solving large-scale
UAV fleets scheduling problem in dynamically changing (i.e.
external event-driven or operator induced selection) scenarios.
This autonomous scheduling of planned tasks and allocation of
resources is designed to provide real-time decision support to
the operator for problem sizes that is intractable or infeasible
by one or a set of operators. We begin by analyzing the
computational complexity of a well-known Solve & Robustify
approach that generates robust and flexible schedules and
propose the temporal space partition approach for decreas-
ing the computationally expensive solve step. The improved
algorithm, which is refereed as Earliest Start Time Algorithm
with Partitioning (ESTAP), divides the larger problem into
smaller subproblems by partitioning the temporal space and
then iteratively solves the subproblems. Benchmark problem
comparisons with the classical ESTA formulation for two
hundred tasks indicates that the proposed temporal space
partitioning approach improves the computation time forty-fold
while only incurring five percent increase in the total completion
of the tasks.

INTRODUCTION

During the last decade, there has been a remarkable in-

crease in usage of Unmanned Air Vehicles (UAVs) in military

command and control applications. Growing involvement of

UAVs in complex application areas (such as dynamically

changing urban rescue operations), the types and the number

of tasks easily outgrow one vehicle’s (or a set of UAV

operators’ command and control) limited capabilities and

thus it is required a fleet of UAVs to work in a collaborative

fashion to achieve desired operational goals. Despite the

current trend reducing the role of human in aerial systems,

human operators are still needed for supervisory control and

high level decision making [6]. In this paper, we provide

an event driven decision support algorithm for temporal

scheduling of tasks across UAV assets based on Solve &

Robustify approach [13], [14]. Specifically, the algorithm

is designed and tested to provide hard real-time decision

support (i.e. on the order of seconds) to the operator for

scenarios involving over hundred tasks across multiple assets.

A key part of such an event-driven process hinges on

the coordination of the target/task assignments and distri-

butions across UAV assets through supervisory command-

ing. However, it is not always feasible to apply basic

supervisory command and control for a large number of

This work is supported by TUBITAK Graduate Fellowship Funds
O. Arslan - Research Assistant, Controls and Avionics

Laboratory, Istanbul Technical University, Maslak, Istanbul, Turkey
oktay.arslan@itu.edu.tr

G. Inalhan - Corresponding Author, Assistant Professor, Faculty of Aero-
nautics and Astronautics, Istanbul Technical University, Maslak, Istanbul,
Turkey inalhan@itu.edu.tr

unmanned vehicles performing complex missions with strict

time constraint. Therefore, a decision support or autonomous

decision-making system can be designed for the commander

in order to reduce the workload. Figure 1 illustrates the

overall process of such a decision support system. Such a

decision support system requires integration of two important

operations: planning - the problem of determining which ac-

tivities to perform, and scheduling - the problem of temporal

allocation of resources to these activities.

Basically, the steps of decision making can be tracked as

follows: planning, scheduling and low-level mission specific

task planning. The planning process is triggered by external

monitored events or requests. Following the taxonomy as

presented in [10], the planning step proceeds by selecting

suitable actions (UAV missions) from a predefined action

sets by an expert system. Then, resource allocation is done

for these action sets regarding operation constraints (time,

environment) and a group of target is selected regarding to

the selected actions and resources. The second process is

scheduling of these action sets under resource constraints

by satisfying specified temporal constraints. In this work,

we assume that the set of activities requiring resources are

specified in advance and focus on temporal allocation of a set

activities regarding resource and strict time constraints as fast

as possible. Specifically, Solve & Robustify approach is used

as a base algorithm in order to handle executional uncertainty

in the dynamic mission environment. The algorithm used in

the Solve step, Earliest Start Time Algorithm (ESTA)[12],

is modified with temporal space partitioning to provide real-

time solutions to the operator. Benchmark problem compar-

isons with the classical ESTA formulation for two hundred

tasks indicates that the proposed temporal space partitioning

approach improves the computation time forty-fold while

only incurring five percent increase in the total completion of

the tasks. After finding a feasible schedule, the low level task

planning problem is solved by the algorithm given in [8]. An

experimental illustration of this within a mission simulator

can be found in [1].

The organization of this work is as follows: In Section 1,

the scheduling step of the decision support system (DSS)

is formulated as a classical Resource Constraint Project

Scheduling with Maximum Lag (RCPSP/max) problem. A

brief literature survey about different approaches for solving

this classic problem is given. Specifically, Solve & Robustify

approach is introduced for robust and flexible schedule

generation. Following a brief computational analysis of Solve

& Robustify, the temporal space partitioning is proposed

to reduce computational load of solve step. In Section 2,

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB19.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5198

Fig. 1. Event-Driven Decision Support Architecture

the basics of the ESTA algorithm is reminded. Specifically,

construction of an infinite capacity solution and leveling

of resource demand by posting precedence are used in the

proposed greedy scheduling algorithm (ESTAP). Then, the

partitioning heuristics used in the algorithm and the overall

greedy algorithm are described step by step. Finally, in the

last section, experimental evaluations and results are given to

demonstrate the efficiency of the proposed algorithm across

a range of benchmark problems of increasing activity size.

I. THE SCHEDULING PROBLEM - RCPSP/MAX AND

SOLUTION APPROACHES

Figure 2 illustrates an overview of distributed of com-

mand and control (C2) problem in which missions are

accomplished by human operators and UAV fleets. From the

operators’ perspective, the C2 problem involves scheduling

of several missions consistently regarding to the number of

UAVs and temporal constraints between the missions. This

problem can be defined as a scheduling problem by using

the following definitions:

• Each mission corresponds to an activity which has to

be scheduled and has an estimated duration

• UAV fleets correspond to a set of renewable resources

and each UAV with different capabilities (i.e. combat,

imaging) define a new type of resources

• Each mission requires a number of UAVs for all its

duration

• Structural dependencies between missions, physical and

logistic constraints define a set of temporal constraints.

For example, a target must be destroyed within some

periods of time immediately after its designation, the

total completion time of set of missions assigned to a

UAV can not exceed its endurance.

This scheduling problem can be stated as finding a tem-

poral allocation and synchronization of a set of renewable

resources R = {r1...rm} for given a set of activities (mis-

sions) V = {a1...an} over time regarding a set of temporal

constraints. In this work, we use the Resource-Constrained

Project Scheduling Problem with Minimum and Maximum

Fig. 2. Mission Environment

time lags (RCPSP/max) as a reference [2] and each activity

must be performed regarding the following constraints:

• each activity aj has a duration duraj
,a start time saj

and an end time eaj
such that eaj

= saj
+ duraj

;

• each activity ai requires the use of reqik units of the

resource rk for all of durai

• a set of temporal constraints cij each defined for a pair

of activities (ai, aj) and of the form of cmin
ij ≤ saj

−
sai
≤ cmax

ij

• each resource rk has an integer capacity maxk ≥ 1;

The objective is to determine the starting times of all

activities in V , S = (s1, s2, ..., sn) , which are temporally

consistent and satisfy resource capacity constraints.

There are different models and approaches for solving

RCPSP/max in Operations Research community. One the

most used approach is solving the problem in branch and

bound schema. An early analysis focusing on mathematical

properties of the problem was given in [2] and a branch and

bound approach was proposed which is based on extending

the the set precedence relations in order to resolve conflicts

in the problem. In that work, the solution space was modeled

as a network of temporal constraints and the concept of

forbidden sets and reduced forbidden sets to define resource

conflicts and resource conflicts with a minimal number of

activities respectively. Then a systematic Branch and Bound

(B&B) was formalized as posting precedence relations in the

problem to remove all reduced forbidden sets in an initial,

time feasible solution step by step.

Another approach for solving scheduling problem is for-

mulating RCPSP/max as constraint satisfaction problem and

there are two main models in the CSP scheduling literature:

start time assignment [15], [11] and precedence constraint

posting model [5]. In the first model, time points that

indicate the start times of activities are defined as decision

variables of the problem and aim of the CSP search is finding

a consistent (both time and resource feasible) assignment

of start time values. In the second case, various ordering

decisions between sets of activities that are competing for

the same resources are considered as decision variables

rather than start times of activities and the aim of the CSP

search is posting a consistent set of precedence constraints

5199

that removes all the resource peaks in the resource profiles

of the resources. Since,in this approach, there is no any

specific start time assignment for each activity during the

search process or in the final solution, it is less commitment

than the first model. As a result, in the uncertain dynamic

environment, this model has advantages as having capability

of generating more robust and flexible schedules than the

first model.

Due to requirement of robust and flexible schedules to

handle executional uncertainty in the dynamic mission envi-

ronment, one of the successful CSP based algorithm Solve &

Robustify approach given in [14] is used as base algorithm

and the proposed temporal space partitioning method is

implemented within the Solve & Robustify approach.

The Temporal Space Partitioning

During the implementation of the Solve & Robustify

approach, it is observed that the first step which is com-

putation of a fixed-time solution increasingly dominates the

overall solution time. The most of computation done in this

step is contributed by leveling resource demand by posting

precedence. The leveling resource demand operation basi-

cally consists of two steps, namely, determination of which

precedence to post and finally propagating the precedence

constraint along the temporal network.

First, all contention peaks1 are collected for a given earliest

start solution. Then, Minimal Critical Sets2 (MCSs) are

computed for each peak. Since the complete analysis of

MCSs has exponential computation in nature, a sampling

strategy of polynomial complexity given in [4] is used to

collect some subset of MCSs for each peak by abstaining

from combinatorial explosion of the search. Unfortunately,

as the size of the problem increases regarding to the both

number of resource types and number of temporal variables

in the network, the number of peaks for a given earliest start

solution increases too fast in most cases and this tends to

increasingly spend too much time for collecting of MCSs

even if using sampling strategies of polynomial complexity.

Second, after selecting the MCS to be resolved, it is solved

by posting a simple precedence constraint between pair of

competing activities. In order to maintain the consistency

of the problem’s temporal information, that constraint is

propagated along the temporal network by using all pairs

shortest path algorithms, which are O(n2) in space and

O(n3) in time according to the number of temporal variables

in the network. Unfortunately, as problem size increases,

computation of propagation of the constraints dramatically

takes too much time.

Thus, in order to solve the UAV mission inherent large-

scale scheduling problem in real-time, we propose an ap-

proach that divides the larger problem into smaller subprob-

lems by partitioning the temporal space and then iteratively

solving the subproblems. To obtain balanced partitioning, a

1Contention peak is a set of activities which are competing for the same
resources and their simultaneous execution exceeds the resource capacity

2A Minimal Critical Sets, is a contention peak such that any subset of
activities belonged to MCS is not a contention peak

temporal space flattening method is developed. This method

eliminates overlapping of conflicting activities through tem-

poral sequencing in an expanded time space. To obtain a

consistent integration of subproblem solutions, a binding

method is introduced. This method propagates the maximum

horizon constraint over the whole network to generate the

main solution. These methods are explained in the following

section in detail.

II. A GREEDY ALGORITHM BASED ON THE TEMPORAL

SPACE PARTITIONING

Temporal space partitioning approach consists of three

basic steps: (a) a temporal partitioning algorithm is first used

to divide the problem into subproblems; (b) the first sub-

problem is solved recursively by using precedence posting

scheme; then the second problem is redefined with regarding

the updated partial solution and finally the second problem

is solved in the same way; (c) the solutions obtained from

first and second subproblems are integrated to maintain

consistency in temporal space.

The proposed approach is based on the Earliest Start Time

Algorithm (ESTA), given first in [3] and further improved in

[4]. The steps of ESTA are summarized as follows and these

steps are separately used in the proposed algorithm.

Summary of ESTA Procedure

Construct an infinite capacity solution: In this step, the

problem is formulated as an STP [7] temporal constraint

network and a time feasible solution that ignores resource

constraints is computed by propagating constraints on the

underlying temporal constraint network.

Level resource demand by posting precedence: Resource

demand profile for each type of resources is computed for

all time values and the time intervals that resource demands

exceed resource capacity are detected. Finally, these detected

resource conflicts are resolved by iteratively posting simple

precedence constraints between pairs of competing activities.

Separating Steps of ESTA

The steps of ESTA procedure are separately used in the

proposed algorithm which is referred as ESTAP , where the

suffix P indicates the partitioning. As shown in Algorithm 1,

before solving the problem recursively, an infinite capacity

solution is computed by the first step taken from ESTA

procedure. Then, the resource demand of this partial solution

is leveled until there is no any resource conflict in its earliest

start solution by calling ESTAPR procedure.

In the ESTA procedure, the resource demand of earli-

est start solution is leveled by posting simple precedence

constraints until eliminating all resource conflicts. However,

this is required only when the size of the subproblem is

small than predefined minimum size value in the proposed

approach. In other cases, as it is shown in Algorithm 2,

the leveling step is repeated for a given number of times

as required in special circumstances.

5200

Algorithm 1 ESTAP (P, hmax)

Input: a problem P and horizon of the problem hmax

Output: a solution S

1. SP ← CreateCSP (P)
2. SP ← SP ∪ {te − ts ≤ hmax}
3. SP ← ESTAPR(SP , hmax)
4. if Exists failure in SP then

5. return FAILURE

6. else

7. S ← ComputeESS(SP)
8. end if

9. return S

Algorithm 2 LevelResourceDemand (SP , n←∞)

Input: a partial solution of problem SP

Output: a partial solution of problem SP

1. for i = 1 to n do

2. CS ← Select-Conflict-Set(SP)

3. if CS = ∅ then

4. return SP

5. else if Exist an unresolvable conflict in CS then

6. return FAILURE

7. else

8. (ai ≺ aj)← Select-Leveling-Constraint(CS)

9. SP ← SP ∪ (ai ≺ aj)
10. end if

11. end for

12. return SP

Solving the Problem by the Temporal Space Partitioning

Posting precedence constraints and propagation of them

are fundamental operations in ESTA and propagation of

constraints over the temporal network sometimes does not

cause an update in the temporal information of some ac-

tivities. Obviously, the effect of propagation of constraints

over temporal networks is closely correlated with how deeply

the activities of temporal networks are interconnected. The

distinction of sensitive and less-sensitive parts of temporal

networks to constraint propagation are more evident in

the temporal networks which are sufficiently flexible and

have enough temporal slacks among their activities. The

temporal space partitioning approach is based on exploiting

such properties of temporal networks by dividing them into

subnetworks.

Algorithm 3 shows the ESTAPR procedure where P

and R indicate partitioning and recursive, respectively in

more detail. It takes two parameters as input: (1) a partial

solution of the problem P SP , and (2) maximal horizon of

the problem P hmax.

First, the number of activities in the problem P is

compared with the minimum size value. If it is less than

minimum size, then all the resource conflicts detected in the

partial solution SP are eliminated by the LevelResourceDe-

mand procedure at Step 2. Otherwise, the problem is divided

into subproblems by partitioning the its temporal space.

The temporal space of problem P is divided into 2

subregions by cutting it from the time point tc, where

suffix c indicates critical within the loop at Step 6. First,

the critical time point tc is computed by CreatePartition

procedure at Step 7 and then the first subproblem is created

by collecting activities from problem P such that their

earliest start time value is less than tc. If there is any activity

in the first subproblem and the size of the first subproblem

is less than the size of the problem P , then the inner loop

is broken. Otherwise, this means that configuration of the

current temporal space of problem P is too shrunk and

it needs to be flattened. Flattening of the temporal space

increases the divisibility and it is flattened by posting one

precedence constraint by LevelResourceDemand procedure

at Step 12. The inner loop repeats until dividing the problem

P into smaller subproblems.

After successfully dividing the problem P , the current

state of the partial solution SP is saved by assigning it to

SP
0 at Step 14 for further restore operation. Then, a dummy

finish time point tde is included in subproblem P1 at Step 15

and the horizon constraint between ts and tde is posted in

the next step. Finally, the partial solution SP1 is solved by

calling the same procedure ESTAPR, recursively. Later, the

ESTAPR begins to create second subproblem by collecting

activities from problem P such that their earliest end time

value is greater than tc. Then, a dummy start time point tds

is included in the subproblem P2 at Step 22 and the horizon

constraint between tds and te is posted. As in the case of

the first subproblem, the partial solution SP2 is solved by

calling the same procedure ESTAPR, recursively. If there is

no any failure in both computed solutions, then SP1
and SP2

are integrated by simply propagating the updated temporal

information along the temporal network of problem P at Step

28. If a time feasible solution for problem P is obtained, then

ESTAPR procedure returns this solution. Otherwise, the SP

is assigned to its previously saved state SP
0 at step 34, then

temporal space of problem P is flattened by posting a simple

precedence constraint by LevelResourceDemand procedure at

step 35. The outer loop is repeated infinitely until a time

feasible solution exists or a failure is encountered in the

solution of the subproblems.

Partitioning Heuristic

The partitioning heuristic is based on dividing the temporal

space of the problem by a critical time point tc such that the

resulted subproblems are balanced with regard to the number

of activities. The first subproblem consists of activities such

that their earliest start time value is less than earliest time

value of the tc and the certain number of activities in the

second subproblem only can be determined by checking the

est(eai
) > tc for all activities in the problem after solving

the first subproblem. Therefore, the normalized percentage

of the domains of the time values respect to the tc is

calculated for the second subproblem instead of number of

activities. The calculated number n2 is just an approximate

value about the number of activities of second subproblem.

After calculating n1 and n2 a cost value is calculated for

5201

Algorithm 3 ESTAPR(SP , hmax)

Input: a partial solution of problem SP and horizon of the

problem hmax

Output: a partial solution SP

1. if size(P) < minimum size then

2. SP ← LevelResourceDemand(SP)
3. return SP

4. else

5. loop

6. loop

7. tc ← CreatePartition(SP)
8. SP1 ← ∀ai|sai

∈ P ∧ est(sai
) < tc

9. if 0 < size(P1) < size(P) then

10. break

11. end if

12. SP ← LevelResourceDemand(SP , 1)
13. end loop

14. SP
0 ← SP

15. P1 ← P1 ∪ tde

16. SP1 ← SP1 ∪ {tde − ts ≤ hmax}
17. SP1 ← ESTAPR(SP1 , hmax)
18. if Exists failure in SP1 then

19. return FAILURE

20. else

21. SP2 ← ∀ai|eai
∈ P ∧ est(eai

) > tc
22. P2 ← P2 ∪ tds

23. SP2 ← SP2 ∪ {te − tds ≤ hmax}
24. SP2 ← ESTAPR(SP2 , hmax)
25. if Exists failure in SP2 then

26. return FAILURE

27. else

28. SP ← SP1 ∪ SP2

29. if SP is time feasible then

30. return SP

31. end if

32. end if

33. end if

34. SP ← SP
0

35. SP ← LevelResourceDemand(SP , 1)
36. end loop

37. end if

tc and for the simplicity the cost function is selected as
n3

1
+n3

2

n3 inspired from the propagation complexity (O(n3))
of precedence constraints over temporal network. Finally,

CreatePartition procedure shown in Algorithm 4 returns the

earliest time value of tc with the minimum cost values.

III. EXPERIMENTAL RESULTS AND EVALUATIONS

Both ESTAP and ESTA algorithms are implemented in

C++ and we have compared their performance on the three

sets of benchmark problems taken from the RCPSP/max

problem repository [9], [16]. These sets are UBO50, UBO100

and UBO200 of 90 instances of problem of different size

50× 5, 100× 5 and 200× 5 (number of activities × number

Algorithm 4 CreatePartition (SP)

Input: a partial solution of problem SP

Output: a time point tc
1. n1 ← 0 , n2 ← 0
2. for all time point tj ∈ P do

3. for all activity ak ∈ P do

4. if est(sak
) < est(tj) then

5. n1 ← n1 + 1
6. end if

7. if d(tj , eak
) > 0 then

8. n2 ← n2 +
d(tj ,eak

)+min(d(eak
,tj),0)

d(tj ,eak
)+d(eak

,tj)

9. end if

10. end for

11. cj ← Cost(n1, n2, n)
12. end for

13. tc ← tj |cj = min
ti

(ci)

14. return est(tc)

of resources). The numbers of solvable instances are 73, 78,

and 80 respectively. The rest of the problems have provably

infinite lower bounds for makespan. The parameters of MCSs

sampling strategy are set to δ ← 2 and sf ← 100 values.

The maximal horizon hmax is set to 5000 in order to find

a solution quickly by searching within a sufficiently large

horizon.

Evaluation criteria

The following performance measures are calculated for

comparative analysis of both algorithm on different problem

sets:

• Nfeas% the percentage of problems feasibly solved for

each benchmark set

• tmks average makespan of the solutions

• tcpu average CPU-time in seconds spent to solve in-

stances of the problem set

• Npc the number of leveling precedence constraints

posted to solve a problem

• ∆LB% the average of percentage relative deviation

from known lower bound

First, both algorithms are not able to solve all the problem

instances in the benchmark set due to subset of instances

which their infeasibility is proven by branch and bound

algorithm. However, they solve all the problems which have

a finite lower bound found by several algorithms [16].

Second, the average makespan of the solutions found

by the ESTAP algorithm is slightly larger than the ones

found by ESTA algorithm and this results in slightly larger

deviation from lower bound of the solutions. However, there

is a major improvement in the average computation time and

the number of posted constraints in ESTAP over ESTA and

the ESTAP algorithm dominates the ESTA algorithm across

all problem sets for tcpu and Npc metrics as the size of the

problem increases.

The ESTAP is tested on the benchmark set UBO50 for dif-

ferent values of the minimum partition size and it improves

5202

TABLE I

PERFORMANCE OF THE ALGORITHMS (UBO50)

UBO50 tmks ∆LB% tcpu Nfeas% Npc

ESTAP11 217.671 28.757 0.360 77.778 54.471

ESTAP15 217.099 28.247 0.383 78.889 55.141

ESTAP16 217.306 27.531 0.400 80.000 56.694

ESTAP17 218.973 27.459 0.373 81.111 56.904

ESTAP20 218.466 27.462 0.452 81.111 60.480

ESTAP21 218.699 27.595 0.462 81.111 59.384

ESTA 213.603 24.455 4.004 81.111 74.890

TABLE II

PERFORMANCE OF THE ALGORITHMS (UBO100)

UBO100 tmks ∆LB% tcpu Nfeas% Npc

ESTAP12 423.167 30.970 3.075 86.667 120.077

ESTAP15 419.705 29.833 3.121 86.667 123.538

ESTAP20 418.436 29.697 3.166 86.667 128.910

ESTAP25 419.141 30.100 3.345 86.667 132.974

ESTA 407.286 25.645 79.214 86.667 195.753

the computation time ten-fold by decreasing it from 4.004

to 0.373 seconds. As seen in Table I, the performance of the

algorithm is closely correlated with the minimum partition

size parameter. If the value of the parameter decreases until a

certain value, then the algorithm has a better performance in

the sense of the computation time and number of the posting

constraints. But, if the parameter is set to too small values,

then the ESTAP can not solve some instances of problems

because of the inconsistency of time constraints, while the

ESTA can.

As seen in the Table II ESTAP has made great improve-

ment in computation time by decreasing it from 79.214 to

3.075 seconds, while the resulted solutions have 5 percent

larger deviation than the ones found by ESTA.

The ESTAP algorithm solves the problems of the bench-

mark set UBO200 in average 31.782, while the ESTA

solves in 1462.83 seconds as shown in the Table III. Thus,

ESTAP algorithm reaches the highest rate of improvement

of computation time, forty-fold, over the ESTA algorithm.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, a large-scale UAV fleet-task scheduling

algorithm is given for an event driven decision support

system. Both the proposed algorithm ESTAP and one of

TABLE III

PERFORMANCE OF THE ALGORITHMS (UBO200)

UBO200 tmks ∆LB% tcpu Nfeas% Npc

ESTAP18 770.974 29.970 26.761 85.556 254.961

ESTAP20 765.481 28.987 33.866 85.556 261.091

ESTAP25 763.474 28.603 31.782 86.667 275.897

ESTAP30 759.766 27.987 33.159 85.556 281.169

ESTA 751.962 26.946 1462.83 86.667 461.436

the well-known algorithm ESTA are implemented in C++

and a comparative analysis is given on sets of benchmark

problems with increasing number of activities at the end

of the paper. The results show that the proposed algorithm

provides a significant improvement in computation time but

founds solutions of slightly larger makespan. However, the

enormous improvement on computation time provide us

to solve the problem of large sized in realtime and this

compensate the negative results of slightly larger makespan

of the solutions.

As seen in the tables, the performance of the algorithm is

sensitive to the minimum partition size parameter. A good

analysis of selecting value of the minimum partition size

and development of the expert system to solve the planning

problem are left as future works.

REFERENCES

[1] O. Arslan, B. Armagan, and G. Inalhan. Development of a Mission

Simulator for design and testing of C2 Algorithms and HMI Concepts

across Real and Virtual Manned-Unmanned Fleets. Lecture Notes in
Control and Information Sciences. Springer, 2008. (To appear).

[2] M. Bartusch, R. H. Möhring, and F. J. Radermacher. Scheduling
project networks with resource constraints and time windows. Annals

of Operations Research, 16(1):199–240, 1988.
[3] A. Cesta, A. Oddi, and S. F. Smith. Profile-based algorithms to solve

multiple capacitated metric scheduling problems. In In Proceedings of

the Fourth International Conference on Artificial Intelligence Planning

Systems (AIPS-98, pages 214–223. AAAI Press, 1998.
[4] A. Cesta, A. Oddi, and S. F. Smith. An Iterative Sampling Procedure

for Resource Constrained Project Scheduling with Time Windows.
International Joint Conference On Artificial Intelligence, 16:1022–
1031, 1999.

[5] C. C. Cheng and S. F. Smith. Generating feasible schedules under com-
plex metric constraints. Proceedings of the 12th national conference

on Artificial intelligence (vol. 2) table of contents, pages 1086–1091,
1994.

[6] M. L. Cummings, S. Bruni ans S. Mercier, and P. J. Mitchell.
Automation architecture for single operator, multiple uav command
and control. The International Command and Control Journal, 1(2),
2007.

[7] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks.
Artificial Intelligence, 49(1-3):61–95, 1991.

[8] S. Karaman and G. Inalhan. Large-scale task/target assignment for
uav fleets using a distributed branch and price optimization scheme. In
Int. Federation of Automatic Control World Congress (IFAC WC’08),
Seoul, South Korea, jun 2008.

[9] R. Kolisch, C. Schwindt, and A. Sprecher. Benchmark instances
for project scheduling problems. Project Scheduling: Recent Models,

Algorithms, and Applications, 1999.
[10] C. Nehme, M. L. Cummings, and J. Crandall. UAV Mission Hierarchy,

2006.
[11] W. Nuijten and C. Le Pape. Constraint-Based Job Shop Scheduling

with IILOG Scheduler. Journal of Heuristics, 3(4):271–286, 1998.
[12] N. Policella. Scheduling with uncertainty: A proactive approach

using Partial Order Schedules. PhD thesis, University of Rome “La
Sapienza”, Rome, March 2005.

[13] N. Policella, A. Oddi, S. F. Smith, and A. Cesta. Generating Robust
Partial Order Schedules. Lecture Notes in Computer Science, pages
496–511, 2004.

[14] N. Policella, S. F. Smith, A. Cesta, and A. Oddi. Generating
Robust Schedules through Temporal Flexibility. In Proceedings of the

14
th International Conference on Automated Planning & Scheduling,

ICAPS’04, 2004.
[15] N. Sadeh. Look-ahead techniques for micro-opportunistic job shop

scheduling. Report CS91-102, Carnegie Mellon Univ., Pittsburg, 1991.
[16] C. Schwindt. Project generator progen/max

and psp/max-library. http://www.wior.uni-
karlsruhe.de/LSNeumann/Forschung/ProGenMax/rcpspmax.html.

5203

