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Abstract— The paper addresses the analysis and design
of a safety-oriented traction control system for ride-by-wire
sport motorcycles via Second Order Sliding Mode (SOSM)
techniques. The controller design is based on a nonlinear
dynamical model of the rear wheel slip, and the modeling
phase is validated against experimental data measured on an
instrumented vehicle. To comply with practical applicability
constraints, the position of the electronic throttle body is used
as control variable and the effect of the actuator dynamics thor-
oughly analyzed. After a discussion on the interplay between
the controller parameters and the tracking performance, the
final design effectiveness is assessed via MSC BikeSimr, a
full-fledged commercial multibody motorcycle model.

I. INTRODUCTION AND MOTIVATION

Nowadays, four-wheeled vehicles are equipped with many
different active control systems which enhance driver’s and
passengers’ comfort and safety. In the field of two-wheeled
vehicles, instead, the development of electronic control sys-
tems is still in its infancy. However, the importance of active
control for traction and braking has been recently recognised
also in the motorcycle context, [1]. The motivation for this
is twofold: on one hand, in the racing context, these systems
are designed to enhance vehicle performance; on the other
hand, in the production context, the same control systems are
intended to enhance the safety of non-professional bikers,
whose number is steadily increasing mainly due to traffic
congestion and high oil price.
To the best of the Authors’ knowledge, little or no previous
work has been done on the problem of rear wheel slip dy-
namics analysis and Traction Control (TC) for two-wheeled
vehicles, whereas the same problem has been addressed on
four-wheeled vehicles in e.g., [2], [3]. TC increases safety
and performance by controlling the slip of the rear (driving)
wheel. As is well known, the wheel slip is related to the
force exerted by the tire via the friction curves, [4], [5]. By
keeping the slip of the tire on the peak of the longitudinal
curve, one achieves the best performance and at the same
time improves safety. If the peak is surpassed there is only
a marginal loss of longitudinal force but a dramatic loss of
lateral force that could cause a fall during cornering.
It is worth noting that, as far as control systems design is
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concerned, dealing with motorcycle dynamics is far more
subtle than it is for four-wheeled vehicles. In fact, it is
common practice to design most active control systems for
cars based on simplified dynamical models (e.g., the quarter-
car model and the half-car model for braking control systems
and the single-track model for active stability control, [4]),
while complete vehicle models are employed mostly for test-
ing and validation phases. In two-wheeled vehicles, instead,
the presence of a single axle, together with the peculiar
suspensions, steer and fork geometry, makes it difficult to
devise appropriate simplified models. The effort of analyzing
well-defined driving conditions seems to be the key for
a comprehensive control design for motorcycles. Such an
approach is well confirmed in the scientific literature of this
field (see e.g., [5], [6].
This paper addresses the analysis and design of a safety-
oriented traction control system for ride-by-wire sport motor-
cycles via Second Order Sliding Mode (SOSM) techniques.
The sliding mode control methodology is chosen because of
its robustness properties, which make it particularly suitable
to deal with the system uncertainties and the wide range
of operating conditions typical of the automotive context
[7]. Furthermore, SOSM controllers feature higher accuracy
with respect to first order sliding mode control, and generate
continuous control actions, since the discontinuity is confined
to the derivative of the control signal, thereby reducing
actuator stress and wear [7], [8]. Apart from the robust-
ness features against possible disturbances and parameter
variations affecting the vehicle model, the sliding mode
control methodology has also the advantage of producing
low complexity control laws compared to other robust control
approaches which appears particularly suitable to be imple-
mented in the Electronic Control Unit (ECU) of a controlled
vehicle [7], [8].

II. DYNAMICAL MODEL

For the preliminary design of traction control algorithms
in motorcycles, we are interested in modeling the rear wheel
slip dynamics. To this aim, focusing on straight-line traction
maneuvers, the following dynamical model can be employed

Jrω̇r = −rrFxr
+ T (1)

Jf ω̇f = −rfFxf
(2)

mv̇ = Fxr
+ Fxf

, (3)

where ωf [rad/s] and ωr [rad/s] are the angular speeds of the
front and rear wheel, respectively, v [m/s] is the longitudinal
speed of the vehicle body, T [Nm] is the driving torque,

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThC01.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3344



Fxf
and Fxr

[N] are the front and rear longitudinal tire-
road contact forces, Jf = Jr = J [kgm2], m [kg] and
rf = rr = r [m] are the wheel inertias, the vehicle mass,
and the wheel radii, respectively. Note that, for simplicity,
the front and rear wheel inertias and the wheel radii are
assumed to be equal and indicated with J and r, respectively.
The system is nonlinear due to the dependence of Fxi

,
i = {f, r}, on the state variables v and ωi, i = {f, r}. The
expression of Fxi as a function of these variables is involved
and influenced by a large number of features of the road,
tire, and suspension; however, it can be well-approximated
as follows (see [4])

Fxi
= Fzi

µ(λi, βit ;ϑ), i = {f, r}, (4)

where Fzi is the vertical force at the tire-road contact point
and µ(·, ·;ϑ) is a function of
• the longitudinal slip λi ∈ [0, 1], which, during traction,

is defined as

λi =
ωir − v
ωir

; (5)

• the wheel side-slip angle βit .
Vector ϑ in µ(·, ·;ϑ) represents the set of parameters that
identify the tire-road friction condition. Since for traction
maneuvers performed along a straight line one can set the
wheel side-slip angle equal to zero (βit = 0), we shall omit
the dependence of Fxi

on βit and denote the µ function as
µ(·;ϑ).

Remark 2.1: It is worth mentioning that the results in this
work remain valid if we remove the assumption that βit = 0.
In fact, changes in βit cause a shift in the peak position of the
µ(·;ϑ) curve and act as a scaling factor (in this resembling
the effect of changes in the vertical load). Accordingly, as
the controller is designed assuming no knowledge both of
the current road conditions and of the value of the vertical
load, it can handle non-zero values of βit .
Many empirical analytical expressions for function µ(·;ϑ)
have been proposed in the literature. A widely-used expres-
sion (see [4]) is

µ(λ;ϑ) = ϑ1(1− e−λϑ2)− λϑ3, (6)

where ϑi, i = 1, 2, 3, are the three components of vector
ϑ. By changing the values of these three parameters, many
different tire-road friction conditions can be modeled. the
shape of µ(λ;ϑ) in four different conditions is displayed.
From now on, for ease of notation, the dependency of µ on
ϑ will be omitted, and the function in equation (6) will be
referred to as µ(λ).
Note, in passing, that from (6) one has that the longitudinal
force produced by a wheel is bounded, i.e.,

|Fxi| ≤ Ψ, i ∈ {f, r}. (7)

The tire model (6) is a steady–state model of the interaction
between the tire and the road. As for the transient tire
behavior we assume that, being it due to tire relaxation
dynamics, [4], the traction forces Fxi have a bounded first
time derivative, i.e.,

|Ḟxi| ≤ Γ, i ∈ {f, r}. (8)

By employing system (1)–(3), we are interested in highlight-
ing the rear wheel slip dynamics. To this aim, in order to
use the wheel slip definition in (5), a measure or a reliable
estimate of the vehicle speed is needed. As is discussed in
[9] for the case of braking control, vehicle speed estimation
for two-wheeled vehicle is an open problem.

For traction control purposes, however, the problem of
vehicle speed estimation is eased by the fact that the only
driven wheel is the rear one, so that, in principle, the front
wheel linear speed should provide a reasonable estimate of
the vehicle speed. Again, the suspension and pitch dynamics,
which in two-wheeled vehicles are much more coupled with
longitudinal dynamics than they are in cars, should warn
that the use of the front wheel speed might provide non
precise speed estimates in very strong acceleration phases.
However, as in practice no alternative (or more accurate)
vehicle speed estimate has been made available yet, we
introduce the definition of the relative rear wheel slip, namely

λr,r =
ωrr − ωfr

ωrr
, (9)

which is nothing but equation (5) with ωfr replacing v. This
quantity is what can be actually measured on commercial
motorbikes. Along this line, we call absolute rear wheel slip
λr,a the quantity computed as in (5) using the true vehicle
speed v.

In what follows it is assumed that the longitudinal dy-
namics of the vehicle (expressed by the state variable v)
are significantly slower than the rotational dynamics of the
wheels (expressed by the state variables λi or ωi) due to
the differences in inertia. Henceforth, v is considered as a
slowly time-varying parameter when analyzing the evolution
in time of λi (see e.g., [10]). Under this assumption, equation
(3) (center of mass dynamics) is neglected, and the model
reduces to that of the wheels dynamics only. Further, in
system (1)–(3) the state variables are v and ωi. As λi,
v and ωi are linked by the algebraic equation (5), it is
possible to replace ωi with λi as state variable. Specifically,
let us analyze the absolute rear wheel slip λr,a. Considering
equations (1) and (3) (the front wheel dynamics only affects
the vehicle speed equation in the rear slip to torque dynamic
relation), and considering the absolute slip definition in (5)
together with the longitudinal force description in (4), the
absolute rear wheel slip dynamics can be written as

λ̇r,a =
v

ω2
rr
ω̇r −

1
ωrr

v̇ = − (1− λr,a)2r

Jv

{
[rFzrµ(λr,a)− T ]

(10)

+
J

rm (1− λr,a)
(
Fzr

µ(λr,a) + Fzf
µ(λf

)}
.

In what follows, the SOSM controller will be designed
according to the absolute wheel slip dynamics. However,
its intrinsic robustness properties will allow to employ the
same controller also when the relative wheel slip is used as
controlled variable, as will be shown in Section V.
Even though the SOSM controller is designed based on the
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nonlinear wheel slip dynamics, in order to be able of vali-
dating the analytical model against the frequency response
estimates obtained based on experimental data collected
on an instrumented vehicle (see Section IV), we are also
interested in linearizing the slip dynamics to obtain a transfer
function description.
To this aim, we work on the absolute slip dynamics in (10)
and start by computing the system equilibria. Thus, we let
λ̇r,a = 0 and look for the equilibrium points characterized
by a constant longitudinal slip value λr,a = λ̄r,a (note that
the equilibrium characterized by µ(λ) = 0 and T = 0 is
meaningless for traction control purposes as it corresponds
to the coasting-down condition with no torque applied). From
equation (10) it is easy to find that the equilibrium values
for the driving torque T are given by

T̄ = rFzrµ(λ̄r,a) +
J

rm(1− λr,a)
(
Fzrµ(λr,a) + Fzf

µ(λf
)
).

(11)

According to the assumption of regarding v as a slowly
varying parameter, we can linearize the model around an
equilibrium point defined by δT = T − T̄ and δλr,a =
λr,a − λ̄r,a. Defining the slope of the µ(λ) curve around
an equilibrium point as

µ1(λ̄) :=
∂µ(λ)
∂λ

∣∣∣∣
λ=λ̄

,

the linearized absolute wheel slip dynamics have the form

˙δλr,a =
{Fzr

v̄

[
2(1− λ̄r,a)

J
r2 +

1
m

]
µ(λ̄r,a) (12)

+
[

(1− λ̄r,a)2Fzr

v̄

(
r2

J
+

1
m

)]
µ1(λ̄r,a)

+
λ̄r,a
mv̄

Fzf
µ(λ̄f )− 2(1− λ̄r,a)r

Jv̄
T̄
}
δλr,a

+
(1− λ̄r,a)2r2

v̄
δT.

From the linearized dynamics (12) it is immediate to derive
the expression of the first-order transfer function Gλr,a

(s),
which will be employed in Section IV for model validation
against experimental data.

III. THE TRACTION CONTROLLER DESIGN

As previously mentioned, due to the high nonlinearity
of the considered system and to the presence of time–
varying parameters and uncertainties, which arise from the
wide range of operating conditions typical of the automotive
context, the control system is designed relying on SOSM
control. Due to its robustness feature SOSM methodology
results particular suitable to deal with the considered nonlin-
ear uncertain system.
The main advantage of SOSM control [7], with respect to
the first order case, is that it can generate continuous control
actions, while keeping the same robustness properties with
respect to matched uncertainties [11], and a comparable
design simplicity.
In this setting the SOSM controller will be designed based on

the nonlinear absolute rear slip dynamics only, disregarding
at this stage the actuator dynamics (see Section IV). This
allows to work on a plant with relative degree one, and to
carry out the control design based on standard SOSM theory.
The effect of the actuator dynamics will be taken into account
in the simulations, and its impact on the closed-loop system
analyzed in Section V. The traction controller is designed to
steer the rear wheel slip λr,a to the desired value λ∗r . The
error between the current slip and the desired slip is chosen
as the sliding variable, i.e.,

sr,a = λr,a − λ∗r , (13)

and the control objective is to design a continuous control
law T capable of steering this error to zero in finite time.
Then, the chosen sliding manifold is given by

sr,a = 0 (14)

The first and second derivatives of the sliding variable sr,a
are {

ṡr,a = λ̇r,a − λ̇∗r,a
s̈r,a = ϕr,a + hr,aṪr

(15)

where λ̇r,a is given by (10), and hr and ϕr are defined as

hr,a :=
v

Jω2
rr

=
(1− λr,a)2r

Jv
(16)

ϕr,a := − v̈

rωr
+ 2

v̇ω̇r
rω2

r

− 2
vω̇2

r

rω3
r

− λ̈∗r,a −
vḞxr

Jω2
r

(17)

=
r(1− λr,a)2

Jv

{
2(−rFxr + T )

v
[m(Fxf

+ Fxr
)

− r(1− λr,a)(−rFxr + T )]− rḞxr

−
J(Ḟxr

+ Ḟxf
)

rm(1− λr,a)

}
− λ̈∗r,a.

Combining (3) with (7) yields

|v̇| ≤ 2Ψ
m

= f1. (18)

Further, taking into account the first time derivative of (3),
(8), and (18), one has that

|v̈| ≤ 2Γ
m

= f2. (19)

Finally, from equations (1) and (7), one gets

|ω̇r| ≤
−rΨ + T

J
= f3(T ). (20)

Relying on (18), (19), and (20), and assuming – as it is the
case in traction maneuvers – v > 0, ωr > 0 and λr,a ∈ [0, 1)
one has that ϕr,a is bounded. From a physical viewpoint, this
means that, when a constant driving torque T is applied, the
second time derivative of the rear wheel slip is bounded.
Note that in order to design a SOSM controller it is not
necessary that a precise evaluation of ϕr,a is available. In the
sequel of the paper it will be only assumed that a suitable
bound of ϕr,a, i.e.,

|ϕr,a| ≤ Φr(v, ωr, T ) (21)
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is known. Similar considerations can be made for hr,a which
can be regarded as an unknown bounded function with the
following known bounds

0 < Γr1(v, ωr) ≤ hr,a ≤ Γr2(v, ωr). (22)

In order to design a second order sliding mode control law,
introduce the auxiliary variables y1 = sr,a and y2 = ṡr,a.
Then, system (15) can be rewritten as

ẏ1 = y2, ẏ2 = ϕr,a + hr,aṪ , (23)

where Ṫ is regarded as the auxiliary control input [7]. As
a consequence, the control problem can be reformulated as
follows: given system (23), where ϕr,a and hr,a satisfy (21)
and (22), respectively, and y2 is unavailable for measurement,
design the auxiliary control signal Ṫ so as to steer y1, y2 to
zero in finite time.
The SOSM controller proposed herein is of sub–optimal type
[7]. This implies that, under the assumption of being capable
of detecting the extremal values srM

of the signal y1 = sr,a,
the following result can be proved (see also [8]).

Theorem 1: Given system (23), where ϕr,a and hr,a sat-
isfy (21) and (22), respectively, and y2 is not measurable,
the auxiliary control law

Ṫ = −ηVr sign
(
sr,a −

1
2
srM

)
(24)

η =
{
η∗ if [sr,a − srM/2]srM > 0
1 if [sr,a − srM/2]srM ≤ 0

where Vr is the control gain, η is the so–called modu-
lation factor, and srM is a piece–wise constant function
representing the value of the last singular point of sr(t)
(i.e., the most recent value srM such that ṡr,a(tM ) = 0),
causes the convergence of the system trajectory on the sliding
manifold sr,a = ṡr,a = 0 in finite time provided that the
control parameters η∗ and Vr are chosen so as to satisfy the
following constraints

η∗ ∈ (0, 1] ∩

(
0,

3Γr1
Γr2

)
(25)

Vr > max

{
Φr
η∗rΓr1

,
4Φr

3Γr1 − η∗Γr2

}
(26)

IV. THE COMPLETE MOTORCYCLE TRACTION DYNAMICS

To better evaluate the suitability for TC design of the
dynamical model presented in Section II, we compare it to
data collected on a hypersport motorbike which has been
used to perform experiments tailored to the identification of
actual rear wheel slip dynamics. The considered motorbike
is propelled by a 1000cc 4-stroke engine; it weights about
160 kg (without rider) and can deliver more than 200 HP.
For confidentiality reasons other details of the motorbike are
kept undisclosed. The vehicle is equipped with: an Electronic
Throttle Body (ETB) which allows to electronically control
the position of the throttle valve independently from the
rider’s request; an Electronic Control Unit (ECU) that allows
to control the throttle. The clock frequency of the ECU is
1 kHz; two wheel encoders to measure the wheels angular

velocity and a 1-dimensional optical velocity sensor. This
sensor measures the true longitudinal velocity and it will
be used to compute the instantaneous absolute rear wheel
slip. In order to identify the slip dynamics, frequency sweep
response has been employed. The test was carried out on
a 3.5 km straight dry asphalt patch; the rider is asked to
bring the motorcycle to a given constant engine speed in
a given gear. After steady state conditions are reached, the
rider presses a button which commences the trial. The throttle
control is taken over by the ECU and the excitation signal
(a frequency sweep) is applied around the neighborhood of
the initial condition. In the following reference is made to
the absolute rear wheel slip λr,a, which is defined as in (5).

From the experiments, the throttle set point position θo

and the the absolute rear wheel slip λr,a are recorded to
estimate the frequency response Ĝλr,a(jω). Such a non
parametric estimate of the frequency response is obtained by
windowed spectral analysis of the input/output cross-spectral
densities, and is shown with the dashed line in Figure 1. For
confidentiality reasons, the frequencies in Figure 1 are shown
normalized with respect to the closed loop frequency of the
servo-loop throttle control (ωc).

Fig. 1. Experimental frequency response (dashed line) and analytical
transfer function (solid line) from throttle set-point to rear wheel slip.

From Figure 1 it can be observed that the measured
slip dynamics has a resonance around 0.7-0.8 ωc. The fact
that this resonance is visible also on the engine speed (not
shown for space constraints) suggests that it is due to the
transmission elasticity.
As such, to complement the analytical wheel slip model
(12) so that it accounts for the additional dynamic elements
which emerge in the measured data, we need to consider the
actuator dynamics and the transmission elasticity.The consid-
ered actuator is an Electronic Throttle Body (ETB), which is
comprised of butterfly valves actuated by an electrical motor
through a reduction system. For traction control purposes,
we are interested in modeling the dynamics of the controlled
ETB, which, as discussed in [12], can be described as

GETB(s) = ν(ωe)
1

τs+ 1
e−ds, (27)
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that is a first-order low-pass filter with time-varying gain
ν(ωe) – where ωe is the engine speed – and a pure delay d.
For modeling the transmission elasticity, a mass-spring-
damper description has been chosen, which can be therefore
represented by means of the following

Gtransm(s) =
ω2
n

s2 + 2ξωns+ ω2
n

, (28)

where the natural frequency ωn =
√
k/m and ξ = c/2

√
km

and m, c and k are the mass, damping coefficient and spring
stiffness of the transmission, respectively.
Thus, the overall analytical model is

Gtraction(s) = Gth(s)Gλr,a
(s)Gtransm(s),

and it is given by the cascade of the controlled ETB dynamics
(27), the transmission (28) and the analytical transfer func-
tion Gλr,a

(s) derived from the linearized model (12). The
overall transfer function is shown with the solid line in Figure
1. As can be appreciated, the fitting between measured data
and the analytical model can be regarded as quite satisfactory.

V. SIMULATION RESULTS

This section is devoted to assess the performance of the
SOSM controller via a simulation study. We start with a
relatively simple Simulink-based in-plane motorcycle model
[9], which takes into account tire elasticity and tire relax-
ation dynamics and models the ETB dynamics. As such,
we analyze the controller performance in presence of the
actuator dynamics, which have been neglected in the con-
troller design. Then, we investigate the controller robustness
when the relative wheel slip is used as controlled variable.
Further, we provide a sensitivity analysis of the controller
performance with respect to the SOSM controller gain Vr,
which allows to highlight interesting trade-offs between
tracking performance and settling time. Then, to validate the
proposed SOSM controller in a setting as close as possible to
real on-bike experiments, we present some simulation results
obtained on a full-fledged commercial motorcycle simulator
(the Mechanical Simulation Corp. MSC BikeSimr simu-
lation environment, based on the AutoSim symbolic multi-
body software, which also models transmission and engine
dynamics and provides a very accurate description of the
road-tire interaction forces, [13].

Fig. 2. Plot of relative (dashed line), absolute (dash-dotted line) rear wheel
slip and front (solid line) wheel slip in traction maneuver where the slip
set-point is changed from λ∗r = 0.1 to λ∗r = 0.2 at t = 2s with relative
rear slip λr,r as controlled variable.

Figure 2 shows the time histories of the closed-loop
absolute rear wheel slip, vehicle and wheel speeds and
driving torque in a traction maneuver where the slip set-
point is changed from λ∗r = 0.1 to λ∗r = 0.2 at t = 2s
with relative rear slip λr,r as controlled variable. Inspecting
Figure 2, note that the wheel slip exhibits small oscillations:
analyzing the period of such oscillations one finds that it
corresponds to the actuator bandwidth. Such oscillations are
due to the fact that the presence of the unmodelled ETB
dynamic increases the relative degree of the system (note that
the pure delay in (27) has been modeled via a second order
Padé approximation, hence with no additional increase in
the relative degree). As a consequence, the transient process
converge to a periodic motion [14]. However, the amplitude
of such oscillations is very small and can be well tolerated in
the specific application. Instead, the use of a higher order SM
controller – which would be needed in principle to formally
deal with a plant with relative degree higher than one – is not
advisable in automotive control, as higher order derivatives of
the controlled variable need to be computed and this cannot
be done reliably due to measurements noise.

Fig. 3. Plot of (top): relative rear wheel slip; (bottom): driving torque in
a traction maneuver where the slip set-point is changed from λ∗r = 0.1
to λ∗r = 0.2 at t = 2s with relative rear slip λr,r as controlled variable
and with controller gains Vr (solid line), 5Vr (dash-dotted line) and 0.2Vr
(dashed line).

It is interesting to investigate the closed-loop system
sensitivity with respect to the SOSM controller gain. To
this end, refer to Figure 3, where the relative rear wheel
slip and the driving torque is shown with nominal controller
gain values Vr, increased gain 5Vr and reduced gain 0.2Vr.
What emerges from these results is a clear trade-off between
the actuator-induced oscillations amplitude and settling time.
Increasing the controller gain by a factor of 5 (see the dash-
dotted line in Figure 3), we can nearly halve the settling time,
but the price to pay are larger oscillations. The converse holds
for the case of decreased gain values (dashed-line in the same
figure). This feature is quite interesting for the considered
application. As a matter of fact, acceleration maneuvers on
slippery roads are much more difficult to handle at low
speeds. In fact, the rear wheel slip dynamics are inversely
proportional to the vehicle speed, as can be seen in equation
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(10). As such, the slip dynamics get faster – hence more
difficult to control for human drivers – as speed decreases.
Thus, at low speeds one would willingly lose tracking per-
formance in exchange for increased (and guaranteed) safety.
The design of an adaptive SOSM controller, where the gains
are tuned according to the vehicle speed, is topic of ongoing
work.

Fig. 4. Plot of (top): relative rear wheel slip; (middle): front wheel (solid
line) rear wheel (dashed line) and vehicle (dash-dotted line) speed; (bottom):
driving torque in a traction maneuver on the full multibody simulator where
a µ-jump from µ = 0.2 to µ = 0.4 with relative rear slip λr,r as controlled
variable.

Fig. 5. Plot of (top): relative rear wheel slip; (bottom): driving torque
in a traction maneuver on the full multibody simulator with relative rear
slip λr,r as controlled variable and matched disturbances, on the throttle
position (solid line) and both matched and unmatched disturbances (dotted
line).

We now move to assess the controller performance on the
full multibody simulator MSC BikeSimr.
To consider challenging yet realistic situations, note that
in traction control applications it is crucial that the control
algorithm can correctly manage sudden changes in the road
conditions, which possibly occur during strong accelerations.
Such a situation is often referred to as a µ-jump. Figure 4
shows the time histories of the relative rear wheel slip,
vehicle and wheel speeds and driving torque in a traction

maneuver on the full multibody simulator where a µ-jump
from µ = 0.2 to µ = 0.4 with relative rear slip λr,r
as controlled variable. The results in Figure 4 show that
the proposed controller can guarantee safety also in very
critical maneuvers. Finally, we need to take into account
disturbances. As is well known, SM control is very attractive
to deal with uncertain systems, but its formulation allows to
formally take into account only the so called matched dis-
turbances, [15]. However, in the automotive context one has
to handle also measurements disturbances, i.e., unmatched
ones. Thus, we carried out some simulations in the multibody
environment where first only matched disturbances – in the
form of a zero-mean white noise on the throttle position –
and then also unmatched disturbances – in the form of a zero-
mean white noise on the wheel speeds – have been taken
into account. The results of these simulations are shown
in Figure 5, where the behavior of the relative wheel slip
and the driving torque is shown in both cases (the noise
intensities used in these simulations is σ2

th = 0.1% and
σ2
ωi

= 0.001rad2/s2, i = {f, r}). As can be seen, the
closed-loop behavior remains acceptable and safe even in the
presence of unmatched disturbances, thereby confirmig the
suitability of the proposed SOSM controller for motorcycle
traction control applications.
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