
  

  

Abstract—Among the performance degradation effects that 
occur with finite precision implementations of controllers, a 
seldom addressed one is static imprecision. This paper proposes 
a multirate realization of a PI controller, relying on the 
frequency separation between the integral action and the 
remaining controller dynamics, that improves static precision, 
while minimally affecting dynamic performance. Suitable 
feasibility conditions for this approach are discussed, and its 
integration in existing PI tuning methods is also addressed. 
Conveniently enough, the proposed multirate realization of the 
controller can be implemented with standard single rate 
hardware machinery. Simulation results are reported to 
illustrate the effectiveness of the proposed methodology applied 
to a well known and widely used tuning procedure. 

I. INTRODUCTION 
HE digital implementation of controllers designed in the 
continuous time domain notoriously gives rise to a 

degradation of the achieved control results. The main 
reasons for this are the process of sampling and holding, the 
need for anti–aliasing filters, the quantizations introduced by 
analog to digital and digital to analog conversions, and the 
presence of finite precision computations [1]. The above 
problems are of particular relevance for embedded control 
implementations on low–end architectures, that are 
nowadays a significant part of the overall control market. 
Indeed, in most applications of that type (e.g., in household 
appliances) the difficulties posed by the digital 
implementation are severe enough to hinder any use of 
autotuning techniques, which on the other hand would be 
desirable as a means to achieve (and maintain over time) 
good performance. 

The typical architecture used in the mentioned 
applications is a microcontroller with 16 (or sometimes 32) 
bit fixed–point internal arithmetics. Performance 
degradation and possibly instability may result when a 
controller designed with infinite precision is actually 
implemented with a fixed–point digital processor (see, e.g., 
[2, 3, 4, 5]). This paper, in particular, sets the focus on a 
seldom studied fact, namely the joint role of 
sampling/holding and finite precision computations in 
degrading the static precision of a feedback control system, 
with reference to regulators endowed with integral action 
(the PI structure will be considered for simplicity, without 
loss of conceptual generality). 
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The key fact here is that the finite precision arithmetics of 
the controller determines the minimum error amplitude that 
triggers a variation of the integral action. That minimum 
error therefore equals the actual achievable steady state 
error, and interestingly enough, it can be significantly larger 
than the quantum of information corresponding to one bit of 
the digital implementation. As discussed in this work, a 
possible way to reduce such error consists in implementing 
the integral action separately and at a lower sampling rate 
than the proportional one (adjusting accordingly the 
discretized integral gain to match the designed continuous 
one), on the grounds that a slower updating of the integral 
action makes it reactive to comparatively smaller errors 
while hardly modifying the overall control dynamics. The 
suggested scheme results in a multirate digital PI 
implementation where the proportional and integral actions 
are managed at different sampling times and summed in a 
parallel scheme. 

Multirate control systems have been the subject of 
extensive research. Various formalization techniques have 
been developed for their analysis, both in the z–transform 
domain and the time domain (using state–space systems and 
the so called “lifting” technique), and various theoretical 
results and design methods have been presented in the 
literature (see, e.g., [6, 7, 8, 9, 10]). Motivations for using 
multirate control systems range from the need to integrate 
input–output paths operating with heterogeneous sampling 
machinery in multivariable systems [6], to the 
implementation of integrated communication and control 
systems [11]. A typical circumstance in which multirate 
control systems are employed arises when there are 
limitations in the measurement sampling, but the control can 
be updated faster, [9, 10, 12, 13]. Specific attention has been 
dedicated to multirate PID controllers in several works (see, 
e.g., [12, 13, 14]). References [13] and [14], in particular, 
discuss a dual rate PID implementation that resembles the 
one proposed here, although a series composition of the PI 
and PD blocks is there selected instead of a parallel scheme, 
and the finite precision problem is not addressed. 

Moreover, to the best of the authors’ knowledge, while 
the idea of operating the controller at higher sampling 
speeds than allowed by the measurement devices has been 
widely exploited, the reverse idea that slowing down some 
computations can sometimes improve the (static) 
performance of the control system is hardly mentioned in the 
literature of multirate control systems. 

Notice also that while multirate control systems often deal 
with multi–loop implementations, actually involving 
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hardware elements operating at different sampling times, a 
single control loop is here considered, the regulator only 
being implemented in a multirate fashion, using single rate 
hardware machinery. 

The outcome of the analysis is a modified PI tuning 
method that takes into account an additional downsampling 
parameter for the integral action, and can be applied under 
suitable conditions (detailed in the following) related both to 
performance and sampling. It is important to point out that 
the idea proposed here can be applied to existing tuning 
rules, thus facilitating its use as a complement for already 
well assessed autotuners. 

The paper is structured as follows. Section II illustrates 
the static performance degradation problem due to finite 
precision computations, which is subsequently addressed in 
Section III by means of a multirate PID implementation. 
Section IV illustrates the proposed tuning procedure for the 
multirate PI, evidencing that it can be seamlessly coupled 
with existing tuning methods, therefore facilitating its use. 
Section V provides some simulation results to illustrate the 
operation of the proposed multirate PI and tuning method. 
Finally, in Section VI, some conclusions are drawn, and 
future developments are envisaged.   

II. PROBLEM STATEMENT 
In the following, we will assume that the controller operates 
with fixed point internal arithmetics using B bits, and that its 
input and output variables vary in a range [−R/2, R/2], so 
that the least significant bit corresponds to a quantum of 
information equal to Q = R/2B (note, by the way, that the 
above assumptions are consistent with the normalized nature 
of the signals typically managed in industrial controllers). 
On a 16 bit machine this would correspond to a 3–digit 
resolution with R = 100 (8 digits with 32 bits).  

Converter quantization is not taken into account here, 
since we are interested in the computations taking place 
inside the controller. It is also worth noticing that – in some 
sense contrary to intuition – the problem addressed here is 
not dominated by converter quantization, as will be shown 
in the following examples. 

Assume that a controller with integral action has been 
designed, e.g., as a result of a PI/PID tuning process. The 
digital version of the controller (discretized with the 
backward Euler method) yields at each step an increment of 
the integral action computed as follows: 

∆uint(k) = KiTse(k), 
where Ki is the integral gain (Ki = K/Ti for a PI/PID, K being 
the proportional gain and Ti the integral time), and Ts is the 
sampling time. Now, the minimum value ē of the error 
signal that will trigger a nonzero variation of the integral 
action solves the following expression: 

Q = KiTs ē, 
which yields: 

ē = 
Q

KiTs
. 

The minimum achievable error value at steady state is 
therefore constrained to be smaller than ē, in order for the 
integral action to stop: |e(∞)| < ē. This threshold is not 
necessarily lower than the minimum resolution attainable 
with the given machine arithmetics. On the contrary, if 
KiTs << 1 the minimum error may actually correspond to 
several bits. For example, a unitary integral gain on a 16 bit 
machine operating at Ts = 10−3 s, would result in a 1.5% 
steady state error, due only to finite precision computations. 
Notice that ē is inversely proportional to the sampling time 
Ts, which is typically chosen very small for various 
requirements, related to the sampling theorem and other 
known issues. 

It is therefore of interest to investigate if there are 
methods for reducing ē, while substantially preserving all 
the designed closed loop features of the nominal continuous 
time controller. Notice that the latter requirement rules out 
the increase of Ts, since this would have a direct impact on 
the overall dynamic performance. However, a trade–off can 
be attempted by implementing separately the integral action 
at a slower sampling rate nTs, with n > 1, integer, on the 
grounds that it accounts for low frequency dynamics, while 
the rest of the controller is implemented at the standard 
sampling rate Ts. This amounts to designing a multirate 
controller, as discussed in the next section with reference to 
the PI case, for simplicity. 

III. MULTIRATE PI IMPLEMENTATION 
Let Rc(s) = K(1+1/sTi) be the transfer function of a standard 
PI regulator and assume that parameters K and Ti have 
already being designed. The regulator discretization involves 
the introduction of sample and hold devices, as in figure 1, 
and requires sampling at an appropriately high frequency 
ωs = 2π/Ts = αωcn, α >> 1, ωcn being the nominal cut–off 
frequency [1]. Zero order holder (ZOH) devices will be used 
in the following, and synchronous operation of samplers and 
holders is assumed. 

 e(t) Rd(z) ZOH u(t)
Ts Ts  

Fig. 1. Single rate digital PI regulator. 

The discretized version of the regulator can then be obtained 
with the backward difference method (the most widely used 
in applications) as: 

Rd(z) = 
K
Ti

 
(Ti+Ts)z − Ti

z − 1 . 

The proposed multirate implementation of the PI regulator 
is depicted in figure 2, and includes two separate blocks: 

Rmp(z) = K,  
operating with sampling time Ts, and  
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Rmi(z) = 
K
Ti

 
nTsz
z − 1, 

downsampled at nTs, with n > 1, integer. 
Notice that this does not require the actual implementation 

of two discretization paths, since the downsampling can be 
easily managed via software, by picking one input datum 
every n sampled, and modifying the relative part of the 
output only in the corresponding time period. 

 

e(t) 
Rmp(z) ZOH 

Rmi(z) ZOH 

u(t)

nTs nTs 

Ts Ts 

+ 

+ 

 
Fig. 2. Multirate digital PI regulator. 

In order to investigate the difference between the two 
schemes depicted in figures 1–2, let us first compare the 
respective frequency responses (referring to the continuous 
time domain, i.e., including sampling and holding). With 
reference to the single rate scheme and restricting the 
analysis to the frequency band [0 ωN), where ωN = π/Ts is the 
Nyquist frequency, one obtains: 

Ud(jω) = Cd(jω)E(jω) = 
1
Ts

 H0,Ts
(jω)Rd(ejωTs)E(jω),  ω < ωN, 

where Cd(jω) denotes the (continuous time) frequency 

response of the single rate controller, and H0,T(s) = 
1 − e−sT

s  

can be interpreted as the “transfer function” of a zero–order–
holder operating at sampling time T (more precisely, it is the 
rate between the Laplace transform of the output of the ZOH 
and the z–transform of its input, evaluated at z = esT). 

Analogously, the Fourier transform of the control variable 
in the multirate scheme of figure 2 can be written as: 

Um(jω) = Cm(jω)E(jω) =  
⎩
⎨⎧

1
Ts

H0,Ts
(jω)Rmp(ejωTs) + 

               + 
1

nTs
H0,nTs

(jω)Rmi(ejωnTs)
⎭
⎬⎫E(jω),  ω < 

ωN
n , 

where Cm(jω) denotes the (continuous time) frequency 
response of the multirate controller. 

It is easy to verify that the two frequency responses are 
equal in the frequency band where both are valid, i.e. [0 
ωN/n): 

Cd(jω)−Cm(jω) = 
1−e−jωTs

jωTs
 
K
Ti

 
TsejωTs

ejωTs−1 − 
1−e−jωnTs

jωnTs
 
K
Ti

 
nTsejωnTs

ejωnTs−1  

       = 
1

jωTs
 
K
Ti

 Ts − 
1

jωnTs
 
K
Ti

 nTs = 0 

In that frequency band, the only difference between the 
two schemes is generated if an anti–aliasing filter is 
introduced in the downsampled path of the multirate scheme 
that introduces significant phase distortion at the closed loop 
cut–off frequency. To avoid this, the designer should ensure 
that 

ωc << 
ωN
n . (1) 

In view of this, the multirate scheme preserves the 
dominant dynamic behavior of the control system, but may 
display some differences at frequencies higher than ωN/n, 
especially concerning the control variable dynamics. Such 
differences are more evident in the time domain, since the 
integral action is modified only every n samples with the 
multirate scheme, resulting in a stair–like behavior of the 
control signal superimposed to the fundamental dynamics of 
the signal. Notice that this does not imply that significant 
differences are experienced also with the controlled variable, 
provided correct sampling conditions are met. 

Consider the updating of the integral action during a time 
period nTs. Assuming a quasi–constant nonzero error e∆I in a 
time period nTs – consistently with the correct sampling 

assumption (1) – the integral action is increased by 
KTse∆I

Ti
 at 

every sample with the single rate version of the controller, 
while the downsampled version only updates it after n 

samples, adding the quantity 
KnTse∆I

Ti
. Therefore, the two 

integral actions are equal at k = n, while their maximum 
difference equals 

∆I = 
KTse∆I

Ti
 (n−1), (2) 

at time step k = n−1. This quantity must be kept small, in 
order to reduce the differences in the control signal between 
the two implementations of the controller.  

Concerning the value of e∆I in expression (2), simple 
considerations allow to state that it equals the maximum 
amplitude of the expectable step variations of the set point 
and of output or feedback disturbances. A worst case design, 
yet extremely conservative choice, can be e∆I = R, but this is 
hardly ever advisable. In most practical cases, setting e∆I to a 
few percent of R is more than reasonable. 

In conclusion, in order to select appropriately the 
parameters n and Ts the following pair of conditions should 
be met 

n > 
R
2B 

1
Kiemax(∞) 

1
Ts

 , (3) 

n < 1 + 
1

Kie∆I
 
1
Ts

 ∆Imax , (4) 

where emax(∞) denotes the maximum tolerable error 
amplitude at steady state, and ∆Imax is the maximum allowed 
difference in the integral action due to downsampling, in 
addition to the two conditions for correct sampling:  

π
Ts

 ≥ αωc , (5) 

π
nTs

 ≥ βωc , (6) 

where α > β >> 1. The last two constraints actually define 
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an upper bound for n and Ts. Precisely, 

Ts ≤ 
π

αωc
 , (5’) 

and condition (6) is necessarily satisfied by ensuring that  

n ≤ 
α
β. (6’) 

The previously stated conditions define a region of 
admissible choices in the space (Ts,n): 

Ω = {(Ts,n)∈R+×Z+ | (3) ∧ (4) ∧ (5’) ∧ (6’)}. (7) 
Given the numerical characteristics of the target machine 

and the parameters of the continuous time version of the 
controller, parameters emax(∞), e∆I, ∆Imax, α, β should be 
properly defined by the designer so as to ensure that Ω ≠ ∅. 

IV. A TUNING METHOD FOR THE MULTIRATE PI 
In view of an autotuning application of the PI regulator, the 
tuning method of choice can be extended to allow for a 
multirate implementation, the only prerequisite being that 
the tuning method provides a nominal closed loop cutoff 
frequency ωcn: 

Extended PI tuning method: 
Step 1) Apply the tuning method of choice with a suitable 

selection of the design variables, if any. 
Step 2) Select emax(∞), e∆I, ∆Imax, α, β so that Ω ≠ ∅. 
Step 3) Given the regulator parameters K, Ti and ωcn 

obtained at Step (1), select a pair (Ts,n) ∈ Ω. 

With respect to the design variables of the original PI 
tuning method, and to the sampling thresholds α and β, the 
proposed implementation adds the variables emax(∞), e∆I, 
∆Imax. While the rationale behind the choice of emax(∞) is 
obvious,  a reasonable choice of ∆Imax can be made based on 
the characteristics of the problem at hand, particularly the 
admissible actuator upset. As a rule of thumb, a few percent 
of the control full scale can be selected. 

Naturally, if region Ω is large, different admissible 
choices of n and Ts are possible. Stated otherwise, the 
expectations of the control design can be increased, by 
updating emax(∞), e∆I, ∆Imax to make constraints (3) and (4) 
more stringent.  

V. SIMULATION RESULTS 
Consider the simple FOPDT process model 

G(s) = e−sL µ
1 + sT  

where µ = 10, T = 1, and L = 0.2, and apply the classical 
IMC–PID tuning method [15] with design parameter λ = 0.5 
to parameterize  a PI regulator. Recall that λ is interpreted as 
the desired (dominant) closed loop constant. 

The obtained parameters are given by: 
Ti = T,  

K = 
T

µ (L + λ). 

It is trivial to verify that the nominal closed loop system 
has a cutoff frequency equal to: 

ωcn = 
1

L + λ. 

Accordingly, the sampling time for the single rate PI 
implementation is selected as 

Ts = 
π

40ωcn
. 

Now, assuming conventionally that R = 100 and B = 16, 
the least significant bit equals the quantum of information 
Q = R/2B = 0.0015. However, it is apparent from figure 3, 
which depicts the closed loop performance of the discretized 
single rate PI against the nominal one designed in the 
continuous time domain, that the steady state error is at least 
2 orders of magnitude larger than Q and is unsatisfactory by 
typical control performance standards. As explained in 
Section II, this is related to the fact that KiTs = 0.0079 << 1. 
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Fig. 3.  Closed loop performance of the discretized single rate PI (blue) vs. 
the nominal regulator (black): response to a reference signal unit step 
variation at t = 0 s and a load disturbance 0.5 step variation at t = 7.5 s, 
process variable (top) and control variable (bottom). 

Fixed point operations are here emulated using integer 
computations and suitable rounding and truncation 
operations. Real numbers are pre–divided by Q and rounded 
to the nearest integer. Then, e.g., the product (see also figure 
4) is obtained by multiplying two integer operands, 
multiplying the result by Q and truncating the final number 
to the integer nearest to 0. The truncated integer is then 
reconverted back to real by multiplying it again by Q. 
Analogous reasoning applies to the sum operator. 

A multirate implementation of the designed PI regulator 
can be attempted to overcome the static precision 
degradation problem. Precisely, setting emax(∞) = 0.05 and 
∆Imax

e∆I
 = 0.05, α = 40, and β = 4, a nonempty admissible 
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region for the multirate implementation is obtained, as 
shown in figure 5. In particular, if – for simplicity sake –one 
keeps the already chosen sampling time Ts (corresponding to 
the right vertical edge of Ω), n can be chosen in the range [4, 
7]. 

1
Out1

fixround

round

Q

2
In2

1
In1

 
Fig. 4.  Emulation of fixed point product. 
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Ts  
Fig. 5.  The admissible region Ω defined by constraints (3) (red line), (4) 
(blue line), (5’) (vertical black line), and (6’) (horizontal black line): the 
horizontal black segments indicate the admissible values of Ts for each n. 

Using n = 7 with Ts = 0.055 s should be particularly 
effective in reducing the steady state error, since it 
corresponds to a point of Ω at nearly the maximum 
admissible distance from the red line, associated to 
constraint (3). Indeed, the control performance (compare 
figures 3 and 6) displays a significant improvement in the 
steady state behavior of the process variable, both in 
response to reference signal and load disturbance step 
variations, with almost negligible effects on the transients. It 
is worth stressing that the improvement is obtained by 
leaving the (continuous-time equivalent) integral gain 
unchanged: of course the unwanted effect of finite precision 
could also be cured by altering that gain, but in that case 
there would also be a dynamic effect. 

This also confirmed by the analysis in the frequency 
domain, since the single rate and multirate discretizations of 
the PI regulator have equal frequency response in the 
frequency band where both are valid (see figure 7). 
Therefore, it is expected that both realizations have identical 
low frequency behavior, at least up to the Nyquist frequency 
related to the slower sampling. 

Concerning the higher frequency behavior, figure 6 shows 
that the low–pass dynamics of the process are enough to 
filter out any high frequency chattering taking place at 
frequencies higher than π/nTs. However, the downsampling 

of the integral action is not totally without consequences on 
the control signal dynamics, where the integral action reacts 
only every n samples, generating a stair–like behavior (see 
figure 6, bottom).  
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Fig. 6.  Closed loop performance of the discretized dual rate PI (blue) vs. 
the nominal regulator (black): response to a reference signal unit step 
variation at t = 0 s and a load disturbance 0.5 step variation at t = 7.5 s, 
process variable (top) and control variable (bottom). 
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Fig. 7.  Frequency response functions of the PI regulator: nominal 
continuous time controller (blue line), single rate discretized regulator 
(black line), multirate discretized regulator (red line). 

If necessary, such undesired rapid variations of the 
control signal can be explicitly filtered out using a 
reconstruction filter with cutoff at frequency π/nTs (or 
higher). To see how this works, compare figure 6 with 
figure 8, where the first order low–pass filters 

FTs
(s) = 

1

1 + 
Ts

π s
, 

and 

FnTs
(s) = 

1

1 + 
nTs

π s
, 

4691



  

have been used as anti–aliasing and reconstruction filters in 
the high and low sampling frequency discretization path, 
respectively. 
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Fig. 8.  Closed loop performance of the discretized dual rate PI with anti–
aliasing and reconstruction filters (blue) vs. the nominal regulator (black): 
response to a reference signal unit step variation at t = 0 s and a load 
disturbance 0.5 step variation at t = 7.5 s, process variable (top) and control 
variable (bottom). 

Notice how the low and medium frequency behavior is 
hardly affected, while the control chattering is much 
reduced. Obviously, the loss in performance due to the 
addition of a low pass filter with low cutoff frequency in the 
closed loop depends on how close is the filter cutoff 
frequency to ωc, since the nearest they are, the more phase 
loss is introduced by the filter. 

VI. CONCLUSIONS 
The implementation of controllers on finite precision 
machines can reveal several unwanted precision degradation 
effects, such as a static error much larger than the machine 
and the I/O converters’ resolution. A possible solution to 
this problem has been put forward in this paper, in the form 
of a multirate implementation of PI/PID controllers, where 
the integral action is isolated and updated with a slower 
sampling period. 

It is shown that the multirate implementation preserves 
exactly the low and medium frequency behavior, and 
presents minimal high frequency variations of the controlled 
variable, although some high frequency chattering occurs in 
the control signal. Such chattering can be reduced by proper 
filtering in the control loop. The required downsampling can 
easily be performed by software operations, so that it is not 
actually necessary to set up multiple hardware sample and 
hold paths.  

A methodology was also proposed to make existing PI 
tuning rules capable of accounting for the multirate 
implementation and tuning the corresponding additional 
parameters. This demonstrates that the multirate 
implementation can be easily included as a feature of 

autotuning control systems. 
The proposed scheme can be generalized to regulators not 

of the PID family and of higher order, to multirate schemes 
with more than two sampling periods, and to non multiple 
(e.g., rationally related) sampling times. Such extensions are 
currently matter of research, together with a more formal 
analysis of the obtained schemes in both the continuous and 
discrete time domains. 
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