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Abstract— Electromagnetically driven mechanical systems
are characterized by fast nonlinear dynamics that are subject
to physical and control constraints, which makes controller
design a challenging problem. This paper presents a novel
model predictive control (MPC) scheme that can handle both
the performance/physical constraints and the strict limits on
computational complexity required in control of general elec-
tromagnetic (EM) actuators. The novel aspects of the MPC
design are a one-step-ahead prediction horizon and an infinity-
norm artificial Lyapunov function that is employed to drive
the system to a desired reference. An additional optimization
variable is introduced to relax the conditions on the Lyapunov
function, which is not forced to decrease monotonically. In this
way feasibility of the MPC algorithm is improved considerably.
While the MPC scheme uses a full nonlinear model, which im-
proves performance, we show that the resulting MPC problem
can still be transformed into a low-complexity linear program
that can be solved by modern microprocessors within tenths of
milliseconds. Moreover, an even simpler piecewise affine explicit
controller can be obtained via multiparametric programming.
Simulation results are reported and compared with the results
achieved by state-of-the-art explicit MPC based on a piecewise
affine model.

I. INTRODUCTION

Over the last few years, increasing operating demands

for electromagnetic (EM) actuators in fields as diverse as

precision, power, and automotive engineering [1] have in-

tensified the need for fast and accurate stabilizing control

strategies. Regardless of their application area, mechatronic

systems are characterized by strict operating requirements

(low power consumption, fast transition times, accurate ref-

erence tracking etc.), severe nonlinearities, and input and

state constraints that need to be enforced. In addition, these

operating requirements must be met robustly, considering

component variability due to part-to-part differences and

aging.

Due to these characteristics, the controller design task

is challenging. Traditional methods such as proportional-

integral-derivative (PID) or linear-quadratic regulator (LQR)

control cannot explicitly enforce hard constraints. This is in

fact one of the main reasons why model predictive control

(MPC) has become successful [2]–[4]. In MPC, the actual

control action is computed by solving a finite horizon open-

loop optimization problem at each control sample instant,
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using the measured current state as starting condition, while

satisfying input and state constraints.

Although until recently only “slow” systems found in

chemical or process industry permitted implementation of

MPC, the field of application of MPC is growing with

advances in computing power. Recently, an explicit MPC

approach was used to tackle the EM actuator control problem

in [5], with promising results. However, some improvements

can still be made to make it more suitable for practical

implementation, both regarding the complexity of the con-

trol law and closed-loop stability. Existing MPC schemes

with a stability guarantee [3] are either too complex or

too conservative for real-time implementation. This paper

proposes a new low-complexity nonlinear MPC strategy that

is more suitable for real-time control and still provides a sta-

bility guarantee under certain assumptions. This is achieved

by using a one-step-ahead prediction horizon in the MPC

optimization problem and relaxed stabilization constraints

formulated using infinity-norm based Lyapunov functions.

This particular setup yields a single Linear Program (LP) to

be solved on-line, although a full nonlinear model is still used

for predictions. Compared to the MPC scheme presented in

[5], which requires a piecewise affine (PWA) approximation

of the nonlinear actuator model, this ultimately results in

improved performance and lower complexity. Even tighter

timing and control hardware requirements can be handled by

making use of the multiparametric method [6] for obtaining

an explicit version of the MPC controller.

II. PRELIMINARIES

A. Basic notions and definitions

Let R, R+, Z and Z+ denote the field of real numbers, the

set of non-negative reals, the set of integer numbers and the

set of non-negative integers, respectively. We use the notation

Z≥c1
and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and

{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+.

For a set S ⊆ R
n, let int(S) represent the interior and cl(S)

the closure of S. A polyhedron (or a polyhedral set) in R
n is

a set obtained as the intersection of a finite number of open

and/or closed half-spaces. For a vector ξ ∈ R
n let ‖ξ‖ denote

an arbitrary p-norm and let [ξ]i, i = 1, . . . , n denote the i-

th component of ξ. Let ‖ξ‖∞ := maxi=1,...,n |[ξ]i|, where

| · | denotes the absolute value. For a matrix Z ∈ R
m×n

let ‖Z‖ := supξ 6=0
‖Zξ‖
‖ξ‖ denote its corresponding induced

matrix norm. A function ϕ : R+ → R+ belongs to class

K if it is continuous, strictly increasing and ϕ(0) = 0. A

function ϕ : R+ → R+ belongs to class K∞ (ϕ ∈ K∞) if

ϕ ∈ K and lims→∞ ϕ(s) = ∞.
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Fig. 1. A magnetically actuated mass-spring-damper system.

B. Lyapunov Stability

Consider the discrete-time, autonomous nonlinear system

ξ[k + 1] ∈ Φ (ξ[k]) , k ∈ Z+, (1)

with state ξ[k] ∈ R
n at discrete-time instant k. The mapping

Φ : R
n

⇉ R
n is an arbitrary set-valued function. We assume

that the origin is an equilibrium of (1), i.e. Φ (0) = {0}.

Definition II.1 A set P ⊆ R
n is Positively Invariant (PI)

for system (1) if ∀ξ ∈ P it holds that Φ (ξ) ⊆ P .

Definition II.2 (i) System (1) is Lyapunov stable if ∀ε > 0,

∃δ(ε) > 0 such that for all state trajectories of (1) it holds

that ‖ξ[0]‖ ≤ δ(ε) ⇒ ‖ξ[k]‖ ≤ ε for all k ∈ Z+. (ii) Let

X ⊆ R
n and 0 ∈ int(X). The origin of (1) is attractive

in X if for any ξ[0] ∈ X it holds that all corresponding

trajectories of (1) satisfy limk→∞ ‖ξ[k]‖ = 0. (iii) System

(1) is asymptotically stable in X if it is Lyapunov stable and

attractive in X.

Theorem II.3 Let X be a PI set for system (1) and let 0 ∈
int(X). Furthermore, let α1, α2, α3 ∈ K∞ and let V : R

n →
R+ be a function such that

α1 (‖ξ‖) ≤ V (ξ) ≤ α2 (‖ξ‖) , (2a)

V (ξ+) − V (ξ) ≤ −α3 (‖ξ‖) , (2b)

for all ξ ∈ X and all ξ+ ∈ Φ (ξ). Then system (1) is

asymptotically stable in X.

The proof of the above theorem is similar in nature to

the proof given in [7] by replacing the difference equation

with the difference inclusion as in (1) and is omitted here

for brevity. A function V (·) that satisfies the conditions of

Theorem II.3 is called a Lyapunov function.

III. PHYSICAL MODEL AND CONSTRAINTS

The system to be controlled, shown in Fig. 1, is a typical

magnetically actuated mass-spring-damper system (MSDS)

that is common in mechatronic applications. The MSDS can

be modeled by the second-order linear differential equation

ẍ =
F

m
−

c

m
ẋ −

k

m
x, (3)

with mass m [kg], position x [m], damping coefficient

c [N·s·m−1] and spring constant k [N·m−1]. The mechan-

ical subsystem is coupled to a nonlinear electromagnetic

driving circuit via the magnetic force F [N], induced by

applying an input voltage V [V] to the terminals of a coil

with resistance R [Ω]. Controlling the nonlinear EM-actuator

dynamics is complex and might therefore be inappropriate

for implementation in standard microcontrollers. The com-

plexity is decreased by adopting an inner-outer control loop

strategy, in which the electromagnetic subsystem is driven

by a feedback-linearizing control law [5]. In this way, the

inner-loop closed-loop dynamics can be made much faster

than the dynamics of the mechanical subsystem, so that the

predictive outer-loop controller can be designed based on a

time-discretization of the mechanical subsystem (3), with the

magnetic force F as the control input.

Like most mechatronic actuator applications, the con-

trolled system is subject to several constraints originating

from physical limits or performance requirements. The mass

position should not exceed the physical limits

−d ≤ x ≤ d. (4)

For safety and performance reasons, a soft-landing constraint

is imposed on the mass velocity with respect to its position,

−ε − β(d − x) ≤ ẋ ≤ ε + β(d − x), (5)

where ε and β are chosen such that the constraint is es-

sentially inactive for x = 0 mm (i.e. ẋ ∈ [−10.2, 10.2]),
while the constraint is tight for x = d (i.e. ẋ ∈ [−0.2, 0.2]).
Furthermore, the magnetic force is only able to attract

the mass, and the outer-loop controller needs to include a

saturation constraint on the control input F that is a direct

effect of the maximum coil current imax [A] allowed:

0 ≤ F ≤
kai2max

(d + kb − x)
2 , (6)

with constants ka [N·m2·A−2], kb [m] originating from the

EM architecture. Note that this constraint is nonlinear and

non-convex in the state variable x.

After defining the dynamics and the limitations of the

actuator, the next sections will focus on controller design.

IV. EXISTING OUTER-LOOP MPC APPROACH

Although the model (obtained by time-discretization of

(3)) used by the outer-loop MPC controller is linear, the

controller needs to find an input u from a non-convex feasible

input set, defined by linear and nonlinear constraints (4),

(5) and (6). The nonlinear constraint poses a computational

problem: including the saturation bound in the MPC con-

troller requires solving a nonlinear optimization problem

each sampling instant. However, this is not feasible for

the considered application due to the stringent limits on

computational complexity.

In [5], an outer-loop MPC controller was proposed with a

prediction horizon of 3 sampling instants and a quadratic cost

function. The state and input restrictions were also enforced

along a constraint horizon of 3 instants. The numerical

complexity due to the nonlinear constraint was tackled by

approximating the nonlinear saturation constraint (6) with a

PWA function. This made it possible to formulate the MPC

optimization problem as a mixed-integer quadratic program
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(MIQP), which can be solved explicitly. However, it should

be noted that in general the approximated PWA constraint

can result in a deterioration of the closed-loop performance.

Furthermore, the controller developed in [5] does not include

stabilization as part of its design. Although stability can be

checked a posteriori for the explicit form of the controller,

if the check fails it is not clear how to modify the original

MPC scheme such that stability is guaranteed.

As such, an MPC algorithm that can allow for the nonlin-

ear model of the constraint and still offer a low computational

complexity and an a priori stability guarantee is needed for

controlling EM actuators. In the next section we propose a

novel MPC scheme that attains these properties.

V. LOW-COMPLEXITY NONLINEAR MPC

Before the new outer-loop MPC controller is described,

we recall some preliminary notions on control Lyapunov

functions, which will be instrumental in the MPC setup.

Consider the discrete-time constrained nonlinear system

described by the difference equation

ξ[k + 1] = φ(ξ[k], u[k]), ∀k ∈ Z+, (7)

where ξ[k] ∈ X ⊆ R
n is the state and u[k] ∈ U ⊆ R

m is

the control input at the discrete-time instant k. The function

φ : R
n × R

m → R
n is arbitrary with φ(0, 0) = 0 and we

assume that X and U are bounded sets with 0 ∈ int(X) and

0 ∈ int(U). Let α1, α2, α3 ∈ K∞ and let X̃ be a subset of

X with the origin in its interior.

Definition V.1 A function V : R
n → R+ that satisfies (2a)

for all ξ ∈ R
n and for which there exists a control law,

possibly set-valued, π : R
n

⇉ U such that

V (φ(ξ, u)) − V (ξ) ≤ −α3 (‖ξ‖) , ∀ξ ∈ X̃, ∀u ∈ π(ξ)

is called a control Lyapunov function (CLF) in X̃ for the

difference inclusion corresponding to system (7) in closed-

loop with u[k] ∈ π(ξ[k]), k ∈ Z+.

Now we can define the new outer-loop MPC scheme,

in which we use a one-step-ahead prediction scheme to

reduce the overall controller complexity, whereas closed-loop

stability is achieved in a non-conservative way by relaxing

the conditions on a predetermined local CLF. By using

stabilizing constraints not directly related to the MPC cost

function, this approach decouples performance from stability

and no longer requires the global optimum (with respect to

the control input) to be attained at each sampling instant, as

typically required in MPC for guaranteeing stability [3].

Let J(·) be a cost function that satisfies J(τ) → ∞ when

τ → ∞ and J(τ) → 0 when τ → 0. Let V (·) be a CLF in

X̃ ⊆ X for system (7) and let α3 ∈ K∞.

Problem V.2 At time k ∈ Z+, measure the state ξ[k] and

minimize the cost J(τ [k]) over u[k] and τ [k], subject to the

constraints

u[k] ∈ U, φ(ξ[k], u[k]) ∈ X, τ [k] ≥ 0, (8a)

V (φ(ξ[k], u[k])) − V (ξ[k]) + α3(‖ξ[k]‖) ≤ τ [k]. (8b)

Let π(ξ[k]) := {u[k] ∈ R
m | ∃τ [k] s.t. (8) holds} and de-

note the set of corresponding closed-loop systems by

φCL(ξ[k], π(ξ[k])) := {φ(ξ[k], u[k])|u[k] ∈ π(ξ[k])}. Also,

let VΓ := {ξ ∈ R
n | V (ξ) ≤ Γ} for any Γ ∈ R+ and let

τ∗[k] denote the optimum in Problem V.2 for all k ∈ Z+.

Theorem V.3 Suppose that Problem V.2 is feasible for all ξ

in X and assume that limk→∞ τ∗[k] = 0. Then the closed-

loop system

ξ[k + 1] ∈ φCL(ξ[k], π(ξ[k])), k ∈ Z+, (9)

is attractive in X. Moreover, if ∃Γ ∈ R>0 such that V (·) is a

CLF in VΓ for (7), then (9) is asymptotically stable in X.

The proof of Theorem V.3, which is omitted due to space

limitations, follows more or less using standard arguments

employed in proving input-to-state stability and stability, see

for example, [8], [7]. Attractivity follows from the property

limk→∞ τ∗[k] = 0, which renders the difference inclusion

(9) “converging-input converging-state”, with τ∗[k] as input.

This further implies that all closed-loop state trajectories

reach the set VΓ in finite time, where V (·) is a CLF. This

in turn yields asymptotic stability. The interested reader is

referred to the recent article [9] for more details on relaxation

of the CLF concept for general discrete-time systems.

Next, we provide a non-conservative solution for guaran-

teeing that limk→∞ τ∗[k] = 0, which is crucial for attaining

asymptotic stability.

Lemma V.4 Let ρ ∈ R[1,0) and Nτ ∈ Z≥1 be given. Assume

that φ(·, ·) and V (·) are bounded on bounded sets. If

0 ≤ τ [k] ≤ ρ
1

Nτ

Nτ∑

i=1

τ∗[k − i], ∀k ∈ Z≥Nτ
, (10)

then limk→∞ τ [k] = 0.

Proof: First we establish an upper bound on τ∗[k] for

all k ∈ Z+. Let

τ̄ := sup
ξ∈cl(X),u∈cl(U)

{V (φ(ξ, u)) − V (ξ) + α3(‖ξ‖)}.

As V (·) is upper and lower bounded by a K∞ function,

the above supremum exists. Hence, due to constraint (8b) it

holds that τ∗[k] ≤ τ̄ for all k ∈ Z+. From (10) we have that

τ∗[k] ≤ ρ max
i∈[1,Nτ ]

τ∗[k − i], for k ≥ Nτ . Hence, recursive

application of (10) gives

τ [k] ≤ ρ⌊
k

Nτ
⌋ max

i∈Z[1,Nτ ]

τ∗[Nτ − i] ≤ ρ⌊
k

Nτ
⌋τ̄ .

The fact that lim
k→∞

ρ⌊
k

Nτ
⌋ = 0 completes the proof.

As such, augmenting Problem V.2 with constraint (10) will

guarantee that limk→∞ τ∗[k] = 0. It is important to point out

that this is achieved in a non-conservative way, in the sense

that a non-monotonic evolution of τ∗[k] is allowed, within

the asymptotically converging envelope generated by (10).

Obviously, if τ∗[j] = 0 for all j ∈ Z[k−Nτ+1,k], constraint

(10) is equivalent to τ∗[k] = 0, which is always feasible
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within VΓ. However, in real-life applications, where noise is

present, or in case of reference tracking, the constraint (10)

can become unfeasible. To maintain feasibility it suffices to

discard (10) for the next Nτ discrete-time instants, as done

initially. In Section VII we consider the case of reference

tracking, which requires re-initialization of (10) whenever a

change in the set-point occurs.

VI. IMPLEMENTATION AS A LINEAR PROGRAM

In this section we present the ingredients that make it pos-

sible to implement Problem V.2 augmented with constraint

(10) as a single linear program. The outer-loop controller

uses a zero-order-hold time-discretized MSDS model, with

sampling period Ts = 0.5 ms. This gives the state-space

representation

ξ [k + 1] = Adξ [k] + Bdu [k] , (11)

with state ξ[k] =
[

x[k]
ẋ[k]

]
and input u[k] = F [k], where x[k] is

the position and ẋ[k] is the velocity. Additionally, let ur[k]

and ξr[k] =
[

rx[k]
rẋ[k]

]
be the corresponding input and state

reference values respectively. The output is y [k] = Cξ [k],

where y =
[ x

ẋ+βx
ẋ−βx

]
. Next, consider the following cost

function to be minimized by the MPC controller:

JMPC(ξ, u, τ) :=

‖Q0 (ξ − ξr)‖∞ + ‖Q1 (Adξ + Bdu − ξr)‖∞ +

‖Ru (u − ur)‖∞ + J(τ), (12)

where we removed the dependency on time for all variables,

for brevity. The cost that penalizes τ is defined as J(τ) :=
‖Mτ‖∞, M ∈ R>0. Here, Q0, Q1, Ru are known full-

column rank matrices of appropriate dimensions. Notice that

the cost J(·) is chosen as required in Problem V.2.

A single sample prediction scheme is not only beneficial

for decreasing the controller complexity, but also because

all constraints depending nonlinearly on the measured state

appear now linearly with respect to the variables in the opti-

mization problem. The one-step-ahead saturation constraint

(6) is linear in u for instance, as the right-hand-side is just

a constant determined by the current position x[k]:

0 ≤ u[k] ≤
kai2max

(d + kb − x[k])
2 . (13)

The other performance or control constraints are linear in u

and specified as

ymin ≤ C (Adξ + Bdu) ≤ ymax, (14)

with ymin =

[
−d
−∞

−ε−βd

]
and ymax =

[
d

ε+βd
∞

]
.

Now consider the following infinity-norm based CLF

V (ξ) = ‖Pξ‖∞ , (15)

where P ∈ R
p×n is a full column-rank matrix to be

determined. This function satisfies (2a), with α1(s) =
σ√
p
s,

where σ is the smallest singular value of P , and with

α2(s) = ‖P‖∞ s. Substituting (11) and (15) in (8b) yields

‖P (Adξ + Bdu − ξr)‖∞
− ‖P (ξ − ξr)‖∞ + α3 ‖ξ − ξr‖∞ ≤ τ. (16)

Although (12) and (16) appear to be nonlinear in the opti-

mization variables, the corresponding optimization problem

can be recast as a linear program via a particular set of linear

inequalities, without introducing conservatism, as follows.

By definition of the infinity norm, for ‖ξ‖∞ ≤ c to be

satisfied, it is necessary and sufficient to require that ± [ξ]j ≤
c for all j ∈ {1, 2, . . . , n}. So, for (16) to be satisfied it is

necessary and sufficient to require that

± [P (Adξ + Bdu − ξr)]j

− ‖P (ξ − ξr)‖∞ + α3 ‖ξ − ξr‖∞ ≤ τ (17)

for j ∈ {1, 2}. This yields a total of 2p linear inequalities

in the optimization variables u and τ . Moreover, solving

Problem V.2, which includes minimizing the cost (12), can

be reformulated as:

min ε1 + ε2 + J(τ) (18)

subject to (13), (14), (17), and

± [Q1 (Adξ + Bdu − ξr)]j + ‖Q0 (ξ − ξr)‖∞ ≤ ε1

±Ru(u − ur) ≤ ε2,

for j = 1, 2, which is a LP, as the cost J(τ) is linear in

τ ≥ 0. The MPC algorithm now becomes:

Algorithm VI.1 At each sampling instant k:

Step 1: Measure or estimate the current state ξ0 = ξ [k];
Step 2: Solve LP (18) and pick any feasible control action ū0;

Step 3: Set F [k] = ū0 as inner-control-loop reference.

Notice that even with constraint (10) added, (18) is still

a LP, as all τ∗[k − i], i ∈ Z[1,Nτ ], are known at time k ∈
Z≥Nτ

. In what follows, we will use the acronym IMPC-1

to denote the developed MPC scheme based on a CLF and

cost function defined using the infinity norm.

A. Explicit form of the proposed MPC scheme

Although the optimization problem solved by the novel

predictive controller is a simple linear program, implemen-

tation might still be hampered if the time required to find

a feasible input exceeds the sampling period. However, [6]

shows that the solution to an LP can be obtained as a function

of parameters θ that appear linearly in the program, via

multiparametric linear programming (mp-LP). The optimal

explicit solution wass calculated off-line using the multipara-

metric toolbox (MPT) [10] in the form of a piecewise affine

parametric feedback law u (θ).
The parameter vector was defined as

θ(ξ0, ξr) :=




ξ0

ξr

−α3 ‖ξ0 − ξr‖∞ + ‖P (ξ0 − ξr)‖∞
ka

i2max

(d+kb−x)2


 .
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The parameter vector given above is suited for the explicit

implementation of the IMPC-1 controller without constraint

(10). Inclusion of (10) simply requires the augmentation of

θ with ρ 1
Nτ

∑Nτ

i=1 τ∗[k − i] for k ≥ Nτ .

It should be stressed that the optimal solution obtained

by solving MPC problem on-line and its explicit counterpart

return identical results, but there is a significant difference

in the computational complexity of their implementation.

This difference is consistent with the solution of an on-line

optimization problem versus the evaluation of a set of linear

equalities and the calculation of an affine state feedback term.

The explicit MPC algorithm is summarized as follows:

Algorithm VI.2 At each sampling instant k:

Step 1: Measure or estimate the current state ξ0 = ξ [k];
Step 2: Detect in which region of the explicit-control param-

eter space the corresponding θ lies and calculate the optimal

input u∗
0 using the corresponding affine control law;

Step 3: Set F [k] = u∗
0 as inner-control-loop reference.

In short, the explicit MPC controller acts as a simple

PWA state feedback law, without introducing conservatism,

whereas it preserves the beneficial properties of the on-line

optimization based MPC scheme.

VII. SIMULATION RESULTS

In this section we present the results attained by the

one-step-ahead predictive controller developed in this arti-

cle and we compare them with the ones obtained by the

MPC scheme presented in [5]. All simulation results are

obtained using the predictive controller in closed-loop with

the Simulink implementation of the MSDS (3) that was

also used in [5]. This mechanical subsystem is shaped to

resemble a second-order under-damped system with damped

frequency peak at ωr = 950 [rad·s−1] and 3 dB-bandwidth

BW3 = 3 · 103 [rad·s−1], which is in accordance with real-

life specifications for this device [5].

Figure 2 shows the closed-loop state trajectories obtained

with the IMPC-1 controller, including constraint (10), when

tracking a certain reference profile. The weight matrices of

the cost (12) used by the IMPC-1 setup are Q1 = Q0 =[
104 0
0 7

]
, Ru = 0 and M = 103; the sampling period Ts

was chosen equal to 0.5 ms. The technique of [11] was used

to compute off-line the weight P ∈ R
2×2 of the local CLF

V (ξ) = ‖Pξ‖∞ for α3(s) = 10−4s and the linear model of

the MSDS in closed-loop with u[k] := Kξ[k], K ∈ R
1×2,

yielding

P =

[
3.9650 0.0010
2.3012 0.0089

]
, K =

[
1.3475 −0.0030

]
× 105.

Note that the control law u[k] = Kξ[k] was only employed

off-line, to calculate the weight matrix P of the local CLF

V (·), and it was never used for controlling the system. The

region of validity of V (ξ) = ‖Pξ‖∞, i.e. the set VΓ, is

obtained as the largest sublevel set contained in {ξ ∈ X |
Kξ ∈ U}, which is much smaller than X. This justifies the

need of the relaxation variable τ [k].
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ẋ

[m
/
s]

Reference
IMPC-1
Soft-landing constraint

Fig. 2. Comparison of controller performance (top: Position trajectory
tracking, bottom: Velocity trajectory tracking and soft-landing bounds).

TABLE I

COMPARISON OF REFERENCE TRACKING ERROR AND CONTROL EFFORT

MPC controller Cumulated position
error [mm2]

Input effort
[kN2]

QMPC-3 65.6008 27.0984

IMPC-1 59.8274 26.8519

Table I lists the cumulated squared position errors∑
k (x[k] − rx[k])

2
and the input effort

∑
k u[k]2 for the

quadratic-cost, 3 sample prediction controller (QMPC-3 for

short) of [5] and the IMPC-1 scheme developed in this

paper for the specific trajectory shown in Figure 2. Table I

demonstrates the capabilities of the IMPC-1 scheme in terms

of tracking performance. Furthermore, the effectiveness of

the IMPC-1 scheme in terms of enforcing the nonlinear

saturation constraint (13) is shown in Figure 3. The MPC

controller developed in this paper is able to exploit the

full feasible input range, whereas the performance of the

QMPC-3 scheme is restricted by a slightly conservative PWA

approximation of the saturation characteristic. Moreover, it

is crucial to point out that the IMPC-1 setup never leads to

violation of the soft-landing constraint, represented by the

dashed lines in the bottom plot of Figure 2.

Finally, the evolution of the CLF relaxation variable τ∗[k]
and the corresponding upper bound defined by (10) for ρ =
0.9 and Nτ = 7, is shown in Figure 4, for this particular

simulation and k ∈ Z[175,190]. It can be observed that τ∗[k]
may be small or 0 for some time after which it is allowed

to increase again, as long as this does not violate the upper

bound. As k → ∞, τ∗[k] is forced to converge to 0 however,

which in turn implies asymptotic convergence of ξ to ξr and

Lyapunov stability, as guaranteed by Theorem V.3.
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A. Explicit Controller

As stated before, the explicit controller and its on-line

optimizing counterpart achieve identical performance, al-

though their computational complexities differ significantly.

Therefore, we only discuss the differences in complexity and

computational speed between the on-line and the explicit

version of the QMPC-3 and IMPC-1 setups, respectively,

without reporting the closed-loop state trajectories for the

explicit controller.

Whereas the explicit QMPC-3 controller, based on a PWA

model and a mp-MIQP problem, has a polyhedral complexity

of 671 regions, the explicit IMPC-1 parametric space only

consists of 42 polyhedrons, which is a significant complexity

reduction. The number of regions can be further decreased

if a desired reference signal is chosen in advance; this is a

reasonable assumption if only on-off operation of the EM

actuator is required. According to [5], where a Simulink

platform running on a 1.0 GB RAM, 2.0 GHz Pentium-

M PC with Cplex 9.1 and Matlab 7 was used, the worst

case computational time for the explicit QMPC-3 controller

was 0.3ms. Obviously, the explicit IMPC-1 controller would

require a much smaller CPU time on the same platform, as its

number of regions is much smaller compared to the explicit

QMPC-3 controller. Optimized C-code implementations of

the proposed controller running on dedicated computing

hardware, for instance an FPGA device as proposed in [12],

[13], are expected to reduce the required on-line computation

time even further.

VIII. CONCLUSIONS

This article proposed a novel, low-complexity nonlinear

model predictive control scheme for controlling electro-

magnetic actuators, which are used in many automotive

components. The MPC controller optimizes the behavior of

the mass-spring-damper system, decoupled from the electro-

magnetic subsystem, subject to hard performance and control

constraints, while taking into account the nonlinear constraint

arising from the magnetic driving circuit. Previous MPC

approaches used PWA approximations of this constraint, see

e.g. [5]. By adopting a one-step-ahead prediction strategy and

an infinity-norm based optimization objective, the MPC op-

timization problem reduces to a single linear program, which

makes the developed MPC scheme particularly attractive for

systems with fast dynamics that require control at sampling

periods below one millisecond. Even tighter chronometric

requirements can be handled by using standard explicit MPC

techniques.
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