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Abstract— In this paper a control configuration for inverse-
response processes is presented. It results in a Smith-type
predictor scheme that aims to put the non-minimum phase
dynamics out of the feedback loop. The design is carried out
analytically by solving an H∞ weighted optimization problem
assuming a second order stable process with one positive
zero. The performance of the proposed control configuration
is compared by simulation with two different approaches to
show its applicability.

I. INTRODUCTION

A process exhibits inverse-response behavior when the

initial response of the output variable is in the opposite

direction with respect to the steady-state value. In chemical

process industry this phenomenon occurs in several systems,

such as drum boilers in distillation columns [12]. The reason

for the inverse response is that the process transfer function

has zeros in the open right half plane (RHP) [17]. This non-

minimum phase (NMP) characteristic of the process affects

the achievable closed-loop performance because the con-

troller operates on wrong sign information at the beginning

of the transient. This fact introduces essential limitations in

terms of achievable performance. For a clear discussion of

such limitations see [13].

Two categories of control structures can be found in the lit-

erature. The first uses Proportional-Integral-Derivative (PID)

controllers with many kinds of tuning methods [11],[10],

among others. The good results obtained with such PID

approaches is due to a positive feature of the derivative

action in trying to correct the wrong direction of the system’s

response [14]. However, performance of PID control usually

degrades to keep the stability margin. The second category

uses the so-called inverse-response compensators.

Common inverse-response compensators are [7], where

an empirical controller is proposed and the Internal Model

Controller (IMC) [8] where the controller minimizes an H2-

norm based performance criterium. Both of the referred

approaches are not directly applicable in case of unstable

plants. Despite the IMC configuration exists for unstable

plants, it is much more involved than for stable plants [8],[6].

The control configuration presented in this paper is, with

minor changes, that introduced in [1], which results in

a Smith-type predictor scheme that aims to put the non-

minimum phase dynamics out of the feedback loop and
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face the, possibly unstable, minimum phase dynamics in the

closed loop. As opposed to [1], where a simple Ziegler-

Nichols based tuning was suggested, this time the design

is carried out analytically by solving a H∞ weighted opti-

mization problem in the line of [17]. Although the presented

design is not valid in the unstable plant case neither, it

could be adapted for handling unstable systems by adopting

the Observer-Controller configuration [2], which could be

regarded as a Smith-type inverse response compensator valid

in the unstable plant case. This fact would permit to look at

the problem at hand from an unified point of view. In this

work, however, only the stable plant case is considered.

The paper is organized as follows. Section II introduces

the condition of an inverse-response behavior and briefly

summarizes the limitations imposed by RHP-zeros. Section

III reviews common control configurations for these kind

of processes. The proposed architecture and the design

procedure is presented in Section IV. An illustrative example

to show the applicability of the proposed approach is given

in Section V. Concluding remarks are made in Section VI.

II. PROBLEM STATEMENT

As it is common in the literature, we will assume a second-

order process with inverse response (SOPIR) resulting from

two parallel first-order stable processes having opposite gain

P (s) = P1(s) − P2(s) =
K1

τ1s + 1
−

K2

τ2s + 1
(1)

where K1, K2, τ1 and τ2 are positive constants. The overall

transfer function P (s) in equation (1) can be posed as

P (s) = Kp

−αs + 1

(τ1s + 1)(τ2s + 1)
(2)

where

Kp = K1 − K2 (3)

and

α =
(K2τ1 − K1τ2)

(K1 − K2)
(4)

In this context, inverse response appears due to competing

effects of slow and fast dynamics [14]. In concrete terms, it

appears when the slower process has higher gain. Therefore,

the condition for inverse response reads as:

τ1

τ2
>

K1

K2
> 1, α > 0 (5)

The open-loop response to a step input presents an under-

shoot, the more pronounced the larger the value of α. Then,

the difficulties associated with the control of this kind of

processes become more stringent as α approaches the origin.
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For stable SISO systems with n real RHP-zeros, the output

to a step change in the input will cross the original value at

least n times. For instance, the output of a system with two

real RHP-zeros will initially increase, then decrease below

the original value, and then increase to its positive steady-

state value. Another important limitation due to the presence

of RHP-zeros is the high-gain instability. As it is well-

known from classical root-locus analysis, as the feedback

gain increases towards infinity the closed-loop poles move

to the positions of the open-loop zeros. Additional limitation

imputable to the presence of RHP-zeros entails bandwidth

limitations. Then, the frequency response of the closed-loop

system has an upper limitation (this fact limits the tight

control at low frequencies) and also has a lower limitation

(this fact limits the tight control at hight frequencies). At last,

the presence of RHP-zeros makes impossible the condition of

perfect control by any stable and causal controller. Here, we

have briefly pointed out the gist of the limitations imposed

by RHP-zeros. Nevertheless, for a comprehensive, more in-

depth discussion see [13].

III. COMMON CONTROL APPROACHES

Let us consider the process P (s) in (2) and the feedback

control scheme shown in Fig. 1.
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Fig. 1. Feedback control sheme

The open-loop response of the system is

y(s) = K(s)Kp

−αs + 1

(τ1s + 1)(τ2s + 1)
e(s) (6)

where Kp and α were defined in equation (3) and equation

(4) respectively. The condition for inverse response was

indicated by (5). Therefore, the process has a RHP-zero at

the point

z =
(K1 − K2)

(K2τ1 − K1τ2)
> 0 (7)

In order to minimize the input to output inverse response

it is necessary to eliminate the unstable zero (7) from the

open-loop relation in (6).

A large number of methods can be used to control inverse-

response processes. Nevertheless, there are only two popular

approaches in the literature and can be grouped into two

categories [14].

One of the categories uses PID controllers with many

kinds of tuning methods. In [16], it is demonstrated that

the Ziegler-Nichols classical tuning for a PID controller can

yield good performance for systems with inverse response.

However, their robustness margins are not always satisfac-

tory.

The other category uses what is referred to as inverse-

response compensators. They have their origin in the Smith

predictor [9], i.e. a well-known control configuration for dead

time processes which aim is to cancel the dead time within

the loop. This concept was used in [7] to cope with the

SOPIR plant in (2) and the scheme in Fig. 2 was proposed.
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Fig. 2. Inverse-response compensation scheme

The inverse-response compensator C(s) in Fig. 2 was

selected as

C(s) = k

(

1

τ2s + 1
−

1

τ1s + 1

)

(8)

The compensator C(s) predicts the inverse behavior of the

process and provides a corrective signal to eliminate it:

ŷ(s) = R(s)C(s)e(s) (9)

Then, from equation (6), with K(s) = R(s), equation (9)

and the controller C(s) in (8) it was easily found that

ỹ(s) = y(s) + ŷ(s) (10)

= R(s) ×

[(K1τ2 − K2τ1) + k(τ1 − τ2)]s + (K1 − K2)

(τ1s + 1)(τ2s + 1)
e(s)

and for

k ≥
K2τ1 − K1τ2

τ1 − τ2
(11)

it is found that the zero of the open-loop transfer function is

in the open left half plane (LHP):

z =
K1 − K2

(K1τ2 − K2τ1) + k(τ1 − τ2)
≤ 0 (12)

To end the design of the control configuration in Fig. 2 it

rests to choose the controller R(s). In [14] it is recommended

to select it as a PI controller.

Another control configuration suitable for the control of

inverse response processes is the well-known Internal Model

Controller (IMC) [8]. The IMC structure is illustrated in Fig.

3, where P (s) denotes the actual plant, Po(s) is the nominal

model and Q(s) is the IMC controller.

It is an open-loop structure in the nominal case (P (s) =
Po(s) and di = do = 0) and thus allowing a direct design

of the Q(s) controller by factoring the process model Po(s)
in a minimum phase factor, M−1(s), and in a non-minimum

phase, all-pass part, N(s), as

Po(s) = N(s)M−1(s) (13)
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Fig. 3. Internal model control structure

The IMC controller is found by minimizing an H2-norm

criterium. In general, for step inputs we have that:

Q(s) = M(s) (14)

The robust controller is obtained by augmenting the nom-

inal controller (14) with a filter:

Q(s) = M(s)F (s) (15)

where F (s) has a low-pass shape. For step inputs it has the

following structure:

F (s) =
1

(λs + 1)n
, λ > 0 (16)

The exponent n is chosen to make the controller (14) proper,

while the parameter λ is chosen to enhance the robustness

properties. By increasing λ, the robustness margins increase

at the expense of a slower response.

A simple factorization for the plant in (2) is

N(s) =
−αs + 1

αs + 1
(17)

and

M−1(s) =
Kp(αs + 1)

(τ1s + 1)(τ2s + 1)
(18)

For the plant given in (2) and the above factorization the

IMC controller reads as

Q(s) =
(τ1s + 1)(τ2s + 1)

Kp(αs + 1)(λs + 1)
(19)

The IMC structure can be implemented as the feedback

scheme in Fig. 1 if we choose

K(s) =
Q(s)

1 − Po(s)Q(s)
(20)

and, from equation (19) and the model Po(s) as in (2) we

can write

K(s) =
(τ1s + 1)(τ2s + 1)

Kp(αλs + 2α + λ)s
(21)

It is easy to show that the resulting feedback controller (21) is

a PID augmented with a first order filter, so it is equivalent to

the commercial PID regulator [11]. We consider the IMC in

this section because it can also be seen as an inverse-response

compensation scheme. Indeed, if we compare Fig. 2 and Fig.

3 and we choose R(s) = Q(s) and C(s) = −Po(s), both

schemes become equivalent.

To finish this section, we will mention the inverse-response

compensator proposed by [17]. The configuration scheme

follows that of Fig. 2, with R(s) designed to minimize an

H∞-norm criterium and the compensator C(s) customized

for the specific plant (1) as

C(s) =
K2

τ2s + 1
−

K1

τ1s + 1
(22)

Since C(s) = −Po(s), this proposal results in a H∞-

norm based IMC . Then, the limitations of the structure for

unstable plants is still a challenge, as well as for the IMC.

IV. PROPOSED CONTROL CONFIGURATION

In this section we present a control configuration that

can be regarded as a Smith-type predictor for the control

of inverse-response processes. The proposed scheme is rep-

resented in Fig. 4. Model following and model reference

configurations have been widely used in literature [4], [3].

The proposed control scheme can be thus regarded since

what the controller R(s) sees is the actual plant P (s) in

parallel with a model Po(s) factored in a minimum phase

part, M−1(s), and a non-minimum phase, all-pass part N(s),
as in equation (13). The output of the minimum phase block,

ξ(s), is fed back to form the error signal e(s). To this main

feedback, a residues signal y(s)− ŷ(s) is added to take into

account the effects of the disturbances and modeling errors.
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Fig. 4. Proposed control configuration

From the proposed control scheme, we can compute the

transfer functions that relate the input signals and the output

signals. Let us define first

R
.
=

Ksp

M + Ksp

(23)

Then we have that

(

u
y

)

=

(

−NR −RM MR
P (1 − NR) 1 − NR NR

)

(

di

do

r

)

(24)

where the Laplace variable has been dropped for clarity.

Note that the R defined in (23) has nothing to do with that

appearing in Section III. From now on it should be clear from

the context to which one we are referring. Fig. 5 shows the

net result of ideal inverse-response compensation that would

be accomplished in a nominal situation, i.e. P (s) = Po(s)
and di(s) = do(s) = 0. It can be seen immediately that the

transfer function from r(s) to ξ(s) is given by R in (23).

It is important to note, in view of the ideal net result

in Fig. 5, that the objective of the proposed control system

for inverse-response processes is to get non-minimum phase
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Fig. 5. Ideal net result of inverse-response compensation

dynamics out of the feedback loop and consequently, in the

ideal scenario, the controller Ksp(s) just faces the minimum-

phase factor M−1(s).

Looking at the overall control configuration in Fig. 4, the

closed loop system exhibits internal stability if all transfer

functions in (24) are stable ,i.e. the injection of bounded

external signals at any point in the system results in bounded

output signals measured anywhere in the system [13]. It is

easy to see from (24) that internal stability is guaranteed if

and only if

R ∈ RH∞ (25)

On the other hand, let us consider the performance spec-

ification in terms of the following weighted sensitivy H∞-

norm:

min
R(s)

‖W (s)Tydo
(s)‖

∞
(26)

This H∞ optimization problem means that the effect of

the disturbance signal do(s) on the output y(s) is to be

minimized. In order to focus on setpoint disturbances [17]

we choose

W (s) = 1/s (27)

and the sensitivity function Tydo
(s) is taken from equation

(24). From equations (17) and (18) it is possible to obtain

the sensitivity function for the plant (2) as

Tydo
(s) = 1 −

Ksp(s)Kp(−αs + 1)

(τ1s + 1)(τ2s + 1) + Ksp(s)Kp(αs + 1)
(28)

The control configuration predicts the inverse behaviour

of the process and provides a corrective action to eliminate

it. In the nominal case, the open-loop response reads as:

ỹ(s) = y(s) − ŷ(s) + ξ(s)

= R(s)[Po(s) − M−1(s)N(s) + M−1(s)]e(s)

= Ksp(s)M
−1(s)e(s)

= Ksp(s)
Kp(αs + 1)

(τ1s + 1)(τ2s + 1)
e(s) (29)

Therefore, it is found that the zero of the open-loop transfer

function is in the open LHP, so the inverse response has been

eliminated from the loop gain. To design Ksp(s) analytically

let us define

z
.
= 1/α (30)

We will make use of the maximum modulus principle [5],

[13]. Let us consider that f(s) is stable, i.e. it is analytic in

the complex RHP. Then, the maximum value of |f(s)| for

s in the RHP is attained on the analiticity region boundary,

i.e. somewhere along the jω-axis, consequently

‖f(s)‖
∞

= max
ω

|f(jω)| ≥ |f(w)| ∀w ∈ RHP (31)

Assuming W (s)Tydo
(s) is a stable transfer function (this will

be the case if internal stability holds and the Tydo
transfer

function incorporates a zero in the origin) and attending to

the well-known zero constraint |Tydo
(z)| = 1, [13] we can

write

‖W (s)Tydo
(s)‖

∞
≥ |W (z)| (32)

Therefore,

min
R(s)

‖W (s)Tydo
(s)‖

∞
≥ α (33)

The minimum value solution implies

1

s
(1 − NR) = α (34)

which leads to

R(s) = αs + 1 (35)

For internal stability (25) and realization issues it is necessary

to extend the optimum R in (35) with a filter. The following

suboptimum R is proposed:

R(s) = (αs + 1)F (s) (36)

where

F (s) =
1

(λs + 1)n
(37)

From (23), (36) and (37) it follows that

Ksp = RM(1−R)−1 =
(τ1s + 1)(τ2s + 1)

Kp ((λs + 1)n − (αs + 1))
(38)

It can be seen that by choosing n = 2 in (38) the resulting

Ksp controller is proper and thus physically realizable.

As in the IMC design, the parameter λ is chosen to enhance

the robustness properties, i.e. by increasing λ the robustness

margins increase at the expense of a deterioration of the

performance. The following proper, suboptimal, controller

is finally obtained by selecting n = 2.

Ksp(s) =
(τ1s + 1)(τ2s + 1)

Kps(λ2s + 2λ − α)
(39)

The corresponding R block is obtained from (36) and (37)

by choosing n = 2:

R(s) =
(αs + 1)

λ2s2 + 2λs + 1
(40)
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The proposed control configuration can be implemented

as the inverse-response scheme in Fig. 2 if we choose

C(s) = [1 − N(s)]M−1(s) (41)

=
Kp2αs

(τ1s + 1)(τ2s + 1)
(42)

and

R(s) = Ksp(s) (43)

Certainly, it is more interesting to implement it as the

feedback scheme in Fig. 1. Simple straightforward blocks

algebra gives the unity feedback controller depicted in Fig. 6.

From Fig. 6 and (39) the following equivalent unity feedback

controller is obtained:

Ksp
-

ur
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x^
y

K

Fig. 6. Proposed inverse-response compensator as a classical unity feedback
controller

K(s) =
(τ1s + 1)(τ2s + 1)

Kps(λ2s + 2λ + α)
(44)

The resulting K(s) is a PID controller augmented with a

first order filter, so it is equivalent to the commercial PID

regulator [11]. More precisely, K(s) in (44) can be cast into

the conventional PID form:

KPID(s) = KC(1 +
1

TIs
+ TDs)

1

TF s + 1
(45)

according to the following tuning rules

KC =
τ1 + τ2

Kp(2λ + α))
TI = τ1 + τ2 (46)

TD =
τ1τ2

τ1 + τ2
TF =

λ2

2λ + α
(47)

It should be noted that the IMC controller tends to cancel

the poles and the zero of the minimum-phase factor in which

the plant is factored, yielding an open loop with the non-

minimum phase, all-pass, factor. It is not the case of the

proposed H∞ controller since the non-minimum phase all-

pass factor is isolated by the control structure, as it can be

seen in the ideal net result shown in Fig. 5.

Despite the IMC configuration exists for unstable plants, it

becomes more involved, to say the least. The proposed con-

trol configuration can not tackle unstable processes neither,

since it is based on the Smith Predictor. The extension of the

presented ideas to the unstable plant case is being currently

investigated by means of using the so-called Observer-

Controller configuration [15],[2], which provides an ideal

net result as that in Fig. 5 and can be used for controlling

unstable systems.

V. ILLUSTRATIVE EXAMPLE

To show the applicability of the proposed control configu-

ration let us consider the inverse-response process in (2). This

system has uncertainty on four parameters: Kp = Kpo
+ δk,

α = αo + δα, τ1 = τ1o
+ δ1 and τ2 = τ2o

+ δ2. The nominal

values are: Kpo
= 3, αo = 2, τ1o

= 2 and τ2o
= 1. Then

the nominal process model is,

Po(s) = 3
−2s + 1

(2s + 1)(s + 1)
(48)

First, the nominal model (48) is factored as in (17) and

(18) yielding:

N(s) =
−2s + 1

2s + 1
(49)

and

M−1(s) =
3

s + 1
(50)

Once the factorization of the nominal process model is

performed, the suboptimal controller R(s) is chosen from

(40) with λ = 2.2 to assure a good compromise between

performance and robustness.

In order to complete the example two other control

approaches have been used. First, the feedback control

configuration in Fig. 1 with a PI controller tuned with

the Ziegler-Nichols method (PI-ZN), with Kc = 0.22 and

Ti = 4.67. Second, the control configuration with inverse-

response compensation shown in Fig. 2 stated by Iinoya et

al. (IA), [7], with a compensator C(s) as in (8) with k = 6
and R(s) as a PI controller tuned with the Ziegler-Nichols

method also with Kc = 0.22 and Ti = 4.67.

The time responses of the nominal system are shown in

Fig. 7. We have supposed that the set-point is a unit step

signal at t = 0 and the output disturbance is a step signal

with amplitude 0.5 in the controlled variable at t = 50 sec.

Time responses of the perturbed process with 20% uncer-

tainty on the parameters of the process are shown in Fig.

8

With the control configuration proposed in this paper we

obtain faster nominal responses, as it can be seen in Fig.

7. The simulations with the uncertain case show that time

responses achieved with the proposed scheme are fast and

less oscillatory, as it can be seen in Fig. 8.

The proposed controller can be equivalent to the IMC [8]

and the inverse-response compensator in [17] by selecting

different filters. This is the reason why these approaches has

not been considered in this example.

VI. CONCLUSIONS

A review of the most significant approaches to control

inverse-response processes has been done. Also, a new

control configuration for these kind of processes has been

presented. It results in a Smith-type predictor scheme that
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Fig. 7. Time responses of the nominal process model: PI-ZN (dot), IA
(dash) and proposed (solid).
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Fig. 8. Time responses of the perturbed process (δ = 20%): PI-ZN (dot),
IA (dash) and proposed (solid).

aims to put the nom-minimum phase dynamics out of the

feedback loop. The design has been done analytically by

solving an H∞ weighted optimization problem. It has been

shown that the proposed control configuration can be simpli-

fied and implemented in a standard feedback configuration.

By means of simulation, the performance of the proposed

control configuration has been compared with two different

approaches. Since the proposed control configuration can not

be used with unstable processes, further work will attempt

to adapt the design procedure for the unstable plant case.
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