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Abstract— This paper presents further results on the prob-
lem of establishing stability of retarded nonlinear intercon-
nected systems comprising integral input-to-state stable subsys-
tems. It is shown that the stability of the interconnected systems
with respect to external signals can be verified by constructing
Lyapunov-Krasovskii functionals explicitly whenever small-
gain type conditions are satisfied. The primary result [12] is
generalized in two aspects. One is to introduce a new flexibility
in constructing Lyapunov-Krasovskii functionals to deal with
distributed delays more effectively. The other is to cover systems
involving time-varying delays in interconnecting channels.

I. INTRODUCTION

Time-delay usually has a great influence on systems sta-

bility and performance. Recently, the popularity of research

on teleoperation, networked control systems and consensus

in cooperative control among multiple agents has regained

attention to the importance of coping with time-delays in

interconnected systems. There are various sources of delays

in such networks and spatially distributed systems. One of

typical delays is the transmission delay in communication

between subsystems or agents, which is often time-varying.

There is a large body of literature on stability criteria

for retarded systems, and some of them deal with time-

varying delays (e.g. [7], [17], [5], [24] to name a few).

Stability of interconnected systems and networks has been

also investigated for many decades. Small-gain theorem

states that an interconnected system is stable if the loop-gain

is less than one. Although the small gain theorem has found

numerous applications in control theory[3], the practical

limitation of the Lp-gain framework had been also pointed

out. The emergence of the small-gain theorem for input-

to-stable (ISS) systems has provided a way to remove the

limitation[13], [23], and the ISS small-gain theorem is now

widely used in many areas of nonlinear systems and control

design. An ISS small-gain condition has been also developed

for general ISS dynamical systems with weak semigroup

properties in [14]. The philosophy of the ISS small-gain

theorem has been generalized to a larger class of systems

covering integral input-to-state stable (iISS) systems[10].
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Recently, in [12], the iISS small-gain theorem has been

generalized to systems involving discrete delays and dis-

tributed delays which can appear everywhere in the sys-

tems. Interconnections of iISS retarded nonlinear systems

are targeted, and the iISS property of the overall system

is established by constructing iISS Lyapunov-Krasovskii

functionals explicitly. The purpose of this paper is to improve

the result of [12] further in the following two points:

(G1) to equalize the treatment of discrete delays and

distributed delays, and construct more flexible iISS

Lyapunov-Krasovskii functionals explicitly;

(G2) to allow time-varying delays in the communication

between subsystems.

The results in this paper include [12] as a special case.

Notations: The symbol | · | stands for the Euclidean norm.

The interval [0,∞) is denoted by R+. For a measurable

and essentially bounded function u : R+ → R
m, ‖u‖∞ =

ess supt≥0 |u(t)|. We indicate with u[T1,T2) : R+ → R
m the

function given by u[T1,T2)(t) = u(t) for all t ∈ [T1, T2) and

= 0 elsewhere. A function ω : R+ → R+ is denoted by

ω ∈ P0 if it is continuous and satisfies ω(0) = 0. A function

ω ∈ P0 is said to be positive definite if ω(s) > 0 holds for

all s > 0, and written as ω ∈ P . A function is of class K if

it belongs to P and is strictly increasing; of class K∞ if it

is of class K and is unbounded. A function β : R
2
+ → R+

is of class KL if for each fixed t the function s → β(s, t) is

of class K and for each fixed s the function t → β(s, t) is

non-increasing and goes to zero as t → +∞. The symbols ∨
and ∧ denote logical sum and logical product, respectively.

II. SYSTEM DESCRIPTION

Consider an interconnected system Σ described by the

following functional differential equations

Σ

{

Σ1 : ẋ1(t) = f1(t, x1,t, x2,t, r1(t)),
Σ2 : ẋ2(t) = f2(t, x2,t, x1,t, r2(t)),

(1)

x1,t0 = ξ1,0, x2,t0 = ξ2,0, t0 ∈ R+

where, for i = 1, 2, xi(t) ∈ R
ni ; ri(t) ∈ R

mi is an

external input (measurable, locally essentially bounded); they

are functions of time t ∈ R+; ni and mi are positive integers.

For t ∈ R+, xi,t : [−∆, 0] → R
ni denotes the function

xi,t(τ) = xi(t + τ), where ∆>0 is the maximum involved

delay. Let Ci denote the space of continuous functions

mapping the interval [−∆, 0] into R
ni . For φi ∈ Ci, we use

‖φi‖∞ = sup−∆≤θ≤0 |φi(θ)|. Suppose that ξi,0 ∈ Ci and

that fi : R+×Ci×C3−i×R
mi → R

ni is a functional which is

Lipschitz on any bounded set in Ci×C3−i×R
mi uniformly in

t ∈ R+. We combine vectors as x(t) = [x1(t)
T , x2(t)

T ]T ∈
R

n, n=n1+n2, r(t) = [r1(t)
T , r2(t)

T ]T ∈ R
m, m=m1+

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC09.2

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5452



m2, ξ0 = [ξT
1,0, ξ

T
2,0]

T ∈ C := C1×C2, f() = [f1()
T , f2()

T ]T ,

φ = [φT
1 , φT

2 ]T ∈ C. We define xt and ‖φ‖∞ as done for

their i-th components. If f1 and f2 are independent of t,
let t0 = 0 without loss of generality. It is assumed that

fi(t, 0, 0, 0) = 0, i = 1, 2, ∀t ∈ R+, thus ensuring that

x(t) = 0 is the solution corresponding to zero input and

zero initial conditions (i.e. the trivial solution). Note that the

formulation (1) accepts non-commensurate discrete as well

as distributed time-delays not only in the interconnecting

channels, but also in the individual subsystems Σi.

In this paper, we let Ma,i : Ci → R+ and Ma : C → R+,

i = 1, 2, be continuous functionals such that there exist γ
a,i

,

γa,i, γ
a
, γa ∈ K∞ such that

γ
a,i

(|φi(0)|) ≤ Ma,i(φi) ≤ γa,i(‖φi‖∞), ∀φi ∈ Ci (2)

γ
a
(|φ(0)|) ≤ Ma(φ) ≤ γa(‖φ‖∞), ∀φ ∈ C . (3)

We borrow the definitions of ISS and iISS properties of

the system (1) from the references[21], [22], [1], [20].

Definition 1: If the solution x(t) of the interconnected

system (1) exists for all t ≥ t0 and satisfies

χ(|x(t)|) ≤ β(‖ξ0‖∞, t − t0) +

∫ t

t0

γr(|r(τ)|)dτ (4)

for all t ≥ t0, with β ∈ KL, χ ∈ K∞, γr ∈ K, the system

(1) is said to be iISS with respect to input r and state x.

Definition 2: If the solution x(t) of the interconnected

system (1) exists for all t ≥ t0 and satisfies

|x(t)| ≤ β(‖ξ0‖∞, t − t0) + γr(‖r[t0,t)‖∞) (5)

for all t ≥ t0, with β ∈ KL, γr ∈ K, the system (1) is said

to be ISS with respect to input r and state x.

The property (4) (and (5)) implies the global asymptotic

stability of x = 0 when r(t) ≡ 0. For short, it is called

0-GAS in this paper.

For a locally Lipschitz functional Vcl : R+ × C → R+,

D+Vcl(φ, r, t), which plays the central role in the Lyapunov-

Krasovskii methodology[2], [18], [19], is defined as follows:

D+Vcl(φ, r, t) = lim sup
h→0+

Vcl(t + h, φh) − Vcl(t, φ)

h
,

φh(s) =

{

φ(s + h), s ∈ [−∆,−h)
φ(0) + (s + h)f(t, φ, r), s ∈ [−h, 0]

(6)

where φ∈C, r∈R
m, t∈R+.

This paper addresses the problem of constructing

Lyapunov-Krasovskii functionals Vcl to establish 0-GAS,

iISS and ISS of the interconnected system (1) with respect to

input r and state x under the following assumption imposed

on each subsystem Σi.

Assumption 1: For each i = 1, 2, there exists a locally

Lipschitz functional Vi : Ci → R+ such that

αi(Ma,i(φi)) ≤ Vi(φi) ≤ αi(Ma,i(φi)), (7)

D+Vi(φi, φ3−i, ri, t) ≤ ρi(t, φi, φ3−i, ri), (8)

∀ φj ∈ Cj , j = 1, 2,∀ ri ∈ R
mi

hold, where αi, αi are K∞ functions, ρi : R+ × Ci ×
C3−i × R

mi → R is a continuous functional satisfying

ρi(t, 0, 0, 0) = 0 for all t ∈ R+, and

D+Vi(φi, φ3−i, ri, t) = lim sup
h→0+

Vi(φ
h
i ) − Vi(φi)

h
(9)

φh
i (s)=

{

φi(s + h), s ∈ [−∆,−h),
φi(0)+(s+h)fi(t, φi, φ3−i, ri), s ∈ [−h, 0];

Remark 1: In this paper, we make use of time-invariant

Lyapunov functionals Vi for subsystems Σi, i = 1, 2 al-

though the time variable t appears on the right hand side of

(1). In general, a time-varying functional Vi is more useful

unless subsystems posses a uniform characteristic in time t
or time variable only appears in their input delays. In this

sense, this paper mainly focuses on internally time-invariant

subsystems Σi, i = 1, 2. In Section III, the uniform property

in t is also implicitly required in interconnection channels,

i.e., the feedback inputs since time-invariant functionals

Vcl(x) are sought for the overall system Σ. In contrast,

Section IV constructs time-varying functionals Vcl(t, x) for

Σ, which aims mainly to deal with time-varying delays in

interconnecting channels effectively.

III. A GENERALIZATION OF SUPPLY RATES AND

LYAPUNOV-KRASOVSKII FUNCTIONALS

A. Preliminaries

This section uses the notion of iISS (ISS) Lyapunov-

Krasovskii functional which is defined as follows:

Definition 3: A locally Lipschitz functional Vcl : C → R+

satisfying

αcl(|φ(0)|) ≤ Vcl(φ) ≤ αcl(Ma(φ)),∀φ ∈ C, (10)

D+Vcl(φ, r, t) ≤−αcl(Ma(φ)) + σr(|r|),∀φ∈C, r∈R
m (11)

for some αcl, αcl, αcl ∈ K∞, σr ∈ P0 is said to be an ISS

Lyapunov-Krasovskii functional for the system (1).

Definition 4: A locally Lipschitz functional Vcl : C → R+

satisfying

αcl(Ma(φ)) ≤ Vcl(φ) ≤ αcl(Ma(φ)),∀φ ∈ C, (12)

D+Vcl(φ, r, t)≤−αcl(Ma(φ)) + σr(|r|), ∀φ∈C, r∈R
m (13)

for some αcl, αcl ∈ K∞, αcl ∈ P , σr ∈ P0 is said to be an

iISS Lyapunov-Krasovskii functional for the system (1).

The existence of iISS (ISS) Lyapunov-Krasovskii func-

tionals is a sufficient condition for the iISS (ISS, respec-

tively) of the system Σ (See Appendix). When we require

αcl(|φ(0)|) instead of αcl(|Ma(φ)|) in (11) for r(t) ≡ 0,

the functional Vcl reduces to the well-known Lyapunov-

Krasovskii functional for 0-GAS [8], [16], [2].

B. Motivation

In [12], the supply rate ρi in Assumption 1 is chosen as

ρi = −αi(Ma,i(φi)) + Si,0σi,0(Ma,3−i(φ3−i))

+
h

∑

j=1

Si,jσi,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

+ σr,i(|ri|) (14)

where ∆j’s are time-invariant time-delays, and Si,j ∈ {0, 1},

αi, σi,j ∈ K and σr,i ∈ P0. This supply rate explicitly

includes discrete delays in the interconnection channels,

i.e., the third term in (14), while distributed delays in the
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interconnection channels do not appear explicitly in (14).

The distributed delays are required to be incorporated in

Ma,3−i in ρi. This requirement together with (7) implies

that we need to choose V3−i for Σ3−i taking into account

the distributed delays at the input of Σi. In [12], this idea is

employed only for the distributed delays, and discrete delays

in the interconnecting channels are handled by the composite

functional Vcl instead. In fact, the iISS Lyapunov-Krasovskii

functional constructed for the overall system Σ is

Vcl(φ) =

∫ V1(φ1)

0

λ1(s)ds +

∫ V2(φ2)

0

λ2(s)ds

+
h

∑

j=1

S1,j

∫ 0

−∆j

F1,j(τ)σ̃1,j

(

γ
a,2

(|φ2(τ)|)
)

dτ

+
h

∑

j=1

S2,j

∫ 0

−∆j

F2,j(τ)σ̃2,j

(

γ
a,1

(|φ1(τ)|)
)

dτ (15)

The last two terms in (15) cope with the discrete delays. The

definition of λi, σ̃i,j and Fi,j will be shown later. It can be

expected here that we can use the same idea for distributed

delays. To deal with delays in the interconnecting channels,

we should be able to take either of the following ways:

• preprocessing the input delays in choosing the pair of

dissipative inequalities of the individual subsystems;

• leaving the input delays explicitly in the supply rates of

individual subsystems, and dealing with the input delays

in the process of constructing a composite Lyapunov-

Krasovskii functional for the overall system.

These two ways should be applicable to discrete delays and

distributed delays equally. This section formulates a stability

criterion providing the above two options explicitly.

C. A Generalized Small-Gain Theorem

The following is the main result in this section.

Theorem 1: Suppose that supply rate functionals ρi, i =
1, 2, are as follows:

ρi(φi, φ3−i, ri) =

−αi(Ma,i(φi)) + Si,0σi,0(Ma,3−i(φ3−i))

+
h

∑

j=1

Si,jσi,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

+

h+hd
∑

j=h+1

Si,j

∫ 0

−∆j

σi,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ

+ σr,i(|ri|), (16)

where h and hd are non-negative integers and, for i = 1, 2, αi

are functions of class K, σr,i ∈ P0, and for j = 0, 1, . . . , h+
hd, Si,j belong to {0, 1}, σi,j are functions of class K, and

for j = 1, 2, . . . , h + hd, ∆j ∈ (0, ∆]. Assume that one of

the following three conditions holds:

(H1) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

α1(s) = ∞,

(H2) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

σ2(s) < ∞,

(H3) lim
s→∞

σ1(s) < ∞ ∧ lim
s→∞

σ2(s) < ∞,

where σi, i = 1, 2, are defined as

σi(s) =

(

h+hd
∑

k=0

Si,k

)

max

{

max
j=0,1,...,h

Si,jσi,j(s),

max
j=h+1,...,h+hd

Si,j∆jσi,j(s)

}

(17)

Suppose that there exist ci > 1, i = 1, 2, such that

c1σ1 ◦ α−1
2 ◦ α2 ◦ α−1

2 ◦ c2σ2(s)
≤ α1◦α−1

1 ◦α1(s), ∀s∈R+ (18)

Then, the interconnected system (1) is iISS with respect to

input r and state x. In addition, it is ISS with respect to input

r and state x in the case of (H1). Furthermore, an iISS (ISS

in the (H1) case) Lyapunov-Krasovskii functional for (1) is

Vcl(φ) =

∫ V1(φ1)

0

λ1(s)ds +

∫ V2(φ2)

0

λ2(s)ds

+
h

∑

j=1

S1,j

∫ 0

−∆j

F1,j(τ)σ̃1,j

(

γ
a,2

(|φ2(τ)|)
)

dτ

+

h+hd
∑

j=h+1

S1,j

∫ 0

−∆j

F1,j(τ)

∫ 0

τ

σ̃1,j

(

γ
a,2

(|φ2(θ)|)
)

dθdτ

+
h

∑

j=1

S2,j

∫ 0

−∆j

F2,j(τ)σ̃2,j

(

γ
a,1

(|φ1(τ)|)
)

dτ

+

h+hd
∑

j=h+1

S2,j

∫ 0

−∆j

F2,j(τ)

∫ 0

τ

σ̃2,j

(

γ
a,1

(|φ1(θ)|)
)

dθdτ (19)

where λ1, λ2 and σ̃i,j are given in (54), (55) and (46) with

̟i,j = 1, j = 0, 1, ..., h+hd, (20)

and Fi,j : [−∆j , 0] → R is defined for 0 < ǫi < ci − 1 as

Fi,j(τ) =
−τ

∆j

+ (1 + ǫi)
τ + ∆j

∆j

(21)

Proof: Using Fi,j(τ) ≤ 1 + ǫi for τ ∈ [−∆j , 0], we

can verify that Vcl given by (19) satisfies (12) for some αcl,

αcl ∈ K∞ and some Ma : C → R+ fulfilling (3) with γ
a
,

γa ∈ K∞. The following inequality also holds:

D+Vcl(φ, r, t) ≤
2

∑

i=1

λi(Vi(φi))D
+Vi(φi, φ3−i, ri, t)

+
h

∑

j=1

(1 + ǫi)Si,j σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−Si,j σ̃i,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

−Si,j

ǫi

∆j

∫ 0

−∆j

σ̃i,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ

+

h+hd
∑

j=h+1

(

1 +
ǫi

2

)

Si,j∆j σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−Si,j

∫ 0

−∆j

σ̃i,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ

−Si,j

ǫi

∆j

∫ 0

−∆j

∫ 0

τ

σ̃i,j

(

γ
a,3−i

(|φ3−i(θ)|)
)

dθdτ (22)
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Combining (22) with Lemma 1, we obtain the following for

suitable functions α̃i, σ̃i,j ,∈ K and σ̃r,i ∈ P0.

D+Vcl ≤
2

∑

i=1

−α̃i(Ma,i(φi)) + Si,0σ̃i,0(Ma,3−i(φ3−i))

+

{ h
∑

j=1

(1+ǫi)Si,j σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−Si,j

ǫi

∆j

∫ 0

−∆j

σ̃i,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ

}

+

{h+hd
∑

j=h+1

(1+ǫi)Si,j∆j σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−Si,j

ǫi

∆j

∫ 0

−∆j

∫ 0

τ

σ̃i,j

(

γ
a,3−i

(|φ3−i(θ)|)
)

dθdτ

}

+σ̃r,i(|ri|) (23)

By Lemma 2, taking into account (18) and (2), it follows

that there exist class K functions αcl and σcl such that (13)

is satisfied. In the case of (H1), We obtain α̃i, αcl ∈ K∞.

Finally, Theorem 3 completes the proof.
By h = 0 (hd = 0), we mean that the first (second,

respectively) sum in (16) vanishes. Note that (18) with c1,

c2 > 1 requires

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σ2(s)

When we take hd = 0 in (16), Theorem 1 reduces to the

result of [12]. The summation from j = h + 1 to h + hd

in (16) is not utilized in [12] for dealing with distributed

delays at the feedback input of the each subsystem Σi. Thus,

Theorem 1 includes [12] as a special case and add a degree of

flexibility. In order to deal with the new term in the supply

rate (16), this paper introduces the double integrals in the

Lyapunov-Krasovskii functional Vcl. It is worth mentioning

that such terms are often utilized in the Lyapunov-Krasovskii

framework, e.g., [7], [17], [4]. This paper shows that such

a technique can be also utilized to deal with interconnected

iISS systems by selecting σ̃i,j’s judiciously (See Appendix).
Remark 2: In the supply rates (16), i = 1, 2, the functions

Ma,3−i(φ3−i),
∫ 0

−∆j
Si,jσi,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ (24)

provide some mutual redundancy. For example, a distributed

delay at the input of the system Σi can be incorporated in

either Ma,3−i or
∫

Si,jσi,j in the supply rate ρi of the system

Σi. Here, the catch is that the choice of Ma,3−i restricts the

selection of the functional V3−i of the system Σ3−i and its

supply rate. In some cases, the relation between Ma,3−i and

Σ3−i prevents Ma,3−i from representing distributed delays at

the input of Σi. The use of non-zero
∫

Si,jσi,j’s to represent

distributed delays at the input of Σi would be sometimes

easier since the functional V3−i and the supply rate ρ3−i of

the system Σ3−i can be chosen independently of the system

Σi. However, the inequality (18) might result in a conser-

vative stability condition in some cases. We can utilize this

flexibility of (24) to reduce the conservativeness accordingly

to the situation. For systematic utilization, the development

of optimization techniques is needed. The redundancy among

Ma,3−i(φ3−i), Si,jσi,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

(25)

also has a degree of flexibility for discrete delays.
Remark 3: Assumption 1 with the new supply rate (16)

implies that each subsystem Σi is iISS with respect to input

(x3−i,t, ri) and state xi. Indeed, since

ρi = −αi(Ma,i(φi))+σi(γa,3−i(‖φ3−i‖∞))+σr,i(|ri|) (26)

is also a supply rate for Σi, we can verify

χi(|xi(t)|) ≤ βi(‖ξi,0‖∞, t − t0) +
∫ t

t0
γi (‖x3−i,τ‖∞) dτ +

∫ t

t0
γr,i(|ri(τ)|)dτ

for all t ≥ t0 with βi ∈ KL, χi ∈ K∞, and γi, γr,i ∈ K. If

(H1) holds, we obtain

|xi(t)| ≤ βi(‖ξi,0‖∞, t − t0) +

γi

(

supτ∈[t0,t) ‖x3−i,τ‖∞)
)

+ γr,i(‖(ri)[t0,t)‖∞)

for all t ≥ t0 with βi ∈ KL and γi, γr,i ∈ K, which shows

Σi to be ISS with respect to input (x3−i,t, ri) and state xi.
Remark 4: The selection of the individual functionals Vi,

i = 1, 2 has an influence on the result of stability analysis

based on the inequality (18). To reduce the associated con-

servativeness arising in each case, we can make use of a

large literature on detailed techniques of delay systems for

the effective choices of Vi of the individual Σi.
Remark 5: The small-gain condition (18) can be relaxed

into a non-uniform small-gain condition[11] by using a little

complex λi’s.

IV. TIME-VARYING DELAYS

This section considers the following time-varying delays:

0≤∆j(t)≤∆̄j ,
d∆j(t)

dt
≤bj <1,

j =1, 2, ..., h+hd,
∀t∈R+

(27)

Note that (27) implies bj ≥ 0. In the case where these time-

varying delays appear in (1), we can establish 0-GAS of Σ
in the following way.

Theorem 2: Suppose that supply rate functionals ρi, i =
1, 2, satisfy

ρi(t, φi, φ3−i, ri) =

−αi(Ma,i(φi)) + Si,0σi,0(Ma,3−i(φ3−i))

+
h

∑

j=1

Si,jσi,j

(

γ
a,3−i

(|φ3−i(−∆j(t))|)
)

+

h+hd
∑

j=h+1

Si,j

∫ 0

−∆j(t)

σi,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ

+σr,i(|ri|) (28)

for ri(t) = 0, where h and hd are non-negative integers and,

for i = 1, 2, αi ∈ K, σr,i ∈ P0, and for j = 0, 1, . . . , h+hd,

Si,j belong to {0, 1}, σi,j are of class K. Assume that

(J1) lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

σ2(s) < ∞,

holds, where σi, i = 1, 2, are defined as

σi(s) =

(

h+hd
∑

k=0

Si,k

)

max

{

Si,0σi,0(s),

max
j=1,...,h

Si,j

1 − bj

σi,j(s), max
j=h+1,...,h+hd

Si,j∆̄j

1 − bj

σi,j(s)

}

(29)
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Suppose that there exist ci > 1, i = 1, 2, such that (18) holds.

Then, the interconnected system (1) is 0-GAS. Furthermore,

a Lyapunov-Krasovskii functional for (1) is

Vcl(t, φ) =

∫ V1(φ1)

0

λ1(s)ds +

∫ V2(φ2)

0

λ2(s)ds

+
h

∑

j=1

S1,j

1 − bj

∫ 0

−∆j(t)

σ̃1,j

(

γ
a,2

(|φ2(τ)|)
)

dτ

+

h+hd
∑

j=h+1

S1,j

1 − bj

∫ 0

−∆j(t)

∫ 0

τ

σ̃1,j

(

γ
a,2

(|φ2(θ)|)
)

dθdτ

+
h

∑

j=1

S2,j

1 − bj

∫ 0

−∆j(t)

σ̃2,j

(

γ
a,1

(|φ1(τ)|)
)

dτ

+

h+hd
∑

j=h+1

S2,j

1 − bj

∫ 0

−∆j(t)

∫ 0

τ

σ̃2,j

(

γ
a,1

(|φ1(θ)|)
)

dθdτ (30)

where λ1, λ2 and σ̃i,j are given in (54), (55) and (46) with

̟i,0 = 1, ̟i,j =
1

1 − bj

, j = 1, 2, ..., h+hd. (31)

Proof: The following inequality holds for (30) and (1):

D+Vcl(t, φ) ≤
2

∑

i=1

λi(Vi(φi))D
+Vi(φi, φ3−i, t)

+
h

∑

j=1

Si,j

1 − bj

σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−
Si,j

1 − bj

(

1−
d∆j(t)

dt

)

σ̃i,j

(

γ
a,3−i

(|φ3−i(−∆j)|)
)

+

h+hd
∑

j=h+1

Si,j∆j(t)

1 − bj

σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

−
Si,j

1 − bj

(

1−
d∆j(t)

dt

)
∫ 0

−∆j

σ̃i,j

(

γ
a,3−i

(|φ3−i(τ)|)
)

dτ (32)

Combining (32) with Lemma 1 and using (27), we obtain

the following for suitable functions α̃i and σ̃i,j ∈ K.

D+Vcl ≤
2

∑

i=1

−α̃i(Ma,i(φi)) + Si,0σ̃i,0(Ma,3−i(φ3−i))

+
h

∑

j=1

Si,j

1 − bj

σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

+

h+hd
∑

j=h+1

Si,j∆̄j

1 − bj

σ̃i,j

(

γ
a,3−i

(|φ3−i(0)|)
)

(33)

From Lemma 3, (18) and (2), it follows that there exist αcl∈
K and a functional Ma such that

αcl(|φ(0)|) ≤ V (t, φ) ≤ αcl(Ma(φ)), ∀φ ∈ C (34)

D+Vcl(t, φ) ≤ −αcl(|φ(0)|), ∀φ ∈ C (35)

and (3) hold for some αcl, αcl ∈ K∞. Hence, the Lyapunov-

Krasovskii Theorem proves the claim.

There are a large number of studies on stability of sys-

tems with time-varying delays using Lyapunov-Krasovskii

functionals(See, e.g., [5], [24], [9] and references therein).

This paper shows how to extend the fundamentals of such

ideas to cover essentially nonlinear interconnected systems

consisting of iISS subsystems. The novelty of the Lyapunov-

Krasovskii functional Vcl given by (30) lies in σ̃i,j’s which

lead us to the small-gain condition (18) (See Appendix).

In the proof of Theorem 2, the function αcl is obtained

as a function of |φ(0)|. Since αcl is not guaranteed to be a

function of Ma(φ), Theorem 2 proves 0-GAS based on the

Lyapunov-Krasovskii Theorem instead of iISS and ISS.

Remark 6: The functional Vcl in (30) is time-dependent

due to the presence of ∆j(t). On the other hand, Definitions

3 and 4 require properties uniform in time t since Vcl and

Ma are time-invariant. In order to succeed in verifying the

iISS property for a larger class of time-varying systems, we

need to develop a methodology of iISS Lyapunov-Krasovskii

functionals which are allowed to be non-uniform in t.
Remark 7: Theorem 2, in general, requires that state de-

lays in individual subsystem Σi are time-invariant. In fact,

the inequality (8) with (28) implies that the property of Σi

with respect to φi is uniform in time t since Vi and Ma,i are

time-independent functional of φi. Nevertheless, it is stressed

that time-varying delays in the interconnection channels can

be incorporated into the supply rates (28) of Σi, i = 1, 2,

effectively, so that the selection of Vi’s and Ma,i’s can be

independent of the interconnection delays.

Remark 8: The assumption (J1) in Theorem 2 can be

relaxed by using a non-uniform small-gain condition as in

the delay-free case[11].

V. AN EXAMPLE

Consider the interconnected system described by

ẋ1(t) = −
x1(t)

3

1+x1(t)2
+ x1(t)

∫ t

t−∆1

x2(τ)2dτ + x1(t)r1(t)
(36)

ẋ2(t) = −γx2(t) + x2(t − ∆2) +
x1(t − ∆3(t))

1 + x1(t − ∆3(t))2

where x(t) = [x1(t), x2(t)]
T ∈ R

2, r(t) = r1(t) ∈ R and

γ ∈ R. The time-delays ∆1,∆2 > 0 are time-invariant, while

the time-varying delay ∆3(t) is supposed to satisfy

0 ≤ ∆3(t) ≤ ∆̄3,
d∆3(t)

dt
≤ b3 < 1, ∀t∈R+

For φ1 ∈ C1, φ2 ∈ C2, let

V1(φ1) = log(1 + φ1(0)2)

V2(φ2) = φ2
2(0) +

∫ 0

−∆2

(

−τ

∆2
+(1+ǫ2)

τ +∆2

∆2

)

φ2(τ)2dτ

where ǫ2 > 0 has yet to be determined. Then, we obtain

D+V1≤−(1−δ)
φ1(0)4

(1+φ1(0)2)2
+∆1

∫ 0

−∆1

φ2(τ)4dτ +
1

δ
r1(t)

2

D+V2≤−(2γ−3−ǫ2)φ2(0)2 +

φ1(−∆3(t))
2

1+φ1(−∆3(t))2
−

ǫ2
∆2

∫ 0

−∆2

φ2(τ)2dτ
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Here, Young inequality and Cauchy-Schwarz inequality are

used. We can choose the following functions and parameters:

Ma,1(φ1)=φ1(0)2, Ma,2(φ2) = φ2(0)2+

∫ 0

−∆2

φ2(τ)2dτ

α1(s) = α1(s) = log(1 + s), γ
a,1

(s) = γa,1(s) = s2

α2(s) = s, α2(s) = (1 + ǫ2)s, γa,2(s) = (1 + ∆2)s
2

γ
a,2

(s)=s2, S1,0 = S1,1 = S2,0 = S2,2 = 0, h = hd = 1

S1,2 = S2,1 = 1, α1(s) = (1−δ)s2

(1+s)2 , σ1,2(s) = ∆1s
2

α2(s) = min
{

2γ − 3 − ǫ2,
ǫ2
∆2

}

s, σ2,1(s) = s
1+s

σ1(s) = ∆2
1s

2, σ2(s) = s
(1−b3)(1+s)

Thus, the dissipation inequality (8) with ρi in the form of

(28) implies that the x2 subsystem is ISS with respect to

input x1 and state x2, while the x1 subsystem is only iISS

with respect to input (x2, r1) and state x1.

First, we suppose b3 = 0, i.e., ∆3(t) is a constant. For the

supply rates in the form of (16), there exist c1, c2 > 1 such

that the small-gain condition (18) is satisfied if

γ >
3+∆1−2∆1∆2

2(1−∆1∆2)
∧ ∆1∆2 < 1 (37)

holds, which is independent of ∆3. Thus, the interconnected

system (36) is iISS with respect to input r and state x if

(37) is satisfied. Theorem 1 provides an iISS Lyapunov-

Krasovskii functional as (19)

Next, in order to illustrate Theorem 2 in the case of time-

varying ∆3(t) with b3 > 0, we consider the interconnected

system (36) for r1(t) ≡ 0. Taking δ = 0, we have the supply

rates in the form of (28). There exist c1, c2 > 1 satisfying

the small-gain condition (18) if

γ >
3(1− b3)+∆1−2∆1∆2

2(1− b3−∆1∆2)
∧ ∆1∆2 < 1−b3 (38)

holds. Theorem 2 asserts that the system (36) is 0-GAS if

(38) is satisfied. A Lyapunov-Krasovskii functional is (30).

VI. CONCLUSIONS

This paper has investigated the problem of establishing

stability of interconnected nonlinear systems involving dis-

crete as well as distributed time-delays. It has been shown

that Lyapunov-Krasovskii functionals establishing stability

of the interconnections can be constructed when small-gain

conditions are satisfied. This paper has improved the previ-

ous result [12] of the authors by generalizing supply rates

of individual subsystems to deal with discrete delays and

distributed delays in a unified manner. Lyapunov-Krasovskii

functionals are tailored in order to handle the generalized

supply rates. This paper has also covered time-varying delays

in communication channels.

This paper has employed time-invariant functionals Vi

for individual subsystems although time-varying functionals

Vi have more potential to cope with fully time-varying

networks. Indeed, Section IV aims mainly at time-varying

delays only in the channels connecting time-invariant sub-

systems. When we deal with internally time-varying sub-

systems, time-invariant Vi’s can fulfill (8) with (28) only

when properties of the subsystems are uniform in t. Recently,

Lyapunov-Krasovskii type characterizations of non-uniform

in time ISS of nonlinear retarded systems have been derived

in [15]. Therefore, our further research includes extending

the result in this paper to more general stability which is

allowed to be non-uniform in t.

APPENDIX

Theorem 3: If there exists an ISS (iISS) Lyapunov-

Krasovskii functional Vcl for (1), then the system (1) is ISS

(iISS, respectively) with respect to input r and state x.
This theorem was originally proved for time-invariant

systems in [20]. The arguments given there remain true since

Definition 3 and Definition 4 use time-invariant functional

Vcl and require uniform properties in time t. The following

lemmas are extension of lemmas proved in [12] to the cases

of distributed and time-varying delays.
Lemma 1: For i=1, 2, consider

αi, σi,j ∈K, σr,i∈P0, , j = 0, 1, ..., h + hd (39)

Si,j ∈{0, 1}, ̟i,j ∈ [1,∞), j = 0, 1, ..., h + hd (40)

0 ≤ ∆j(t) ≤ ∆̄j ≤ ∆, ∀t∈R+, j =1, 2, ..., h+hd (41)

with non-negative integers h, hd, and non-decreasing con-

tinuous functions λi : R+→R+. Assume that

lim
s→∞

αi(s) < ∞ ⇒ lim
s→∞

λi(s) < ∞ (42)

holds. If functionals Vi, Ma,i : Ci → R+ satisfy

αi(Ma,i(φi)) ≤ Vi(φi) ≤ αi(Ma,i(φi)), ∀φi ∈ Ci, (43)

for some αi, αi ∈ K∞, then it holds that

λi(Vi(φi))

{

−αi(Ma,i(φi))+
h

∑

j=0

Si,jσi,j(wi,j)

+

h+hd
∑

j=h+1

Si,j

∫ 0

−∆j(t)

σi,j(vi,j(s))ds + σr,i(zi)

}

≤ −α̃i(Ma,i(φi)) +
h

∑

j=0

Si,j σ̃i,j(wi,j)

+

h+hd
∑

j=h+1

Si,j

∫ 0

−∆j(t)

σ̃i,j(vi,j(s))ds + σ̃r,i(zi)

∀φi∈Ci, ∀wi,j , zi∈R+, ∀vi,j ∈C
0([−∆, 0]; R+) (44)

where α̃i, σ̃i ∈ K and σ̃ri ∈ P0 are

α̃i(s) = δ

(

1−
1

τi

)

λi(αi(s))αi(s) (45)

σ̃i,j(s) =











λi(θi,j(s))σi,j(s)
if lim

v→∞
αi(v) ≥ Niτiβi,j(s)

lim
v→∞

λi(v)σi,j(s) otherwise

(46)

σ̃ri(s) =











λi(θri(s))σri(s)
if lim

v→∞
αi(v) ≥ τriσri(s)

lim
v→∞

λi(v)σri(s) otherwise

(47)

θi,j(s) = αi ◦ α−1
i ◦ Niτiβi,j(s), j =0, 1, ..., h+hd

βi,j(s) = ̟i,jσi,j(s), j =0, 1, ..., h (48)

βi,j(s) = ̟i,j∆̄jσi,j(s), j =h+1, h+2, ..., h+hd

θri(s) = αi ◦ α−1
i ◦ τriσri(s), Ni =

∑h+hd

k=0 Si,k (49)
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for any δ ∈ (0, 1) and τi, τri ∈ (1,∞) satisfying 1 − 1
τi

−
1

τri
≥ δ

(

1 − 1
τi

)

.

Lemma 2: Given (39), (40), (41) and αi, αi ∈ K∞ satis-

fying αi(s) ≤ αi(s), ∀s ∈ R+, for i = 1, 2, suppose that

α̃i, σ̃i,j , βi,j ∈ K and σ̃ri ∈ P0 are given by (45), (46), (48)

and (47), and assume that (H1) ∨ (H2) ∨ (H3) holds, where

σi(s) =
∑h+hd

k=0 Si,k maxj=0,1,...,h+hd
{Si,jβi,j(s)} (50)

Let Ma,i,Mσ,3−i,j : Ci → R+ be functionals fulfilling

Ma,1(φ1) ≥ Mσ,2,j(φ1), ∀φ1∈C1, j =0, 1, ..., h+hd(51)

Ma,2(φ2) ≥ Mσ,1,j(φ2), ∀φ2∈C2, j =0, 1, ..., h+hd(52)

for i = 1, 2. If there exist ci > 1, i = 1, 2 such that (18) is

satisfied, there exist αcl,i∈K, i = 1, 2, such that

2
∑

i=1

{

−α̃i(Ma,i(φi))+(1+ǫi)
h

∑

j=0

̟i,jSi,j σ̃i,j(Mσ,i,j(φ3−i))

+(1+ǫi)

h+hd
∑

j=h+1

̟i,jSi,j∆̄j σ̃i,j(Mσ,i,j(φ3−i)) + σ̃r,i(|ri|)
}

≤
2

∑

i=1

{−α̃cl,i(Ma,i(φi)) + σ̃r,i(|ri|)} ,

∀φ1 ∈ C1, r1 ∈ R
m1 , ∀φ2 ∈ C2, r2 ∈ R

m2 (53)

holds for each ǫi ∈ [0, ci−1) with

λ1(s) =

[

α2 ◦ µ̂−1
1 ◦

1

τ1
α̂1 ◦ α−1

1 (s)

] [

1

τ1
α̂1 ◦ α−1

1 (s)

]ψ

(54)

λ2(s) =
k2

(k2−1)

√

k1

τ1

[

µ̂1◦ α−1
2 (s)

]ψ+1
(55)

for any k1, k2, τ1, δ, ψ ∈ R and µ̂1, α̂1 ∈ K satisfying

µi(s) = (1+ǫi)σi(s), ki > 1, i = 1, 2 (56)

0 <
√

τ1/k1 < δ < 1 (57)

0 ≤ ψ, 1 < τ1, (τ1/k1)
ψ ≤ (τ1 − 1)(k2 − 1) (58)

µ̂1(s)

{

= µ1(s), ∀s ∈ R+ if lim
s→∞

α2(s)<∞

≥ µ1(s), ∀s ∈ R+ otherwise
(59)

α̂1(s)

{

≤ α1(s), ∀s ∈ R+ if lim
s→∞

α2(s)<∞

= α1(s), ∀s ∈ R+ otherwise
(60)

lim
s→∞

α̂1(s) ≤ lim
s→∞

µ̂1(s) (61)

k1µ̂1◦α−1

2 ◦α2◦α−1

2 ◦k2µ2(s)≤ α̂1◦α−1

1 ◦α1(s), ∀s∈R+ (62)

Furthermore, α̃cl,1, α̃cl,2∈K∞ holds if α1, α2∈K∞.
The existence of k1, k2, τ1, δ, ψ ∈ R and µ̂1, α̂1 ∈ K

fulfilling (56)-(62) is guaranteed when (18) and (H1) ∨ (H2)

∨ (H3) hold. Note that (42) is fulfilled by (54) and (55) with

the help of (60)-(61) when (H1) ∨ (H2) ∨ (H3) holds.
Lemma 3: In the case of σri(s) ≡ 0, i = 1, 2, the

assumption (H1) ∨ (H2) ∨ (H3) in Lemma 2 can be replaced

by (J1).
Lemma 4: Given a locally Lipschitz functional Vi : Ci →

R+ and a continuous function λi : R+ → R+, let Wi :
Ci → R+ be a continuous functional defined as Wi(φi) =
∫ Vi(φi)

0
λi(s)ds. Then,

D+Wi(φi, φ3−i,ri, t)≤λi(Vi(φi))D
+Vi(φi, φ3−i,ri, t), (63)

where

D+Wi(φi, φ3−i, ri, t)= lim sup
h→0+

Wi(φ
h
i ) − Wi(φi)

h
, (64)

D+Vi(φi, φ3−i, ri, t)= lim sup
h→0+

Vi(φ
h
i ) − Vi(φi)

h
. (65)
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