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Abstract— In this paper, we present some new results on
frequency weighted balanced truncation technique based on
well-known partial-fraction-expansion idea. The reduced order
models which are guaranteed to be stable in case of double-
sided weighting are obtained by direct truncation. Two sets of
simple, elegant and easily calculatable a priori error bounds are
also derived. A numerical example and comparison with other
well-known techniques show the effectiveness of the proposed
method.

I. INTRODUCTION

Enns [3] has presented a scheme for reducing a stable

high order model with frequency weighting, based on a

modification of balanced truncation [9]. The method, known

as frequency weighted balanced truncation, may use in-

put weighting, output weighting, or both. With only one

weighting present, stability of the reduced order model is

guaranteed. With both weightings present, the method may

yield unstable models. A slight modification to the Enns’

technique was presented in [13] which not only yields stable

models in case of double-sided weightings, but also gives

easily computable error bounds. Under certain conditions,

this technique is equivalent to Enns’ technique.

Another group of methods which is based on partial

fraction expansion was originally proposed in [7]. Inspired

by this, Al-Saggaf and Franklin [1] proposed a technique

for frequency weighted model reduction. In their technique,

the numerator of the reduced order model is calculated by

forcing the reduction error to have zeros at the poles of

the weighting function. The limitations of this method are

(i) it can be used with single-sided weighting only, (ii) the

output matrix of input weight or input matrix of output

weight have to be square and non-singular and (iii) the

original system and weighting function need to be strictly

proper. Sreeram and Anderson [11] then generalized [1] to

include double-sided weightings. However, the method can

only handle strictly proper weighting functions. To overcome

this, Ghafoor and Sreeram [4] proposed a parametrized

method which combines the advantages of the unweighted

balancing and Sreeram and Anderson’s [11] method. This

method can handle both proper and strictly proper weighting

functions. Optimal Hankel norm approximation based on

partial fraction expansion can be found in [14]. A detailed

survey of all the well-known model order reduction and

frequency weighted model reduction techniques can be found

in [2, 9]
In this paper, we present some new results on frequency

weighted balanced truncation based on partial-fraction-

expansion idea. The method has the following advantages:

(i) guaranteed stability of models in case of double-sided

weighting, (ii) simple, elegant and easily calculatable error

bounds, (iii) applicability to both continuous and discrete

systems, and (iv) easily extendable to frequency weighted op-

timal Hankel norm approximation. Simulation results show

that by properly chosing free parameters it is possible to

obtain reduced order models with smaller approximation

error than other well-known techniques from [3], [12], [13].

II. PRELIMINARIES

This section reviews some well-known frequency weighted

balanced model reduction techniques.

A. Frequency Weighted Balanced Truncation Technique

Let the transfer function of the original stable system be

given by G(s) =

[

A B
C D

]

where {A,B,C, D} is a min-

imal state-space realization. Let the transfer functions of the

stable input and output weights be V (s) =

[

AV BV

CV DV

]

and W (s) =

[

AW BW

CW DW

]

where {AV , BV , CV , DV } and

{AW , BW , CW , DW } are minimal realizations. The state-

space realization of the augmented system W (s)G(s)V (s)
is given by





Ã B̃

C̃ D̃



 =









AW BW C BW DCV BW DDV

0 A BCV BDV

0 0 AV BV

CW DW C DW DCV DW DDV









(1)

The controllability and observability Gramians of the

augmented realization
{

Ã, B̃, C̃, D̃
}

are given by

P̃ =





PW P12 P13

PT
12 P P23

PT
13 PT

23 PV



 and Q̃ =





QW Q12 Q13

QT
12 Q Q23

QT
13 QT

23 QV



 (2)
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where P and Q are the frequency weighted controllability

and observability Gramians defined by Enns [3] which

satisfies the following Lyapunov equations:

ÃP̃ + P̃ ÃT + B̃B̃T = 0 (3)

ÃT Q̃ + Q̃Ã + C̃T C̃ = 0 (4)

Assuming that there are no pole-zero cancellations in

W (s)G(s)V (s), the Gramians, P̃ and Q̃ are positive definite.

B. Enns’ Method

Expanding the (2,2) blocks of (3) and (4) yield the

following equations:

AP + PAT + PE = 0 (5)

AT Q + QA + QE = 0 (6)

where

PE = BCV PT
23 + P23C

T
V BT + BDV BT (7)

QE = CT BT
W Q12 + QT

12BW C + CT DT
W C (8)

The Gramians P and Q are then diagonalized simultaneously

T−1

E PT−T
E = TT

E QTE = Σ = diag(σ1, σ2, .., σn)

where σ1 > σ2 > ... > σn > 0 are the frequency weighted

Hankel singular values. Transforming and partitioning the

original system will yield the following

[

T−1

E ATE T−1

E B
CTE D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 (9)

where A11 depends on the order of the required truncated

model. Hence giving Enns’ reduced order model Gr(s)

Gr(s) =

[

A11 B1

C1 D

]

(10)

Essentially, Enns’ method is based on diagonalizing simul-

taneously the solutions of Lyapunov equations as given

in equations (5) and (6). However, Enns’ method cannot

guarantee the stability of reduced order models as PE and

QE may not be positive semidefinite. Several modifications

to the Enns’ technique are proposed in the literature to

overcome the stability problem.

C. Sreeram and Anderson’s Partial Fraction Expansion

based Technique [11]

In Sreeram and Anderson’s partial fraction expansion

based technique [11], the system matrix in (1) is block

diagonalized by T̃ =





I −Y R
0 I X
0 0 I



. Note that although

the technique [11] was proposed for strictly proper weights

and the original system, the derivation presented here is gen-

eralized to include proper weights and the original system.

Transforming the augmented system of (1) yields

Ĝ(s) =





Â B̂

Ĉ D̂



 =





T̃−1ÃT̃ T̃−1B̃

C̃T̃ D̃





=









AW X12 X13 X1

0 A X23 X2

0 0 AV BV

CW Y1 Y2 DW DDV









where X , Y and R are obtained by solving the matrix

equations:

X12 = Y A − AW Y + BW C = 0 (11)

X23 = AX − XAV + BCV = 0 (12)

X13 = AW R − RAV + BW CX + Y AX + BW DCV

+ Y BCV − Y XAV = 0 (13)

X1 = BW DDV + Y BDV − Y XBV (14)

X2 = BDV − XBV (15)

Y1 = DW C − CW Y (16)

Y2 = DW CX + DW DCV (17)

Note that D̂ = D̃ = DW DDV . Using the same similarity

transformation T̃ , the transformed Gramians of (2) are given

by

T̃−T P̃ T̃−1 = P̂ =





P̂W P̂12 P̂13

P̂T
12 P̂PF P̂23

P̂T
13 P̂T

23 P̂V





T̃T Q̃ T̃ = Q̂ =





Q̂W Q̂12 Q̂13

Q̂T
12 Q̂PF Q̂23

Q̂T
13 Q̂T

23 Q̂V





In [11], instead of diagonalizing P and Q as in [3], they

simultaneously diagonalize P̂PF and Q̂PF as shown below

T−1

PF P̂PF T−T
PF = TT

PF Q̂PF TPF = Σ = diag(σ1, σ2, .., σn)

where σ1 > σ2 > ... > σn > 0 and

P̂PF = P − P23X
T − XPT

23 + XPV XT (18)

Q̂PF = Q − Q12Y − Y T QT
12 + Y T QW Y (19)

The diagonalized Gramians P̂PF and Q̂PF satisfy the fol-

lowing Lyapunov equations

AP̂PF + P̂PF AT + X2X
T
2 = 0

AT Q̂PF + Q̂PF A + Y T
1 Y1 = 0

Since the realization {A,X2, Y1} is minimal and the diago-

nalized Gramians satisfy the Lyapunov equations, the partial

fraction technique yields stable models in the case of double-

sided weighting. Note that the frequency weighted error can

be large with this method. However, the error can be reduced

for strictly proper original system and the weights (D = 0,

DV = 0 and DW = 0) if the reduction error is made to have

zeros at the poles of the frequency weighting as shown in

[11].
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D. Ghafoor and Sreeram’s Partial Fraction Expansion based

Technique [4]

Sreeram and Anderson’s [11] method was later generalized

by Ghafoor and Sreeram to include proper weights. In

this method, a new frequency weighted balanced reduction

technique is proposed which is based on parametrized com-

bination of the unweighted technique [9] and the partial

fraction expansion technique [11].

Instead of simultaneously diagonalizing P̂PF and Q̂PF ,

PX and QY

PX = P + α2
PF P̂PF

QY = Q + β2
PF Q̂PF

are simultaneously diagonalized. In the above equations

αPF and βPF are real constants, while P and Q are the

unweighted Gramians satisfying

AP + PAT + BBT = 0

AT Q + QA + CT C = 0

The Gramians P̂PF and Q̂PF satisfy (18) and (19) respec-

tively while Gramians PX and QY satisfy

APX + PXAT + BXBT
X = 0

AT QY + QY A + CT
Y CY = 0

where BX =
[

B αPF X2

]

and CY =

[

C
βPF Y1

]

are

fictitious input and output matrices.

Remark 1: Although, the method gives lower error, the

method is adhoc with no theoretical justification, for simul-

taneously diagonalizing PX and QY .

III. MAIN RESULT

The proposed method can be explained conceptually. The

augmented system W (s)G(s)V (s) is first decomposed using

partial fraction expansion to obtain Ŵ (s) + Ĝ(s) + V̂ (s)
where the system matrix is block diagonalized. The decom-

posed system
(

Ŵ (s) + Ĝ(s) + V̂ (s)
)

is then expressed as a

new augmented system W̄ (s)Ḡ(s)V̄ (s) such that the system

matrix of W̄ (s)Ḡ(s)V̄ (s) is the same as the system matrix of

Ŵ (s)+Ĝ(s)+V̂ (s), i.e., block diagonal. Instead of reducing

Ĝ(s) to Ĝr(s) as in the conventional partial fraction expan-

sion based balanced truncation technique, Ḡ(s) is reduced

to Ḡr(s) using the balanced truncation. Advantage of this

apporach is finding the final reduced order model Gr(s)
from Ḡr(s) is straightforward unlike the conventional partial

fraction approaches [1], [11]. Other advantages include: (i)

guaranteed stability in case of double sided weighting, (ii)

two sets of easily calculatable a priori error bound, (iii) ap-

plication to both continuous as well as discrete systems, (iv)

having a choice of free parameters to reduce the weighted

errors and error bounds and (v) easily applicable to controller

reduction problems. The only disadvantage of the newly

proposed technique is the reduced-order models are variant

under similarity transformation like [13].

Theorem 3.1: Given G(s) =

[

A B
C D

]

, and the in-

put and output weights V (s) =

[

AV BV

CV DV

]

, W (s) =
[

AW BW

CW DW

]

, then the new original system and the new

weights satisfy the following relationship:

W (s)G(s)V (s) = Ŵ (s) + Ĝ(s) + V̂ (s) = W̄ (s)Ḡ(s)V̄ (s)
Proof:

W (s)G(s)V (s)

=

[

AW BW

CW DW

] [

A B
C D

] [

AV BV

CV DV

]

=





Ã B̃

C̃ D̃





=









AW BW C BW DCV BW DDV

0 A BCV BDV

0 0 AV BV

CW DW C DW DCV DW DDV









=





T̃−1ÃT̃ T̃−1B̃

C̃T̃ D̃





=









AW X12 X13 X1

0 A X23 X2

0 0 AV BV

CW Y1 Y2 DW DDV









=









AW 0 0 X1

0 A 0 X2

0 0 AV BV

CW Y1 Y2 DW DDV









= Ŵ (s) + Ĝ(s) + V̂ (s)

=













AW B̄W C̄ B̄W D̄C̄V B̄W D̄D̄V

0 A B̄C̄V B̄D̄V

0 0 AV BV

CW D̄W C̄ D̄W D̄C̄V D̄W D̄D̄V













=





AW B̄W

CW D̄W









A B̄

C̄ D̄









AV BV

C̄V D̄V





= W̄ (s)Ḡ(s)V̄ (s)

In the above equations, X12, X23, X2 and Y1 (see equa-

tions (11), (12), (15) and (16)) are factorized to obtain:

X12 =
[

BW AW I
]





C
−Y
Y A



 = B̄W C̄

X23 =
[

B −X AX
]





CV

AV

I



 = B̄C̄V

X2 =
[

B −X AX
]





DV

BV

0



 = B̄D̄V
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Y1 =
[

DW CW 0
]





C
−Y
Y A



 = D̄W C̄

Similarly, X13, X1 and Y2 are factorized to obtain:

X13 = AW R − RAV + BW CX + Y AX + BW DCV

+ Y BCV − Y XAV

=
[

BW AW I
]





D 0 CX
0 0 R

YB −R−YX YAX









CV

AV

I





= B̄W D̄C̄V (20)

X1 = BW DDV + Y BDV − Y XBV

=
[

BW AW I
]





D 0 CX
0 0 R

YB −R−YX YAX









DV

BV

0





= B̄W D̄D̄V (21)

Y2 = DW CX + DW DCV

=
[

DW CW 0
]





D 0 CX
0 0 R

YB −R−YX YAX









CV

AV

I





= D̄W D̄C̄V (22)

Theorem 3.2: If {A,B, C, D} is stable and minimal, then

the new realization
{

A, B̄, C̄, D̄
}

is also stable and minimal.

Proof: Follows from the stability and minimality of

{A,B, C, D}.

Given the original system {A,B,C, D} and the weights

{AV , BV , CV , DV } and {AW , BW , CW , DW }, the pro-

posed technique is based on balancing the realization
{

A, B̄, C̄
}

. The reduced order models are then obtained by

direct truncation.

A. The Generalized Algorithm

1) Given a stable, original minimal realization G(s) =
[

A B
C D

]

and minimal realizations of the weights

V (s) =

[

AV BV

CV DV

]

and W (s) =

[

AW BW

CW DW

]

,

compute X and Y

AX − XAV + BCV = 0

Y A − AW Y + BW C = 0

2) Compute the fictitious input and output matrices B̄ and

C̄

B̄ =
[

B −X AX
]

C̄ =





C
−Y
Y A





3) Solve the Lyapunov equations for P̄ and Q̄

AP̄ + P̄AT + B̄B̄T = 0

AT Q̄ + Q̄A + C̄T C̄ = 0

4) Calculate the transformation matrix T which balances
{

A, B̄, C̄
}

T−1P̄ T−T = TT Q̄T = diag (σ̄1, σ̄2, . . . , σ̄n)

where σ̄i ≥ σ̄i+1, i = 1, 2, . . . , n − 1
5) Compute the frequency weighted balanced truncation

Ǧ(s) =

[

T−1AT T−1B
CT D

]

=





Ǎ B̌

Č Ď





6) Partition
{

Ǎ, B̌, Č
}

as follows

Ǧ(s) =





A11 A12 B1

A21 A22 B2

C1 C2 D





A11 ∈ Rr×r, B1 ∈ Rr×p and C1 ∈ Rq×r r < n
7) The reduced order model is then given as follows:

Gr(s) =

[

A11 B1

C1 D

]

Theorem 3.3: The reduced order models

{A11, B1, C1, D} obtained using the proposed technique

are stable.

Proof: Follows immediately from the unweighted balanced

truncation.

IV. ERROR BOUNDS

In this section we derive the error bounds for the reduced

order models obtained using the proposed technique. To

derive the error bounds, we need to establish relationships

between the input and output matrices (B and C) and the

new fictitious input and output matrices (B̄ and C̄). Let

KT =
[

I 0 0
]T

L =
[

I 0 0
]

(23)

Then B = B̄K and C = LC̄
Theorem 4.1: Let G(s) be a proper, stable transfer func-

tion of order n and W (s) and V (s) be proper weighting

functions. If Gr(s) is a proper, stable reduced-order model

obtained using the proposed technique then the following

error bound holds:

‖W (s)[G(s) − Gr(s)]V (s)‖∞ ≤ γ
n

∑

i=r+1

σi

where γ = 2‖V (s)‖∞‖W (s)‖∞
Proof: Partitioning

B̄ =

[

B̄1

B̄2

]

and C̄ =
[

C̄1 C̄2

]

and substituting B1 = B̄1K and C1 = LC̄1 we have

‖W (s)(G(s) − Gr(s))V (s)‖∞

= ‖W (s)(C(sI − A)−1B + D

− C1(sI − A11)
−1B1 − D)V (s)‖∞

= ‖W (s)(LC̄(sI − A)−1B̄K

− LC̄1(sI − A11)
−1B̄1K)V (s)‖∞

≤ ‖W (s)L‖∞‖(C̄(sI − A)−1B̄

− C̄1(sI − A11)
−1B̄1)‖∞‖KV (s)‖∞.

≤ ‖W (s)‖∞‖(C̄(sI − A)−1B̄

− C̄1(sI − A11)
−1B̄1)‖∞‖V (s)‖∞.
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Since





A B̄

C̄ D̄



 is a balanced realization and





A11 B̄1

C̄1 D̄



 is its reduced order model, we have

from [3], [5]

‖C̄(sI − A)−1B̄ + D − C̄1(sI − A11)
−1B̄1 − D‖∞

= ‖C̄(sI − A)−1B̄ − C̄1(sI − A11)
−1B̄1‖∞ ≤ 2

n
∑

i=r+1

σi

Let k = 2‖W (s)‖∞‖V (s)‖∞, then

‖W (s)(G(s) − Gr(s))V (s)‖∞ ≤ k
n

∑

i=r+1

σi.

Corollary 1: In the case of input weighting alone, the

error bound is given by

‖(G(s) − Gr(s))V (s)‖∞ ≤ γv

n
∑

i=r+1

σi

where γv = 2‖V (s)‖∞. Similarly, in the case of output

weighting alone, we have

‖W (s)(G(s) − Gr(s))‖∞ ≤ γw

n
∑

i=r+1

σi

where γw = 2‖W (s)‖∞.

Remark 2: If the reduced order model Gr(s) is obtained

without frequency weighting, then V (s) = W (s) = I . The

following result of [3, 5] can be obtained easily:

‖(G(s) − Gr(s))‖∞ ≤ 2
n

∑

i=r+1

σi

A second set of error bound formulas given in the following

theorem can be easily shown:

Theorem 4.2:

‖W (s) [G(s) − Gr(s)]V (s)‖
∞

≤ 2
∥

∥V̄ (s)
∥

∥

∞

∥

∥W̄ (s)
∥

∥

∞

n
∑

i=r+1

σi

‖(G(s) − Gr(s))V (s)‖
∞

≤
∥

∥V̄ (s)
∥

∥

∞

n
∑

i=r+1

σi

‖W (s) (G(s) − Gr(s))‖∞ ≤
∥

∥W̄ (s)
∥

∥

∞

n
∑

i=r+1

σi

Proof: The above theorems can be easily proved using the

proof of Theorem 3.1 and Theorem 4.1.

A. Limitatons

Even though the frequency weighted errors obtained using

the new method are generally lower than Enns’ as well as

other well known techniques, the technique is realization de-

pendant. For different realization of input and output weights,

different reduced order models and weighted approximation

errors are obtained. Hence, to obtain the optimum weighted

errors, simple transformation αI for the input weight and

βI for the output weight are utilized. By varying the scalars

α and β, one can easily reduce the weighted approximation

errors.

V. EXAMPLE

Consider the fourth-order system used in [8], [12], [13]

A =









−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4









, B =









0 5
1/2 −3/2

1 −5
−1/2 1/6









C =

[

1 0 1 0
4/15 1 0 1

]

with the following input and output weights:

V (s) = W (s) = {−4.5I2, 3I2, 1.5I2, I2}

where I2 denotes an identity matrix of 2nd order. Error and

error bounds using Example for Enns’ method [3], Lin and

Chiu’s [8], Wang et al’s [13] and the proposed method are

shown in the table below. It is clear from the table that

the proposed technique compares well with the well-known

techniques.

VI. CONCLUSION

An improved frequency weighted balanced truncation

based on partial fraction expansion idea is presented. The

method has the following advantages : (i) guaranteed stability

in case of double-sided weighting (ii) two sets of easily

calculatable a priori error bounds. The only disadvantage

of the technique is it is dependant on the realization of the

weights. However, this property can be used to reduce the

approximated error by varying the realization of the weights.

Choosing a general transformation matrix for the weights to

reduce the weighted error is a challenging open problem and

is currently under investigation.

The proposed method not only holds good for both con-

tinuous and discrete systems but can easily be extended to

optimal Hankel norm approximations.
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