
A distributed deterministic annealing algorithm

for limited-range sensor coverage

Andrew Kwok and Sonia Martı́nez

Abstract— This paper presents a distributed coverage algo-
rithm for a network of mobile agents. Unlike previous work
that uses a simple gradient descent algorithm, here we employ
an existing deterministic annealing (DA) technique to achieve
more optimal convergence values. We replicate the results of
the classical DA algorithm while imposing a limited-range
constraint to sensors. As the temperature is decreased, phase
changes lead to a regrouping of agents, which is decided
through a distributed task allocation algorithm. While simple
gradient descent algorithms are heavily dependent on initial
conditions, annealing techniques are generally less prone to
this phenomena. The results of our simulations confirm this
fact, as we show in the manuscript.

I. INTRODUCTION

The ability to autonomously deploy over a spatial region,

as well as to dynamically adjust to single-point failures,

gives mobile networks an advantage over static ones. This

prompts the study of designing effective motion coordination

algorithms for their unsupervised control [1]. A key area of

interest regarding mobile sensor networks is deployment to

maximize coverage [2], [3], [4], [5], [6].

However, most current methods for deployment, i.e. [2],

[3], rely on gradient techniques to converge to an extremum

of a cost function. Consequently, the resulting final value of

the cost function may not be the globally optimal one. Many

annealing techniques exist to find a better optimal value of

a cost function. Of these techniques, there are simulated

annealing (SA) algorithms [7], as well as a more recent de-

velopment, deterministic annealing (DA) [8]. Unfortunately,

these are centralized algorithms requiring global knowledge

of the total state of the system.

Annealing algorithms differ from standard gradient al-

gorithms through the addition of a temperature state. The

goal, as in physical annealing, is to gradually lower this

temperature, so that the internal configuration of the system

is always at or near the lowest energy state. The SA and DA

techniques feature phase changes as the temperatures are

lowered past certain critical values, and we quantify these

transitions for the distributed algorithm version.

A closely related work is that of Sharma et. al. [9]. The

resulting algorithm discards information of other agents and

resources that are far from a given agent. However, the

algorithm still requires knowledge of all agents involved in

the optimization to determine the information to discard.

In [10], SA was used to solve the clustering and formation

control problems. That work also considered limited-range

A. Kwok and S. Martı́nez are at the department of Mechanical and
Aerospace Engineering, Univ. of California, San Diego, 9500 Gilman Dr,
La Jolla CA, 92093 {ankwok, soniamd}@ucsd.edu

interactions, however, punctual long-range communication

between agents was required. A cell decomposition of the

environment had to be done a priori.

In this paper, we extend the DA algorithm of [8]. Here,

we take that discrete DA algorithm to make it continuous

in both space and time as well as spatially distributed. We

strictly enforce that an individual agent can only sense the

presence of other agents within a fixed radius. To do so,

we introduce a spatial partition of the environment, and use

this to develop a distributed local check of phase changes.

Additionally, we introduce a task assignment algorithm to

reassign vehicles according to phase changes. With the

limited-range constraint, we achieve very similar results as

in [8], [9]. Additionally, as this sensing radius increases, the

algorithm recovers the original DA algorithm.

The paper is organized as follows. In section II, we intro-

duce the limited range coverage problem, as well as provide

an overview of the DA algorithm. In section III we derive

the gradient direction for a limited-range DA algorithm, and

continue in Section IV to provide a sufficient condition

to distributively check for phase changes. We merge the

two results in Section V by describing an algorithm for a

network of autonomous agents to implement that includes a

task allocation subroutine. Finally, simulations in Section VI

demonstrate the limited-range DA algorithm, followed by

some concluding remarks.

II. NOTATION AND THE DA ALGORITHM

Let Q be a convex polytope in R
d including its interior,

and let ‖ · ‖ denote the Euclidean norm. We will use R≥0 to

denote the set of positive real numbers. A map φ : Q→ R≥0,

or a distribution density function, will represent a measure of

a priori known information that some event takes place over

Q. Equivalently, we consider Q to be the bounded support

of the function φ. We will also denote the boundary of a set

S as ∂S and the interior of a set as Int(S).
The proposed limited-range distributed DA algorithm is

based on formations of agents (with leaders at p1, . . . , pn)

that split during phase changes. The algorithm finishes with

formations of N single vehicles at positions p1, . . . , pN .

All agents have a limited sensing radius Ri, which may be

heterogeneous.

We now briefly describe the minimization process of the

DA scheme as well as compare this with the method in [2].

In [8], the end goal is to minimize a distortion function,

D =

∫

Q

φ(q)

n
∑

i=1

P(pi|q)fi(‖q − pi‖)dq , (1)

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC03.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1448

where fi : R≥0 → R is a general metric (typically fi(x) =
x2) and P(pi|q) is the probability of a point q being associ-

ated with an agent pi. However, (1) is not directly minimized.

The Shannon entropy function is introduced:

H = −

∫

Q

φ(q)

n
∑

i=1

P(pi|q) log P(pi|q) , (2)

and the DA algorithm is a discrete-time algorithm that

involves the minimization of the Lagrangian F = D− TH ,

where T is the temperature of the system. As temperature

decreases, minimizing F becomes more similar to minimiz-

ing D. The association probabilities P(pi|q) are derived from

P
∗(pi|q) = argmin

P(pi|q) F . Then, the resulting P
∗(pi|q) are

substituted into F to yield F̂ , and the optimal agent locations

are given by p∗i = argminpi
F̂ .

As temperature decreases, the system undergoes phase

changes. A phase change occurs when an equilibrium po-

sition p∗i is no longer attractive in the presence of more than

one sufficiently close agent. Rose in [8] provides a necessary

and sufficient condition to detect phase changes, and we will

provide an analogous check in the limited-range case.

In contrast the objective in [2] was to minimize (1) with

trivial association probabilities determined by a Voronoi

partition of Q. That is, the probability of q ∈ Q being

associated to pi is 1 iff q is in its generalized Voronoi region.

As in [2], we choose to analyze the distributed DA

coverage problem via general metrics fi : R≥0 → R such

that fi is Lipschitz and non-decreasing. We assume that each

fi is of the form

fi(x) = gi(x)1[0,Ri) , (3)

such that each gi is differentiable and non-decreasing over

[0, Ri) and gi(Ri) = 0 for continuity.

In what follows we will consider the limited-range het-

erogeneous analogues of the centroidal sensing metric found

in [2]. The sensing function is:

fm
i (x) =

[

x2 −R2
i

]

1[0,Ri)(x) , (4)

III. LIMITED-RANGE DA LAGRANGIAN GRADIENT

In order to obtain a continuous-time version of the DA

algorithm, we compute the gradient of the Lagrangian F
with sensing functions (3) in this section. We first start

with a derivation of the association probabilities, and then

introduce a partition of Q that takes advantage of the limited-

range nature of agent sensors. We refer the reader to the full

paper [11] for more details on the computations that follow.

A. Limited-range association probabilities

Similar to the original DA algorithm, we consider each

point q ∈ Q to have some probability of being associated

with an agent at pi. The probabilities, P(pi|q) i ∈ {1, . . . , n},
satisfy the following constraint for all q ∈ Q:

n
∑

i=1

P(pi|q) = 1 . (5)

p1

p2

D0

D1

D2

D3 Variable Description

A1 D1 ∪D2

B1 {1}
B2 {1, 2}
C2 {2, 3}

Fig. 1. Here we show an example for the notation we have introduced.

Lemma 1: The association probability distribution that

minimizes F = D − TH and satisfies (5) is the Gibbs

distribution

P(pi|q) =
exp

[

− fi(‖q−pi‖)
T

]

Z(q)
, i ∈ {1, . . . , n} , (6)

where the normalizing factor is:

Z(q) =

n
∑

i=1

exp

[

−
fi(‖q − pi‖)

T

]

. (7)

We can take the result (6) and substitute it back into F :

F̂ = −T

∫

Q

φ(q) logZ(q)dq , (8)

where we use the fact that
∑n

i=1 P(pi|q) = 1.

B. Limited-range partition

For further analysis, it is advantageous to partition Q such

that Z(q) is differentiable over each region of this partition.

We start by assuming that each sensing function fi has the

form from (3). We can define the set

Ai = {q ∈ Q ‖ 0 ≤ ‖q − pi‖ < Ri} . (9)

Additionally, let β be the set of binary sequences of length

n, i.e.: each bk ∈ β, k ∈ {1, . . . , 2n} is a finite sequence of

zeros and ones.

Proposition 2: Let {Dk} be a collection of sets such that

for each bk ∈ β,

Dk =

M
⋂

i=1

{Ai if bk,i = 1 ;AC
i if bk,i = 0} . (10)

Then, {Dk} forms a partition of Q and Z(q) is continuously

differentiable in each Dk. •

In the next section, we will use Bk to refer to the indices

of the points pi which form the region Dk. That is,

Bk = {i ∈ {1, . . . , n} | ‖q − pi‖ < Ri, ∀ q ∈ Int(Dk)} .

The regions Dk also have a convenient relation to each Bi.

Proposition 3: Each ball Ai of radius Ri centered at pi is

exactly covered by a subcollection of {Dk}. We denote the

set of indices corresponding to this subcollection as Ci such

that Ai =
⋃

k∈Ci
Dk. •

1449

C. Gradient formulation

The next step in the DA derivation is to optimize the

Lagrangian F̂ with respect to sensor positions pi. Each agent

in the network will use this result in order to compute its

gradient direction.

Proposition 4: Given the Lagrangian (8), and sensing

metrics of the form (3), the gradient of (8) is:

∂F̂

∂pi

= −T
∑

k∈Ci

∫

Dk

φ(q)
1

Z(q)

∂Z

∂pi

dq . (11)

Remark 5: We can compute the derivative ∂Z
∂pi

using the

sensing function (4). We begin by computing ∂Z
∂pi

.

∂Z

∂pi

=
2

T
(q − pi)

T exp

[

−
‖q − pi‖

2 −R2

T

]

,

whenever ‖q−pi‖ < Ri, otherwise ∂Z
∂pi

= 0. We then obtain

the gradient (11) to be:

∂F̂

∂pi

= −2
∑

k∈Ci

∫

Dk

φ(q)(q − pi)
T

P(pi|q)dq . (12)

This is similar to the gradient expression for the mixed

coverage case in [2], with the addition of the association

probabilities P(pi|q) as an extra weighting factor. •

IV. LIMITED-RANGE DA PHASE CHANGES

As temperature decreases, the equilibrium points of F̂
under the evolution of (11) become unstable. When this hap-

pens a phase change occurs and we say that we have reached

a critical temperature. We present a sufficient condition for

agents to individually check if they have reached a critical

temperature value under both area-maximizing and mixed

centroidal-area coverage.

Using a similar argument as in [8], we enlarge the

group of leaders {p1, . . . , pn} with a set of virtual agents

{pn+1, . . . , pl} so that for all j ∈ {n+1, . . . , l}, pj = pi for

some i ∈ {1, . . . , n}. Then we introduce perturbations Ψ =
(ψ1, . . . , ψl) ∈ R

2l. Given a scaling factor ǫ, consider the

perturbed agent locations, xi = pi + ǫψi, for i ∈ {1, . . . , l}.
Critical points of F̂ correspond to configurations where
dF̂ (x1,...,xl)

dǫ

∣

∣

∣

ǫ=0
= 0. However, those configurations fail to

be a minimum when the second derivative d2F̂
dǫ2

∣

∣

∣

ǫ=0
≤ 0. We

now find the second derivative. Consider the partition {Dk}
associated with the {xi}, i ∈ {1, . . . , l}.

Consider the second derivative of F̂ with respect to ǫ:

d2F̂

dǫ2
= −T

∑

k

{

∫

Dk

φ(q)

[

−
1

Z2(q)

(

∂Z

∂ǫ

)2

+
1

Z(q)

∂2Z

∂ǫ2

]

dq

+

∫

∂Dk

φ(γk)
1

Z(γk)

∂Z

∂ǫ
nT (γk)

∂γk

∂ǫ
dγk

}

. (13)

Let yi = q − xi to reduce the amount of notation. In a

particular region Dk, the derivative of Z with respect to ǫ
simplifies to

dZ

dǫ
=
∑

j∈Bk

−
1

T

∂fj

∂ǫ
exp

[

−
fj(‖yj‖)

T

]

. (14)

Continuing, the second derivative is:

d2Z

dǫ2
=
∑

j∈Bk

{[

(

1

T

∂fj

∂ǫ

)2

−
1

T

∂2fj

∂ǫ2

]

exp

[

−
fj(‖yj‖)

T

]

}

. (15)

Since yi = q−pi−ǫψi, using the chain rule, ∂fi

∂ǫ
= −ψT

i
∂fi

∂yi

and ∂2fi

∂ǫ2
= ψT

i
∂2fi

∂y2

i

ψi.

We substitute the results (14) and (15) into (13), and note

that 1
Z

exp
[

− fi

T

]

= P(xi|q) to get:

d2F̂

dǫ2
= −T

∑

k

{

∫

Dk

φ(q)

(

−
1

T 2





∑

j∈Bk

∂fj

∂ǫ
P(xj |q)





2

+
∑

j∈Bk

[

(

1

T

∂fj

∂ǫ

)2

−
1

T

∂2fj

∂ǫ2

]

P(xj |q)

)

dq

−
1

T

∫

∂Dk

φ(γk)
∑

j∈Bk

(

∂fj

∂ǫ
P(pj |γk)

)

nT (γk)
∂γk

∂ǫ
dγk

}

. (16)

The check for critical temperature is to numerically com-

pute d2F̂
dǫ2

∣

∣

∣

ǫ=0
at an equilibrium configuration. The equi-

librium configurations occurs when ∂F̂
∂pi

= 0 for all i, or

equivalently, when dF̂
dǫ

∣

∣

∣

ǫ=0
= 0. If the second derivative

is negative, then the equilibrium configuration is unstable,

and that signifies that we are below a critical temperature

value. To simplify the critical temperature check and make it

spatially distributed, we consider the following perturbation.

Let Si ⊆ {1, . . . ,m} be such that j ∈ Si implies pj = pi.

We define Ψi to be

Ψi =
{

(ψ1, . . . , ψm) | ψj = 0, ∀ j /∈ Si;
∑

j∈Si

ψj = 0
}

. (17)

If the critical temperature has not yet been reached, then

these coincident agents (i.e., leaders and virtual agents) will

remain together. Otherwise, the coincident agents are at an

unstable equilibrium point, and any perturbation will force

them apart. Using this particular perturbation, we will obtain

a sufficient condition for critical temperature. We will now

take the above results and consider the metric function (4).

This metric is most similar to that found in [8] and [9].

Proposition 6: Critical temperature for the centroidal-area

DA algorithm has been reached if for i ∈ {1, . . . , n}, any of

the following matrices Fi are negative definite:

Fi =
∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

[

I−
2

T
(q − pi)(q − pi)

T

]

dq, (18)

and ṗi = 0 for all i ∈ {1, . . . , n}.

Proof: The derivatives
∂fm

i

∂yi

and
∂2fm

i

∂y2

i

, when ‖yi‖ ≤

Ri, are:

∂fm
i

∂yi

= 2yT
i ,

∂2fm
i

∂y2
i

= 2I .

Since yi = q−pi−ǫψi, when ǫ = 0, yj = q−pi for all j ∈ Si.

Similarly, the association probabilities P(xj |q) = P(pi|q)
for all j ∈ Si. Therefore, with the perturbations (17) and

1450

the mixed metric (4), the second derivative (16) evaluated at

ǫ = 0 can be simplified as follows:

d2F̂

dǫ2

∣

∣

∣

∣

ǫ=0

= 2
∑

j∈Si

∑

k∈Ci

∫

Dk

φ(q)P(pi|q)

·

[

ψT
j Iψj −

2

T

(

ψT
j (q − pi)

)2
]

dq .

Factoring ψj from the left and right sides and using the

substitution (18), the second derivative evaluated at ǫ = 0 is:

d2F̂

dǫ2

∣

∣

∣

∣

∣

ǫ=0

= 2
∑

j∈Si

ψT
j Fiψj .

Thus, in order for an equilibrium configuration to be stable,

the matrix quantity in (18) must be positive definite.

V. DISTRIBUTED IMPLEMENTATION

We have so far demonstrated how a network of agents

can descend the gradient and check for phase changes in a

distributed DA algorithm. However, we still must provide a

distributed method for implementing these phase changes.

The DA algorithm begins with one active agent, and

the other agents moving in formation with it. A formation

will split in two if its critical temperature is reached. The

agents following in formation are divided evenly between the

current formation leader and a new formation leader. After

the first phase change, it is possible that future phase changes

occur at an agent who is by itself. Therefore, this agent must

communicate its desire for an additional companion, and

the network of agents must distributively assign an inactive

agent to this task. We propose a task-assignment algorithm

to accomplish this.

We provide a possible scheme under the following as-

sumptions: (1) Agents have knowledge of the total number

of formations n and the total number of agents N , (2) The

communication graph between all active agents is connected,

(3) Each active agent knows the number of inactive agents

traveling with it, and (4) All agents have knowledge of the

initial temperature, and the cooling factor α.

Connectivity of the communication graph is important

because both the temperature and the total number of active

agents must be constant across all agents. We assume that if

Algorithm 1: Distributed DA algorithm for each agent

T ← initial temperature

while T > Tmin or n < N do

while floodMax(‖ṗi‖) > ǫ) do
ṗi ← −computeGradient()

end

if checkSplit() == true then flood(“Tc reached”)

if received “Tc reached” then
doTaskAssign() N − n times

end

T ← αT
end

doNormalCoverage()

Algorithm 2: Task assignment algorithm for each agent

ai ← number of agents in formation

if checkSplit() == true then

if ai == 0 then
flood(“need companion at pi”)

M ← positions pj of replies for help

if mi == null, ∀mi ∈M then
return

else
J ← sortAscending({‖pi− pj‖}, j ∈M)

j∗ ← removeFirst(J)

sendMsg(“request companion”, j∗)

flood(“increment n by 1”)
end

else
split formation evenly

flood(“increment n by 1”)
end

else // no splitting at pi

M ← received companion requests pj

J ← sortAscending({‖pi− pj‖}, j ∈M)

if ai == 0 then
sendMsg(null, ∀ j ∈ J)

else

while length(J) > 0 and ai > 0 do
j∗ ← removeFirst(J)

sendMsg(“help available from pi”, j∗)

ai ← ai − 1
end

end

end

the graph is connected, the agents can agree on the current

temperature, and determine through a flooding algorithm

(see [12]) the number of active agents n at any point in time.

Additionally, agents must wait for the flooding algorithms to

terminate; the worst case is proportional to the diameter of

the communication graph.

The scheme also uses primitives for flooding or agree-

ment over the network to acquire global information. We

define flood(msg) to be an algorithm that floods a

message over the entire network, such that after its com-

pletion, each active agent will have knowledge of msg
(possibly the null message). Messages to a particular

agent i can be sent with sendMsg(msg, i). We also

define floodMax(xi) as a flooding method to determine

maxi∈{1,...,n} xi over the entire network as in [12]. We let

computeGradient() be the function that computes (11),

and we let checkSplit() be the function that determines

if a critical temperature has been reached as in (18). Finally,

we introduce doNormalCoverage() to mean to perform

limited-range coverage as from [2].

The distributed DA algorithm can informally be described

in the pseudocode of Algorithm 1. Starting with a single

formation, and a high initial temperature, formations descend

the gradient (11). When all agents agree they are stationary,

1451

they individually check for phase changes and, if necessary,

implement Algorithm 2 N − n times to guarantee the

assignment of all companion requests. The temperature is

lowered, regardless of whether or not there was a phase

change, and the gradient descent is continued. This process

repeats until the system temperature is below a minimum

temperature threshold Tmin or if n = N . Once this happens,

the agents perform the normal coverage algorithm described

in [2], as this is equivalent to having T = 0.

The pseudocode of Algorithm 2 outlines the task assign-

ment algorithm for agents that are alone but need to split.

Roughly speaking, there are three rounds of communication:

an agent broadcasts its need for a companion, other agents

reply if they can help, and finally a handshake is formed

with the agent transfer. In this algorithm, n is incremented

for every new formation, and this command is flooded over

the network. This algorithm has a finite termination time

upper bounded by 3n+ n(N − n) messages passed.

VI. SIMULATIONS

We present a simulation of the limited-range DA algorithm

using the mixed centroidal-area sensing function (4). The

total number of agents is N = 6 and the square region Q
has length 10 per side. We will demonstrate the performance

of the DA algorithm versus a normal Lloyd-type gradient

descent found in [2] for a sensing radius of R = 3. The

density function φ is a sum of 6 Gaussians with different

variances and magnitudes as shown in Figure 2.

Due to the smaller sensing radius, initial conditions begin

to influence the outcome of the DA algorithm. For this

particular choice of φ, we have the two possible outcomes

shown in Figure 2 for the limited-range DA-algorithm. The

better outcome of the DA attains a final cost of −151.5,

while the worse outcome reaches a final cost of −110.5.

Next, 50 Lloyd-like gradient descent simulations were

run. Each simulation was initialized with a cluster of 6
agents uniformly distributed over a 1×1 square. This square

is then randomly placed over the region Q to simulate

deployment from a random initial position. Over the 50
random Lloyd-like gradient descent simulations, only 2 reach

the configuration shown in Figure 2 (c). The worst case of

all 50 trials was a cost of −103.5 shown in Figure 2 (h), and

the average cost was −135.3.

Further analysis of this scenario, however, demonstrates

that the limited-range DA algorithm still has an advantage

over a normal gradient descent algorithm. Figure 2(g) shows

the set of initial conditions for which the limited-range

DA algorithm converges to the best solution. Note that

approximately half of the possible initial condition locations

leads to the optimal solution while only 4% of the Lloyd-like

gradient descent simulations achieved the same final cost.

The limited-range DA algorithm may have decreased

performance versus a normal gradient-descent algorithm. If

sensing range is not large enough, as was observed in the

previous example, the DA algorithm may fall into a local

minimum. Consider the distribution shown in Figure 3(a),

where there are two equal Gaussians symmetrically placed

at opposite corners of Q. Almost every simulation of the

limited-range DA algorithm results in a final configurations

like 3(a), or its mirror image. This occurs because the DA

algorithm begins with only one agent, and this agent moves

towards the nearest Gaussian that it senses and stays there.

Then, future phase changes result in only adding more agents

around the same Gaussian.

On the other hand, over 50 trials of the Lloyd-like gradient

descent with similar initial conditions as before, we see an

improved statistic. Only 18 of the 50 simulations fell into

the worst-case minima of Figure 3(a). However, none of the

simulations were able to converge to the best configuration,

which is having 5 agents located around each Gaussian.

A possible way to address this problem of the limited-

range DA algorithm is to consider a heating and cooling

cycle. Agents can deploy over Q using an area-maximizing

technique as in [2]. Thus, agents will tend to move away

from each other and cover all of Q, as shown in Figure 3(a).

Then, the limited-range DA algorithm is run with a high tem-

perature. This forces agents to collect together about denser

parts of Q, shown in Figure 3(b)–(c). Finally, the usual

limited-range DA coverage is run, causing agents to split

evenly over the important areas of Q, as in Figure 3(d)–(f).

Note, however, that this requires a connected communication

graph, so agents at the top-left corner of Q must be able to

communicate with agents at the bottom-right corner.

VII. CONCLUSIONS

We have introduced a limited-range and distributed im-

plementation of the DA algorithm developed by Rose, and

applied it to the coverage problem. We developed limited-

range results that extend those in [8] and [9]. When the

sensing radius is as large as the diameter of Q, this algorithm

becomes the normal DA algorithm of Rose. While the

limited-range DA algorithm is able to outperform a Lloyd-

like gradient descent algorithm in many cases, the algorithm

has its limitations as sensing range decreases. Consideration

of a heating and cooling cycle produces improved results,

but it is still an ad hoc solution to the underlying problem.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Jorge Cortes and

Francesco Bullo for initial discussions on the use of DA

in coverage control algorithms.

REFERENCES

[1] R. M. Murray, Ed., Control in an Information Rich World: Report of

the Panel on Future Directions in Control, Dynamics and Systems.
Philadelphia, PA: SIAM, 2003.

[2] J. Cortés, S. Martı́nez, and F. Bullo, “Spatially-distributed coverage
optimization and control with limited-range interactions,” ESAIM.

Control, Optimisation & Calculus of Variations, vol. 11, pp. 691–719,
2005.

[3] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor
network deployment using potential fields: A distributed scalable
solution to the area coverage problem,” in International Conference on

Distributed Autonomous Robotic Systems (DARS02), Fukuoka, Japan,
Jun. 2002, pp. 299–308.

[4] C. Belta and V. Kumar, “Abstraction and control for groups of robots,”
IEEE Transactions on Robotics, vol. 20, no. 5, pp. 865–875, 2004.

1452

1(5)

(a)

3(1)

1(0)
2(0)

4(0)

5(0)

(b)

1

2

3

4

5

6

(c)

1(5)

(d)

2(1)

1(0)

4(0)

3(0)
5(0)

(e)

1

2

34
5

6

(f) (g) (h)

Fig. 2. Two runs of the limited-range DA algorithm with R = 3. In (a)–(c), the temperature begins at T = 20 and decreases: T = 2.2 (a), T = 0.8 (b),
with a final configuration in (c). Similarly in (d)–(f), the temperature begins at T = 20 and decreases: T = 2.0 (d), T = 0.5 (e), with a final configuration
in (f). In Figure (g), initial positions of the limited-range DA to the left of the thick black line converge to the configuration shown in (c). Figure (h) shows
a worst-case result for the Lloyd-like gradient descent.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. A demonstration of a heating and cooling cycle with R = 3. A single run of the DA algorithm typically results in configurations like (a). Instead,
consider first performing area-maximizing coverage (b), then agents run the limited-range DA algorithm for high temperature, T = 20, (c)–(d). Finally,
agents perform the usual limited-range DA algorithm in (e)–(g). The best result from a Lloyd-like gradient descent algorithm is shown in (h).

[5] W. Li and C. G. Cassandras, “Distributed cooperative coverage control
of sensor networks,” in IEEE Conf. on Decision and Control, Decem-
ber 2005, pp. 2542–2547.

[6] M. Schwager, J. McLurkin, and D. Rus, “Distributed coverage control
with sensory feedback for networked robots,” in Proceedings of

Robotics: Science and Systems, August 2006.
[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[8] K. Rose, “Deterministic annealing for clustering, compression, classi-
fication, regression, and related optimization problems,” Proceedings

of the IEEE, vol. 80, no. 11, pp. 2210–2239, 1998.
[9] P. Sharma, S. Salapaka, and C. Beck, “A scalable deterministic

annealing algorithm for resource allocation problems,” in American

Control Conference, June 2006, pp. 3092–3097.
[10] W. Xi, X. Tan, and J. S. Baras, “Gibbs sampler-based coordination of

autonomous swarms,” Automatica, vol. 42, no. 7, pp. 1107–1119, July
2006.

[11] S. Martı́nez, “http://faemino.ucsd.edu/
˜soniamartinez/papers/index.html.”

[12] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

1453

