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Abstract— In this paper, a novel reflectometry, which is
characterized by a simple autoregressive(AR) modeling of a
chirp signal and an weighted robust least squares(WRLS)
AR coefficient estimator, is proposed. In spite of its superior
fault detection performance over the conventional reflectome-
tries, the recently developed time-frequency domain reflectom-
etry(TFDR) might not be suitable for real-time implementation
because it requires heavy computational burden. In order to
solve this critical limitation, in our method, the time-frequency
analysis is performed based on the estimated time-varying AR
coefficient of a chirp signal. To do this, a new chirp signal
model which contains a sigle time-varying AR coefficient is
suggested. In addition, to ensure the noise insensitivity, the
WRLS estimator is used to estimate the time-varying AR
coefficient. As a result, the proposed reflectometry method can
drastically reduce the computational complexity and provide
the satisfactory fault detection performance even in noisy
environments. To evaluate the fault detection performance of
the proposed method, simulations and experiments are carried
out. The results demonstrate that the proposed algorithm could
be an excellent choice for the real-time reflectometry.

I. INTRODUCTION

Over the past few decades, an electrical communication

wire is widely used in many fields including the Internet

communication, aircraft, and etc. The detection and local-

ization of faults with high accuracy have been required for

diagnosis and maintenance of the wire, since in 1990’s, the

faults on electrical wires has been known for the main cause

of a number of aircraft crashes[1], [2]. A chapter of these

accidents has strongly motivated many researchers to develop

the smart wiring technique, the so-called reflectometry[3]–

[5].

The reflectometry is the fault detection methodology from

the reflected signal which is produced at the impedance miss-

matching point on a wire. A general configuration of the

reflectometry system is shown in Fig. 1. Using velocity of

propagation(VOP) on a wire and the time delay between

the transmitted reference signal and the reflected signal, the

fault distance is calculated. The existing technieques can be

categorized as time domain reflectometry(TDR), frequency

domain reflectometry(FDR), and TFDR. Each methodology
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is denominated by the domain for analyzing a signal. The

TDR measures the reflected signal along the wire caused

by the traveling of a step pulse with a fast rising time.

It detects the fault by calculating the traveling time and

magnitude of all reflected signals returning back from the

wire[6]. The FDR sends a set of stepped-frequency sine

waves down the wire. These waves from the source travel

to the end of the wire and are reflected back to the source.

Although the TDR and FDR have been applied for a few

cases, their resolution and accuracy of the fault detection

could be limited by the rising/falling time and frequency

sweep bandwidth, respectively[2]. This is the reason why

the TFDR has been devised in recent. In order to gain the

enhanced fault detection performance, the TFDR analyzes

the time-frequency domain cross correlation between the

reference signal and the reflected signal[2]. Despite of its

accurate and reliable fault detection performance, the heavy

computational burden required by the TFDR might be a fatal

deficiency for on-line fault detection applications.

For reducing the computational complexity of the TFDR

methodology, the parameter estimates of the reflected chirp

signal can be used. The estimation of the chirp signal

parameters has been of interest for a long time. Most of

the methods that have been suggested in the literature yield

maximum likelihood estimates. A requisite condition for

these methods is a high signal-to-noise ratio(SNR). P. M.

Djurić and S. M. Kay employed the phase unwrapping

method[7]. This method can provide the good chirp pa-

rameter estimation performance in low SNR signal. On the

contrary, its performance might be degraded in high SNR.

The random walk Metropolis-Hastings(MH) algorithm, one

of the useful Markov Chain Monte Carlo methods, has been

applied to estimate the chirp signal parameter[8], [9]. The

random walk MH algorithm shows good estimation for the

phase parameters. However, slow convergence problem of

the algorithm could often arise[10].

In this paper, we proposed a practical TFDR algorithm

which is based on the chirp parameter estimated from the

noisy reflected signal. To do this, first we newly model the

chirp signal using the AR relation. The newly derived AR

model has just a single unknown time-varying coefficient. In

order to handle the time-varying nature of the AR coefficient

and effectively estimate it, the state-space model with a state

variable is derived. Since the resultant state-space model con-

tains the stochastic parameter uncertainty in its measurement

matrix, the AR coefficient estimation problem can be cast

into the WRLS filtering problem. The fault is detected by

analyzing the correlation between the AR coefficient of the
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Fig. 1. A general reflectometry system

transmitted reference signal and the estimated one of the

measured reflected signal. The proposed TFDR scheme is

suitable for real-time implementation because it does not

require the time-consuming FFT contrary to the conventional

TFDR. With the help of the WRLS AR coefficient estimator,

it can provide the acceptable fault detection performance

even in the noisy environment. To demonstrate the validity of

the proposed method, various simulations and experiments

are carried out. From the results, it is shown that the

proposed method is computationally efficient and can provide

the almost same fault localization performance with the

conventional TFDR.

II. CHIRP SIGNAL MODELING FOR

REFLECTOMETRY

In this section, a simple 2nd order AR model for the chirp

signal is introduced. The proposed 2nd order model reduces

the computational burden largely in reflectometry. One of the

AR coefficient of the suggested model is constant and the

other is time-varying.

A. AR Modeling of a Chirp Signal

The general chirp signal is described as

sk , Mej( 1

2
β(Tsk)2+ω0(Tsk)−π

2
)

= M
{

cos
(1

2
β(Tsk)2 + ω0(Tsk) −

π

2

)

+ j sin
(1

2
β(Tsk)2 + ω0(Tsk) −

π

2

)}
, (1)

where M is the magnitude of the chirp signal, β is the

frequency sweep rate, Ts is the sampling period and ω0 is the

initial frequency. For notational convenience, the following

definitions will be used.

Ak ,
1

2
β(Ts(k − 1))2 + ω0Ts(k − 1) +

1

2
βTs

2 −
π

2
, (2)

Bk , − β(T 2
s k) + βT 2

s − ω0Ts,

Ck ,
1

2
β(Ts(k − 1))2 + ω0Ts(k − 1) −

π

2

=Ak −
1

2
βT 2

s ,

D , cos (
1

2
βTs

2),

E , sin (
1

2
βTs

2).

Using the above definitions, we can derive the equations as

follows:

sk =M{cos (Ak − Bk) + j sin (Ak − Bk)} (3)

sk−1 =M{cos (Ck) + j sin (Ck)} (4)

sk−2 =M{cos (Ak + Bk) + j sin (Ak + Bk)}. (5)

From (3)∼(5), one gets

sk + sk−2 = 2M cos (Bk){cos (Ak) + j sin (Ak)} (6)

Using the definition in (2) and the trigonometric identities,

(6) can be rewritten as (8).

sk + sk−2 =2M cos (Bk){cos (Ck +
1

2
βTs

2)

+ j sin (Ck +
1

2
βTs

2)} (7)

=2M cos (Bk){D(cos (Ck) + j sin (Ck))

+ jE(cos (Ck) + j sin (Ck))}. (8)

Substituting (4) into (8) yields

sk = 2 cos (Bk){D + jE}sk−1 − sk−2. (9)

In real situation, since the imaginary part of the chirp signal

cannot be acquired from the oscilloscope, it is necessary to

model the chirp signal only with its real part. To take this

situation into signal modeling, first we redefine the chirp

signal (1) as

sk , ak + jbk, (10)

where

ak ,M cos
(1

2
β(Tsk)2 + ω0(Tsk) −

π

2

)
,

bk ,M sin
(1

2
β(Tsk)2 + ω0(Tsk) −

π

2

)
.

Assumption 1: In a reflectometry system, the high fre-

quency digital oscilloscope is used usually, hence it can be

assumed that βTs
2 ≈ 0 without loss of generality. That is,

D = cos (
1

2
βT 2

s ) ≈ 1, E = sin (
1

2
βT 2

s ) ≈ 0.

Using the Assumption 1, we can get (11).
[
ak

bk

]
= 2 cos Bk

[
D −E

E D

] [
ak−1

bk−1

]
−

[
ak−2

bk−2

]

≈ 2 cos Bk

[
ak−1

bk−1

]
−

[
ak−2

bk−2

]
(11)

Proposition 1: (Approximate 2nd order AR model of the

chirp signal) Under the Assumption 1, the 2nd order AR

model of the chirp signal can be written as follows:

sk ≈ 2 cos (Bk)sk−1 − sk−2.
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Fig. 2. AR coefficient comparison between the true chirp signal and the
proposed model

B. Verification of the Proposed Model

For reflectometry, the chirp signal which has linearly

increasing frequency is generated. The frequency range of

the chirp signal is 13 ∼ 19.7MHz, the magnitude is 6Vp−p,

and the time duration is 340nsec. In (11), it is assumed

that 2 cos(Bk)D and −2 cos(Bk)E can be approximated to

2 cos(Bk) and 0, respectively. To check the validity of these

approximations, in Fig. 2 each term of the real parts of

the proposed model and the true signal AR coefficient are

plotted. From the results, we can see that the approximate

AR model in Proposition 1 is proper to represent the chirp

signal.

III. DETECTION AND LOCALIZATION OF A

FAULT

Since the noise free measurement can not be obtained

in real system for detection and localization of a fault in

a coaxial cable, precise AR coefficient estimator should

be designed. In this paper, the WRLS estimator which is

recently developed is applied. The WRLS estimator success-

fully eliminates the scale factor error and the bias error of

nominal weighted least squares(WLS) estimator which are

caused by stochastic uncertainties of the system[11]. For

fault localization, the cross-correlation of true AR coefficient

of transmitted signal and the estimated AR coefficient of

received signals are considered. And then, based on the

cross-correlation results, a time delay between these signals

is calculated.

A. State-Space Model for a Time-Varying AR Coefficient

Estimation of a Chirp Signal

Since the time duration of the reference signal is 340nsec,

the AR coefficient of the reference signal is also has same

time duration. The 1st order AR coefficient 2 cos (Bk) is

defined as a state variable xk as shown in Fig. 3. The state

variable xk of the reference signal is decreased from 1.8355

to 1.6290 during 340nsec. Therefore, we can decide the
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Fig. 3. Proposed transition matrix Fk

Fk as 0.99822 by dividing the variation of the 1st order

AR coefficient by the time duration. As a result, the state

transition equation becomes

xk+1 = Fkxk + uk, (12)

where the model error uk is assumed that it is the zero mean

white noise.

xk , 2 cos (Bk), Fk = 0.99822.

From the Proposition 1, we get

ak + ak−2 ≈ 2 cos (Bk)ak−1. (13)

Since the acquired signal ãk is corrupted by the measurement

noise v̄k in general, we can define that

ãk = ak + v̄k, (14)

where v̄k is assumed as the zero-mean white noise with a

known covariance R̄k. Therefore, using (13), (14) can be

rewritten as

ãk + ãk−2 = (ãk−1 − v̄k−1)(2 cos (Bk)) + (v̄k + v̄k−2).
(15)

Therefore, we can set the measurement equations as follows:

yk = [H̃k − ∆Hk]xk + vk, (16)

where

yk , ãk + ãk−2, vk , v̄k + v̄k−2,

H̃k , ãk−1, ∆Hk , v̄k−1,

and, since cov(v̄k) = R̄k we can get

E[∆HT
k ∆Hk] = R̄k.

Gathering (12) and (16), we can get a state-space equation

as follows:
{

xk+1 = Fkxk + uk

yk = [H̃k − ∆Hk]xk + vk

(17)
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TABLE I

WRLS ESTIMATOR[12]

• State-space system model{
xk+1 = Fkxk + uk

yk = [H̃k − ∆Hk]xk + vk

• Known statistical information

E[∆HT

k
∆Hk] , Wk, E[∆HT

k
vk] , 0.

E[∆HT

k
uk] = 0, E[uT

k
vk] = 0,

E[∆Hk] = 0, E[uk] = 0, E[vk] = 0

• WRLS estimator

P
−1

k|k
= λP−1

k|k−1
+ H̃T

k
H̃k − Wk ,

x̂k|k = (I + Pk|kWk)x̂k|k−1 + Pk|kH̃T

k
(yk − H̃kx̂k|k−1),

Pk+1|k = FkPk|kF T

k
,

x̂k+1|k = Fkx̂k|k

Therefore, the AR coefficient estimation problem can

be interpreted as a special case of the standard WRLS

estimation problem[12]. By applying the WRLS estimation

equation summarized in Table I for the state-space model

(17), we can readily design the time-varying AR coefficient

estimator of the chirp signal.

Assumption 2: For designing the WRLS AR coefficient

estimator, we assume that ∆Hk is stationary, and ∆Hk and

vk are mutually uncorrelated as follows:

E[∆HT
k ∆Hk] , Wk, E[∆Hkvk] , 0.

The forgetting factor of the WRLS estimator is defined as

0.948, since the state variable xk is nonstationary.

B. AR Coefficient Cross-Correlation Function

The time delay between the reference signal and the

reflected signal is directly related to the fault distance of

a coaxial cable. In general, the magnitude of the reflected

signal is attenuated as the fault distance is increased. In the

proposed chirp signal model, the AR coefficient is not related

to the magnitude of the signal. Therefore, very similar AR

coefficients can be obtained from the reference signal and

the reflected signal even though the magnitudes of those

signals are not similar. The cross-correlation function which

is adopted in this paper is shown in (18).

CRS [k] =
1

Es

N∑

n=0

R[n]S[n + k], (18)

Es =
N∑

n=0

s[n]2,

where R[n] is the reference signal, N is number of samples

of the reference signal and S[n] is the reflected signal.

IV. RESULTS

For evaluating the estimation performance of the proposed

method, the computer simulations are executed using the

TABLE II

SIMULATION CONDITIONS

Computer
Specification

CPU: AMD Athlon 64 X2 Dual 3800+
RAM: 3GB
OS: MS Windows XP Pro.
Simulation Language: Matlab R2006a

Common
Factor

VOP: 2.502 × 10m/s
Attenuation Rate: 0.45%/m

WRLS

Fk: 0.99822
Wk : 0 ∼ 0.115
Vk: 0
λ : 0.948
x0 : 1.45
P0 : 0.08

LMS
µ : 0.19
x0 : 1.45

TABLE III

COMPUTATIONAL TIME

Methodology Average Single Computational Time(sec)

Conventional TFDR 5.39

Proposed Method 0.0293

chirp signals with various noise levels. To verify the proposed

method, several experiments are carried out with 10C-FBT

coaxial cable which has a fault at 100.08m point. The

simulation conditions of this section are in Table II.

A. Simulation Results

In this section, it is assumed that there is a fault on a

coaxial cable at 100.08m point and five reflected signals

are obtained. The simulation conditions of the WRLS AR

coefficient estimator are shown in Table II. Simulation is

carried out on various SNR. From the proposed model,

the 1st order AR coefficient is estimated from the WRLS

estimator. The AR coefficient estimation result of the 1st

order AR coefficient on noise free case is in Fig. 4. Using

the estimated AR coefficient, we can get a cross-correlation

result. The peak point interval of the cross-correlation

result means the time delay between the reference signal

and the reflected signal. Therefore, clearness of the peak

points in the cross-correlation result is directly relate to

TABLE IV

SIMULATION RESULTS

SNR Proposed method Conventional method
(dB) error(%) error(%)

Noise free 0.000 0.000

75 0.006 0.002

70 0.006 0.006

65 0.006 0.008

60 0.011 0.011

55 0.014 0.015

50 0.017 0.019

45 0.029 0.022

40 0.036 0.025

35 0.055 0.028
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Fig. 4. Chirp signal AR coefficient estimation: noise free

0 0.5 1 1.5 2 2.5 3

x 10
−6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Time[sec]

Fig. 5. Chirp signal AR coefficient cross-correlation: noise free

the performance of the system. The cross-correlation result

of the AR coefficient on noise free case is shown in

Fig. 5. The AR coefficient estimation result of the noise

contaminated signal(SNR = 65dB) is shown in Fig. 6

and the cross-correlation result of the noise contaminated

signal(SNR = 65dB) is shown in Fig. 7. On noise free

case, estimation performance of the conventional LMS

estimator[13] is similar to the WRLS estimator. However,

AR coefficient estimation performance of the conventional

LMS estimator is degraded when the signal is noise

contaminated. The computational time and fault distance

estimation results using the proposed method and the

conventional TFDR are shown in Table III and Table IV,

respectively. All the results of the Table III and Table IV

have been obtained by 100 independent Monte-Carlo runs.

It is shown that the performance of the proposed method is

almost similar to the conventional TFDR even though it has

very short computational time.

Remark 1: The proposed method successfully estimates
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Fig. 6. Chirp signal AR coefficient estimation: SNR = 65dB
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Fig. 7. Chirp signal AR coefficient cross-correlation: SNR = 65dB

the fault distance of the target wire. The error of the proposed

method is less than 0.055% under the various SNR situations.

Remark 2: Under the various noise situations, the pro-

posed method is superior to the conventional method in

the system computation time. The average single compu-

tational time of the proposed method is 0.0293sec while the

conventional method is 5.392sec. The system computation

time is improved approximately 185 times than that of the

conventional TFDR method.

B. Experimental Results

The system for experiments consists of an arbitrary

waveform generator(National Instrument(NI) PXI-5422),

a digital oscilloscope(NI PXI-5124), and a controller(NI

PXI-8105). The target wire is 10C-FBT 100.08m coaxial

cable. The 10C-FBT coaxial cable is widely used in

many industrial field. The measured signal and the AR

coefficient estimation result of the proposed method are
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shown in Fig. 8. The measured signal and the Wigner-Ville

time-frequency distribution result of the conventional TFDR

method are shown in Fig. 9. The experiments are carried

out 10 times. The error of the proposed method is 0.004%
and the error of the conventional TFDR is 0.021% on

the average. Experimental results of the proposed method

and conventional TFDR show each method has excellent

performance. However, the error of the proposed method is

slightly low.

Remark 3: In the experiments, the proposed method

shows good performance to estimate the fault distance com-

pared with the conventional TFDR, though the computational

time of the proposed one is very short.

V. CONCLUSION

In this paper, a novel reflectometry which adopts a simple

AR modeling of the chirp signal and the WRLS AR co-

efficient estimator is proposed. The conventional TFDR is

known for state-of-art technique and very accurate method.

However, the computational complexity of the method re-

stricts the real-time implementation of the wire fault detec-

tion system. Therefore, we propose a novel reflectometry

which adopts simple AR model of the chirp signal and the

WRLS AR coefficient estimator for robust estimation and

reducing the computational complexity. From the simulation

results, it is shown that the proposed simple AR model

of the chirp signal is proper model for the chirp signal,

and the WRLS AR coefficient estimator also has excellent

performance in estimating time-varying AR coefficient of the

chirp signal. The fault distance estimation performance of the

proposed method is excellent. For evaluating the performance

of the proposed method, simulations and experiments are

carried out. From the simulation and experimental results,

we can validate the performance of the proposed method.
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