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Abstract— This paper addresses a sensor scheduling problem
for a class of networked sensor systems whose sensors are
spatially distributed and measurements are influenced by state
dependent noise. Sensor scheduling is required to achieve
power saving since each sensor operates with a battery power
source. A networked sensor system usually consists of a large
number of sensors, but the sensors can be classified into
a few different types. We therefore introduce a concept of
sensor types in the sensor model to provide a fast and optimal
sensor scheduling algorithm for a class of networked sensor
systems, where the sensor scheduling problem is formulated
as a model predictive control problem. The computation time
of the proposed algorithm increases exponentially with the
number of the sensor types, while that of standard algorithms
is exponential in the number of the sensors. In addition, we
propose a fast sensor scheduling algorithm for a general class
of networked sensor systems by using a linear approximation
of the sensor model.

I. INTRODUCTION

A networked sensor system is a collection of spatially
distributed sensors that are networked. Applications of net-
worked sensor systems include habitat monitoring, animal
tracking, forest-fire detection, precision farming, and disaster
relief applications [1], [2]. In recent years, networked sensor
systems have been implemented in control systems such as
robot control systems [3], [4] and target tracking systems
[5]. Sensors in a networked sensor system are connected
wirelessly, and each sensor operates with a battery power
source. It is therefore required for each sensor to prolong
the battery life, or equivalently, to achieve power saving [6].
One approach to meeting this requirement is to restrict the
number of available sensors at each time and select a set of
measuring sensors dynamically. This process is called sensor
scheduling.

The major problem in sensor scheduling is to reduce com-
putation time, since the number of possible sensor sequences
increases exponentially with the number of the sensors. In
particular, a predictive control method [7], a branch and
bound method [8], and a sub-optimal method based on
relaxed dynamic programming [9] have been proposed for
sensor scheduling. In addition, a sensor scheduling strategy
for continuous-time systems has been provided in [10]. These
approaches assume that sensor characteristics are different
from each other, that is, each sensor observes a different
state or the covariance matrices for the sensor model are
different from each other.
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The existing approaches can not be applied to sensor
scheduling for networked sensor systems for the following
two reasons. First, a networked sensor system usually con-
sists of a few types of sensors [2]. In other words, many
sensors in a networked sensor system have the same charac-
teristics, while the existing approaches assume that sensors
have different characteristics as mentioned before. Thus the
existing approaches can not provide a reasonable solution
for the sensor scheduling problems for networked sensor
systems. Second, sensors in a networked sensor system are
spatially distributed. The measurement noise of each sensor
may depend on the position of a measured object relative to
the position of the sensor. In particular, measurements taken
by cameras or radar sensors are influenced by state dependent
noise [11], [12], [13]. The existing works do not provide any
optimal sensor scheduling algorithm for systems with state
dependent noise.

To solve the problems, we have proposed a fast and
optimal sensor scheduling algorithm for networked sensor
systems whose measurements are influenced by state depen-
dent noise [14]. The sensor scheduling problem is formulated
as a model predictive control problem with single sensor
measurement per time. The scheduling algorithm minimizes
a given quadratic cost function at each time. Its computation
time is proportional to the number of the sensors, and it does
not depend on the prediction horizon.

This paper presents a fast sensor scheduling algorithm
for a class of networked sensor systems with heterogeneous
sensors, since the previous scheduling algorithm proposed in
[14] is valid only for a class of networked sensor systems
whose all sensors have the same characteristics. To this end,
a concept of sensor types is introduced in the sensor model.
The key idea to obtain a fast sensor scheduling algorithm
is to separate the original sensor scheduling problem into
two scheduling problems: scheduling of sensor types and
scheduling of sensors in a given sensor type sequence. The
later is solved by using a fast algorithm that is similar
to the algorithm proposed in [14]. The fast scheduling
algorithm proposed in this paper is optimal for a class of
networked sensor systems. Its computation time increases
exponentially with the number of sensor types, while that of
standard methods is exponential in the number of sensors.
The proposed algorithm is efficient, since a networked sensor
system usually consists of a few sensor types as mentioned
before. In addition, we provide a fast sensor scheduling
algorithm for a general class of networked sensor systems
by using a linear approximation of the sensor model.

We use the following notation. The expectation operator
is denoted by E[·]. The Kronecker delta is denoted by δ`m.
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II. SENSOR SCHEDULING PROBLEM

A. System description

This paper considers a class of systems as illustrated in
Fig. 1. The system has N sensors indexed from 1 to N .
For simplicity it is assumed, until Section IV, that only one
sensor is available at each time to achieve power saving.
Systems that can use multiple sensors simultaneously are
discussed in Section V.

Controller

Sensor 1

Sensor 2

Sensor N

Controlled
Object

Fig. 1. A block diagram of a networked sensor system.

Let us now describe details of the system model.
The controlled object is represented as a discrete-time

linear time-invariant system

xp(k + 1) = Apxp(k) + Bpu(k) + w(k) (1)

where xp(k) ∈ Rnp is the state vector, u(k) ∈ Rr the control
input, and w(k) the process noise. The noise w(k) is white,
Gaussian and zero mean with a covariance matrix W . The
time index k is sometimes omitted to simplify notation. The
initial state xp(0) is a random variable whose expectation
value and covariance matrix are known constants.

The sensor model is of the form:

yi(k)(k) =Cσ(i(k))xp(k)

+
qσ(i(k))∑

`=1

di(k)`(x(k))vi(k)`(k) (2)

where yi(k)(k) ∈ Rpσ(i) is the measurement taken by sensor
i(k), i(k) the index of the selected sensor at time k, di` a
vector function that is differentiable with respect to x. The
output yi(k)(k) is simply written by yi(k). The vector x is
defined by

x(k) =
[
x>

p (k) x>
c (k)

]>
where xc is the state vector of the controller which will be
defined later. The matrix function di`(x) is a function of x
not of only xp. This helps to develop a camera model as
shown in Example 1. The noise

vi(k) =
[
vi1(k) vi2(k) . . . viq(k)

]> ∈ Rqσ(i)

is white, Gaussian and zero mean with a covariance

E[vi(k)v>
i (τ)] = Vσ(i)δkτ .

It is assumed that vi(k), w(k) and xp(0) are mutually
independent. It is clear that di`(x(k)) is independent of

vi(k). The function σ is a surjection from {1, 2, . . . , N} onto
{1, 2, . . . ,M} that satisfies

Cσ(i) = Cσ(`) and Vσ(i) = Vσ(`) ⇒ σ(i) = σ(`),

where σ(i) is sometimes simply written by σ. Each value of
σ represents a sensor type. The number of sensor types is
always less than or equal to the number of sensors, that is,
M ≤ N . A networked sensor system usually consists of a
few sensors types [2]. Thus M is far less than N for a class
of networked sensor systems. The concept of sensor types is
effective for our scheduling algorithm proposed later in this
paper, since the computation time of the proposed algorithm
increases exponentially with M while that of the standard
scheduling algorithms is exponential in N .

Finally, the controller is given by

xc(k + 1) = Acσxc(k) + B1cσyi(k) + B2cσu(k), (3)
u(k) = Ccσxc(k) + Dcσyi(k) (4)

where xc(k) ∈ Rnc is the state of the controller. The system
matrices in (3) and (4) are defined for each sensor type σ.
Note that the goal of this paper is to develop a fast and
optimal sensor scheduling algorithm for a given controller,
not to design the controller.

Our previous result [14] provides a fast sensor scheduling
algorithm for systems with a single sensor type, i.e. systems
with M = 1. This paper focuses on systems with multiple
sensor types.

Example 1: Consider four radar sensors and four cameras
that measure the position of a target in the (x, y) plane as
illustrated in Fig. 2.
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Fig. 2. Cameras and radar sensors in the field

The radar sensors are indexed from 1 to 4, and they are
modeled by

yi =
[
x
y

]
+

[
cos θi − sin θi

sin θi cos θi

] [
1 0
0 ri

]
vi (5)

[12] where yi is the measurement, θi the angle between
the x axis and the vector joining sensor i to the target, ri

the distance from sensor i to the target, and vi a white,
Gaussian and zero mean noise (see Fig. 3). It is clear that
(5) is described by (2).
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Sensor i

Fig. 3. Definitions of θi and ri.

The cameras are also indexed from 1 to 4. The optical
axes of cameras 1 and 3 are parallel to the x axis, and those
of cameras 2 and 4 are parallel to the y axis. The indexes
5, 6, 7, and 8 are attached to camera combinations of (1,2),
(2,3), (3,4) and (4,1). The cameras are modeled by

yi =
[
x
y

]
+

[yc−pmy

f

0

]
vi1 +

[
0

xc−p`x

f

]
vi2 (6)

[14], where f is the focal length, (xc, yc) an estimate of
(x, y), and vi1 and vi2 measurement noises for cameras m
and `, respectively. Equation (6) is represented by (2), since
di` is a function of x.

It is assumed that all the radar sensors have the same
covariance matrix Vr and all the cameras have the same
covariance matrix Vc. Then the system has

σ(i) =

{
1, for i = 1, 2, 3, 4,

2, for i = 5, 6, 7, 8.
(7)

The number of sensors is N = 8, and the number of sensor
types is M = 2.

B. Sensor scheduling problem

The closed loop system described by (1)–(4) is of the
form:

x(k + 1) = Aσx(k) + Bσ

q∑
`=1

di`(x)vi`(k) +
[
w(k)

0

]
,

(8)

where

Aσ =
[

Ap + BpDcCσ BpCcσ

B1cσCσ + B2cσDcσCσ Acσ + B2cσCcσ

]
, (9)

Bσ =
[

BpDcσ

B1cσ + B2cσDcσ

]
. (10)

We also define n := np + nc and x0 := E[x(0)].
This paper considers the following problem.
Problem 1: Let a positive integer T and positive definite

symmetric matrices Qp ∈ Rnp×np , R ∈ Rr×r and Π ∈
Rnp×np be given. A cost function is defined by

J = E
[ T∑

k=0

{
x>

p (k)Qpxp(k) + u>(k)Ru(k)
}

+ x>
p (T + 1)Πxp(T + 1)

]
. (11)

Find

{i∗(0), · · · , i∗(T )} = arg min
i(0),··· ,i(T )

J (12)

for given x0.
It is assumed in this paper that model predictive control is

implemented. Problem 1 is solved at each time. Thus a fast
algorithm for solving Problem 1 is desired. One of the most
primitive methods to solve Problem 1 is as follows: Calculate
values of the cost function for all possible sensor sequences
from time 0 to T and compare these values. This is called
the exhaustive search method in this paper. It is clear that
the exhaustive search method requires NT+1 comparisons to
determine the optimal sensor sequence. Thus the exhaustive
search method is not suitable for model predictive control
from the point of view of computation time as will be shown
in Section IV.

A state-dependent sensor scheduling algorithm is neces-
sary, since yi(k) is influenced by state dependent noise in
(2). Note that E[x(k)] is required to derive the optimal sensor
sequence at time k. Therefore we have to estimate E[xp(k)]
at each time. We use (3) as an observer for estimation in
numerical examples presented in this paper.

III. FAST SENSOR SCHEDULING

The key idea to obtain a fast sensor scheduling algorithm
is to separate the original sensor scheduling problem into
two scheduling problems: scheduling of sensor types and
scheduling of sensors in a given sensor type sequence. The
later is formulated as follows.

Problem 2: Let a sensor type sequence from time 0 to T
be given and the given sensor type at time k be denoted by
σk. Then find

{i∗s (0), · · · , i∗s (T )} = arg min
i(0)∈I(0),··· ,i(T )∈I(T )

J (13)

where

I(k) = {i | σ(i) = σk}. (14)

A. Optimal sensor scheduling

The following lemma provides a fast and optimal sensor
scheduling for Problem 2.

Lemma 1: If there exist constant matrices Sσ` ∈ Rp×n

and si` ∈ Rp such that

di`(x)d>
im(x) = (Sσ`x + si`)(Sσmx + sim)>,

∀i ∈ {1, 2, · · · , N}, ∀`,m ∈ {1, 2, · · · , qσ} (15)

then the optimal sensor i∗s (k) defined by (13) satisfies

i∗s (k) = arg min
i(k)∈I(k)

tr[P (k)Ψi(k)] + tr[Φi(k)] (16)

where

P (T + 1) =
[

Π 0
0 0

]
, (17)

P (k) = Q(k) + Aσk

>P (k + 1)Aσk

+
qσk∑
`=1

qσk∑
m=1

Vσk`mS>
σkmB>

σk
P (k + 1)Bσk

Sσk`,

(18)
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Ψi(k) =
qσk∑
`=1

qσk∑
m=1

Vσk`mBσk
(Sσk`A(k)x0s

>
im

+ si`(SσkmA(k)x0)> + si`s
>
im)B>

σk

+
[

W 0
0 0

]
, (19)

Φi(k) = D>
cσk

RDcσk

qσk∑
`=1

qσk∑
m=1

Vσk`m{Sσk`A(k)x0s
>
im

+ si`(SσkmA(k)x0)> + si`s
>
im}, (20)

Q(k) =
[

Qp 0
0 0

]
+

[
C>

σk
D>

cσk

C>
cσk

]
R

[
C>

σk
D>

cσk

C>
cσk

]>

+
qσk∑
`=1

qσk∑
m=1

Vσk`mS>
σkmD>

cσk
RDcσk

Sσk`, (21)

A(k) = Aσk−1 · · ·Aσ1Aσ0 , (22)

and Vσk`m is the (`,m) elements of Vσk
.

Proof: The proof can be done in the same way as
Theorem 1 in [14].

Lemma 1 gives a fast method to solve Problem 2. Actually,
A(k) and P (k) can be computed before sensor scheduling,
since the sensor type sequence is given. Thus, i∗s (k) in (13)
is obtained from (16) by comparing possible µ(σk) values
at each time, where µ(σ) denotes the number of sensors that
belong to σ.

Applying Lemma 1 to the set of all possible sensor type
sequences yields a solution of Problem 1 as follows.

1) O ← {1, 2, · · · ,M}T+1.
2) Repeat the following operations a), b) and c) from m =

1 to MT+1.
a) Choose a sensor type sequence Om ∈ O.
b) Derive the optimal sensor sequence for Om by

using Lemma 1, and obtain the corresponding
cost Jm.

c) O ← O/Om.
3) m∗ = arg minm Jm.
4) Obtain {i∗s (0), · · · , i∗s (T )} for Om∗ as the optimal

sensor sequence for Problem 1.

Let us now evaluate the computational cost of the proposed
algorithm. Let σmk denote the k-th element of Om. For each
m,

∑T
k=0 µ(σmk) values of the cost function are computed

to obtain Jm. Hence the number of comparisons required in
Step 2 is given by

MT+1∑
m=1

T∑
k=0

µ(σmk) =
T∑

k=0

MT+1∑
m=1

µ(σmk)

=(T + 1)NMT . (23)

The last equality follows from the fact that each sensor type
appears MT times in all possible sensor type sequences.
Furthermore, Step 3 compares MT+1 values to obtain m∗.
We therefore have the following theorem

Theorem 1: The computational cost of the proposed algo-
rithm is given by O(TNMT ).

Recall that the exhaustive search method requires NT+1

sensor sequences to determine the optimal sensor sequence,
and its computational cost increases exponentially with N .
Thus the proposed algorithm is effective for networked
sensor systems with heterogeneous sensors when the number
of sensor types, M , is far less than the number of sensors,
N .

B. Fast sensor scheduling based on a linear approximation

We proposed the fast and optimal sensor scheduling
algorithm in the previous section when (15) holds. The
measurement model (5) does not satisfy (15), while (15)
holds for (6). This section is devoted to a generalization and
provides a fast sensor scheduling algorithm based on a linear
approximation that is valid even when (15) is not true. To
this end, the following corollary is established.

Corollary 1: Suppose that there exist constant matrices
Si` ∈ Rp×n and si` ∈ Rp such that

di`(x)d>
im(x) = si`s

>
im + Si`(x(k) − x0)s>

im

+ si`(x(k) − x0)>S>
im,

∀i ∈ {1, 2, · · · , N}, ∀`,m ∈ {1, 2, · · · , qσ} (24)

holds. Then (16) in Lemma 1 is also true when Φi, Ψi, and
P are replaced with

P (k) = Q(k) + A>
σk

P (k + 1)Aσk
, (25)

Φi(k) = D>
cσk

RDcσk

qσk∑
`=1

qσk∑
m=1

Vσk`m

×
{
Si`(A(k) − I)x0s

>
im

+ si`(Sim(A(k) − I)x0)> + si`s
>
im

}
, (26)

Ψi(k) =
qσk∑
`=1

qσk∑
m=1

Vσk`mBσk
{Si`(A(k)x0 − I)s>

im

+ si`(Sim(A(k) − I)x0)> + si`s
>
im}B>

σk

+
[

W 0
0 0

]
(27)

Proof: The corollary can be proven in a similar way to
Lemma 1.

Let us now propose a fast sensor scheduling for general
systems. Suppose that di`(x) is differentiable. Then we
obtain (24) with

si` =di`(x0), (28)

Si` =
∂di`

∂x

>
∣∣∣∣∣
x=x0

(29)

from a linear approximation of di`(x)d>
im(x) around x0.

Corollary 1 with the sensor scheduling algorithm proposed
in the previous section gives a suboptimal sensor sequence.
Repeating from definitions of (28) and (29) to obtaining a
suboptimal sensor sequence, we have a fast sensor scheduling
algorithm.
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IV. NUMERICAL EXAMPLE

Consider again the networked sensor system shown in
Example 1. The goal here is to control a vehicle that travels
on the two-dimensional plane using the networked sensor
system. Let (x, y) be the position of the vehicle. The state
equation of the vehicle in continuous time is given by

˙̄xp =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 x̄p +


0 0
0 0
1 0
0 1

 ū + w̄, (30)

where x̄ := [x y ẋ ẏ]> ∈ R4 and ū ∈ R2. The covariance
matrix of w̄ is set to 0.001I . The state equation (30) is
discretized with a sampling period 0.1. An observer (3) and
a controller (4) are implemented such that the poles of (8)
are set to 0.91 ± 0.055j, 0.92 ± 0.030j, 0.86 ± 0.091j and
0.86 ± 0.091j, where j denotes the imaginary unit.

Radar sensors 1, 2, 3, and 4 are set at

(0, 1), (0, 0.75), (0, 0.5), (0, 0.25),

and cameras 1, 2, 3, and 4 are set at

(1.3, 0.5), (0.5, 1.3), (−0.3, 0.5), (0.5,−0.3),

respectively. Parameters are set to

Vr = diag(0.002, 0.01),
Vc = diag(0.001, 0.001),
Qp = I, R = I, Π = I, T = 3, f = 0.01

Fig. 4 illustrates sample paths of the vehicle for

xp(0) =
[
1.01 1.01 0.01 0.01

]>
,

xc(0) =
[
1 1 0 0

]>
.

In the proposed method, the radar sensor model (5) is
linearized by (24), so that the proposed algorithm can be
applied. The same noise sequence was used for the both
cases.

Fig. 5 shows the obtained sensor sequences. The selected
sensor of the proposed method at time 8 is different from
that of the exhaustive search method. The exhaustive search
method is better than the proposed method from the point
of view of the cost, since the proposed method is based on
a linear approximation. However, the difference between the
obtained costs is small. In fact, the difference is less than
0.5 % at time 8.

On the other hand, the proposed method has less compu-
tation time than the exhaustive search method. The proposed
method takes 5.3×10−2 [s] at each time on average, and the
computation time in each step is within the sampling period.
Meanwhile, the exhaustive search method takes 9.2×104 [s]
where Monte Carlo method is used to calculate the values
of the cost function at each time. The result confirms the
effectiveness of the proposed sensor scheduling algorithm.
The programs ran in MATLAB 7.1 on a PentiumD 3.2 GHz
PC with 2 GB of RAM.
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Fig. 4. Sample paths of the vehicle. The selected sensors are described
with the paths. ◦: the initial positions. •: switching points. Top: proposed
method. Bottom: exhaustive search method.
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Fig. 5. Sequences of the selected sensors. ◦: proposed method. ×:
exhaustive search method.
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V. SENSOR SCHEDULING FOR SYSTEMS THAT CAN USE
MULTIPLE SENSORS SIMULTANEOUSLY

In the previous sections, this paper assumed that one
sensor is available at each time. The proposed algorithms
can be applied to systems that can use multiple sensors
at each time, when all possible sensor combinations are
indexed. This section shows the proposed method has also
less computational complexity than the exhaustive search
method for systems that use L sensors simultaneously.

The number of selections of L sensors from N sensors
without repetition is NCL. The number of selections of
L sensor types from M sensor types with repetition is
M+L−1CL. Thus the computational cost of the proposed
method is given by

O((NCL)T+1), (31)

and that of the exhaustive search method is represented by

O(T (NCL)(M+L−1CL)T ). (32)

It is straightforward to verify that

NCL >M+L−1 CL (33)

is equivalent to

N + 1 > M + L. (34)

This implies that the proposed method is effective when the
sum of the numbers of sensor types M and simultaneously
available sensors L is far less than the number of sensors N .

VI. CONCLUSION

In this paper, a sensor scheduling problem for the class
of systems whose measurements are influenced by state
dependent noise was addressed. A concept of sensor types
in the sensor model was introduced, and it has an important
advantage to making a fast sensor scheduling algorithm.
The sensor scheduling problem was formulated as a model
predictive control problem, and we proposed a fast sensor
scheduling algorithm for a class of networked sensor systems
with a few sensor types. The computation time of the
proposed algorithm increases exponentially with the number
of sensor types, while the computation time of a primitive
algorithm is exponential in the number of sensors. The
computation time of the proposed algorithm may be further
reduced when a branch and bound method is implemented. A
numerical example demonstrated that the proposed algorithm
is effective for networked sensor systems with heterogeneous
sensors.
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