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Abstract— Single-track hard disk drive (HDD) seek perfor-
mance is measured by settling time, ts, defined as the time
from the arrival of a seek command until the measured position
reaches and stays within an acceptable distance from the target
track. Previous work has shown feedforward dynamic inversion,
coupled with an aggressive desired trajectory yd, is capable of
achieving high performance settling times when the closed-loop
dynamics are time-invariant and accurately modeled. In con-
trast, we describe an adaptive inversion procedure in this paper
which removes the requirement for accurate initial models and
tracks the position-variant dynamics present in our Servo Track
Writer (STW) experimental apparatus. The proposed indirect
adaptive inversion algorithm relies on a recursive least squares
(RLS) estimate of the closed-loop dynamics. Pre-filtering of
the RLS input signals and covariance resetting are necessary
additions to the baseline adaptive algorithm in order to achieve
fast settling times. Compared to the nonadaptive solution with
accurate system identification, we show the adaptive algorithm
achieves a 22% reduction in average settling time and a 53%
reduction in settling time standard deviation.

I. INTRODUCTION

Settling time, ts, is defined as the elapsed time from the

start of the commanded motion until the measured position

is contained within an acceptable distance from the target

position. Minimizing ts is desirable in many diverse appli-

cations, including automated manufacturing, where smaller

ts leads to reduced manufacturing time and cost, and space-

based imaging, where smaller ts enables increased coverage

of the target and less distortion in the final image. This

paper will focus on a third application: repetitive, unsatu-

rated single-track seeks in hard disk drives (HDDs). Typical

HDD operating modes where repetitive unsaturated single-

tracks seeks are common include servo track writing [1],

sequential data transfer [2], and scans for detecting media

surface defects resulting from manufacturing [3]. In each of

these operating modes, it is desirable to have each HDD

within a large population achieve its minimum ts to increase

data throughput or decrease manufacturing time and cost.

Standard practices within the HDD industry instead attempt

to use a single robust seek control design that achieves a

minimum level of performance across the entire population.

Therefore, many of the HDDs sacrifice performance in order

for the population outliers to perform adequately.

HDD dynamics can nominally be described by a rigid

body mode with higher-order structural resonances. Over
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a population of plants, these resonances show structured

uncertainty in lower frequency ranges, and much larger,

unstructured variation at higher frequencies. It is extremely

difficult for a low-order parametric model to capture the

complexity of the population in this higher frequency range.

While we simplify the focus of this paper to discrete-time,

linear time-invariant (LTI), single-input single-output (SISO)

descriptions of the HDD population dynamics, the population

uncertainty provides a significant challenge to minimizing

settling time.
A further complicating factor in the plant sets is nonmini-

mum phase (NMP) zero dynamics. NMP dynamics can arise

when the sensors and actuators are noncollocated [4, Ch. 8],

a configuration common in HDDs where the magnetic reader

position sensor and voice-coil actuator are on opposite ends

of the flexible actuator arm. NMP zeros in discrete time

dynamics can also result from fast sample rates and high

relative degree [5]. NMP dynamics complicate the choice of

settling time reduction algorithm, both for optimizing settling

performance on a single HDD and an uncertain population

of HDDs.
In previous work [6] [7], we have investigated the use

of NMP dynamic inversion algorithms and architectures for

settling time reduction on a single unit within a popula-

tion. While this previous work produced aggressive settling

performance on a single unit in a population, the results

relied on accurate dynamics modelling. Small errors in the

model used for the NMP inverse design led to undesirable

settling performance. Further, slowly time- and position-

variant dynamics caused the high performance results to

deteriorate while seeking over many tracks, regardless of the

accuracy of the fixed model.
Alternatively, we explore adaptive NMP inversion methods

in this paper which exploit the persistently exciting nature

of the HDD operating modes to:

1) Relax the accurate model requirement for each unit in

the population.

2) Track slowly time- and position-variant dynamics such

that we maintain consistent, aggressive settling perfor-

mance over the entire range of motion.

While dynamic inversion is typically applied to trajectory

tracking applications, we show that when combined with

adaptive desired output trajectory, yd, generation, it can

be an effective settling time reduction approach. We favor

this technique because it is computationally simple, lending

itself to implementation on low-cost HDD digital signal

processors (DSPs), and amenable to on-line adaptation across

the population.
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In the following section, we review previous results using

NMP dynamic inversion for settling performance. Section

III experimentally demonstrates the deterioration in set-

tling performance due to both initial modeling errors and

position-dependent dynamics. We review multiple adaptive

approaches to NMP dynamic inversion in Section IV, ulti-

mately selecting an indirect scheme based on simplicity and

effectiveness. Section V discusses the adjustments required

to the adaptive algorithm for high performance experimental

results. With these adjustments, we show consistently fast

settling times over many seeks using extremely limited initial

closed-loop dynamics information. We summarize the results

and discuss extensions in Section VI.

II. NMP INVERSION FOR SETTLING PERFORMANCE

Fig. 1 depicts our approach to achieving aggressive set-

tling performance, as discussed in [6] and [7]. The closed-

loop system HCL is placed in series with a low-order LTI

inverse system H̃−1

CL and a desired command profile yd. The

trajectory generator system selects the aggressiveness of the

yd profile to reduce ts for each unit in the population. Based

on the yd trajectory and knowledge of the HCL dynamics,

the inverse system H̃−1

CL determines the required closed-loop

input r.

Many related technologies have been applied to vari-

ous settling performance applications. Time-optimal control

strategies with saturated commands, as in [8], do not ap-

ply in this application because the actuator commands for

single-track HDD seeks are far from the saturation limits.

Traditional iterative learning control assumes a fixed desired

trajectory [9]. If we choose a fixed yd that every unit in

the HDD population is capable of tracking, we would be

sacrificing performance on many units. Classic input shaping

techniques are most commonly concerned with the reduction

of high frequency resonance mode excitation [10]. In order

to achieve high performance HDD seeks, we must not only

treat those resonance modes but also the uncertain lower fre-

quency dominant second order dynamics. Optimal trajectory

generation algorithms typically require complex calculations

[11]. These calculations would be difficult to implement on-

line for each unit in the HDD population. Finally, [12] and

[13] propose a similar combination of dynamic inversion and

reference trajectory generation to reduce ts. Unfortunately,

the complex off-line optimization procedures are not suited

to the HDD application. We favor the scheme in Fig. 1

because it addresses the needs of the HDD operating modes

with a realistic level of computational complexity for the

HDD DSPs.

Fig. 1. Block digram describing NMP dynamic inversion for settling time
reduction.

A. Desired Output Trajectory Generation

We need a parameterization of yd trajectories that is

computationally simple but able to produce a wide range of

yd’s, from unaggressive to extremely aggressive. Motivated

by the solution to the time optimal control problem for a

rigid body, we use a family of yd trajectories generated from

the double integral of a bang-bang acceleration pulse. The

Z-transform of yd can be written as

YD(z) =
1

2d2

(z + 1)

(z − 1)

(

d−1
∑

i=0

zi

)2

z2d−1
, (1)

where T is the sample time and 2d is the total duration

of yd. This simple parameterization provides a single scalar

value, d, that can select the aggressiveness of the seek, while

also being extremely computationally efficient. Although

extensions of this work adaptively select d on-line for each

unit in a population of HDDs [14], this paper uses a fixed

extremely aggressive yd. By fixing yd, we simplify the scope

of the paper and focus on the adaptive inversion algorithm.

In the following sections, yd is generated by setting d = 3
samples in (1).

B. NMP Inversion Algorithm

Dynamic inversion is complicated by the presence of

NMP zeros, even for LTI SISO systems. The NMP zeros

of the original system become unstable poles in the inverse

system. For the HDD application, this causes the system

in Fig. 1 to exactly track yd (with possible delay) while r

grows unbounded. Many techniques exist to compute exact

and approximate solutions for the inverse dynamics, H̃−1

CL,

with bounded input signal r. There is a major division in

NMP algorithms between those that stably approximate the

exact unstable inverse of HCL, and those that use the exact

unstable inverse directly. While [7] quantifies the achievable

settling performance of many NMP inversion algorithms, this

paper simply reviews the best-performing stable approximate

algorithm in the HDD application from [7].

In order to review stable approximate NMP inversion algo-

rithms, it is helpful to first partition the closed-loop dynamics

into minimum phase (MP) and NMP zero polynomials

HCL(z) =
B(z)

A(z)
=

Bm(z)Bn(z)

A(z)
, (2)

where B is the closed-loop numerator polynomial, Bm

contains all closed-loop MP zeros, Bn contains all closed-

loop NMP zeros, and A is the closed-loop denominator

polynomial. These polynomials can be described by

B(z) =
(

b0z
m + b1z

m−1 + · · · + bm

)

, (3)

Bm(z) =
(

bm0z
mm + bm1z

mm−1 + · · · + bmmm

)

, (4)

Bn(z) =
(

bn0z
mn + bn1z

mn−1 + · · · + bnmn

)

, (5)

A(z) =
(

zn + a1z
n−1 + · · · + an

)

, (6)

where n is the order of the closed-loop dynamics, m is the

total number of closed-loop zeros, mm is the number of MP
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zeros, and mn is the number of NMP zeros. We can then

express the closed-loop inverse H̃−1

CL as

H̃−1

CL(z) =
A(z)B̃−1

n (z)

zkpBm(z)
. (7)

We use the variable B̃−1
n to denote the inverse of the NMP

zero polynomial Bn. Also, kp samples of delay have been

added to H̃−1

CL to maintain causality and ensure H̃−1

CL is

exactly proper. The ˜ modifier on both H̃−1

CL and B̃−1
n

signifies that these quantities are not the exact inverses

of HCL and Bn, respectively. When HCL is NMP, B̃−1
n

can take on numerous forms, including Hurwitz polynomial

approximations of the exact inverse and stable rational poly-

nomial transfer functions. The various stable approximate

NMP inversion algorithms differentiate themselves in the

way they compute B̃−1
n and the kp samples of delay required

[15]-[18].

A noncausal inverse can result from a strictly proper

closed-loop transfer function HCL with nonzero rel-

ative degree, where relative degree p is defined as

p = n − mm − mn. Noncausal inverses can also result from

the use of noncausal algorithms for approximating the unsta-

ble inverse of Bn. Referring to Fig. 1, a noncausal inverse

system would require a change in r before a change in yd,

also known as preactuation. As discussed in [6] and [7],

anticipation of a seek start command would be required to

implement preactuation, which is unrealistic in the HDD

operating modes of interest. We therefore must add kp

samples of delay to H̃−1

CL. Unlike many dynamic inversion

tracking applications, this negative effect of preactuation

on settling time leads to interesting considerations when

selecting an inversion algorithm.

The noncausal Taylor series approximation to the NMP

inverse approximates 1

Bn
with a noncausal polynomial

B̃−1
n (z) =

mT
∑

i=0

αiz
i

Bn(1)

mT
∑

i=0

αi

, (8)

where mT is the order of the series approximation and the

αi sequence is derived from the Taylor series expansion of
1

Bn
, as in [15]. The resulting transfer function from yd to y

is

Y (z)

Yd(z)
=

Bn(z)

mT
∑

i=0

αiz
i

zp+mT +mnBn(1)

mT
∑

i=0

αi

. (9)

While (9) has a finite impulse response (FIR), which has

desirable settling performance qualities, we have also added

kp = p+mn +mT samples of delay to maintain causality of

H̃−1

CL. Increasing mT improves the approximation to 1

Bn
and

yields better (delayed) tracking accuracy, while deteriorating

the achievable settling performance. As in [7], the shortest

series, a zero-order approximation with mT = 0, provides

the best settling performance in this HDD application. The

tracking improvements that come from higher-order approx-

imations are negated by the accompanying increase in ts.

III. NONADAPTIVE EXPERIMENTAL RESULTS

A. Experimental Hardware

A Servo Track Writer (STW) [1], provided by Maxtor

Corporation, is the experimental testbed for our work. A

population of Servo Track Writers is used to magnetically

encode the initial servo position information on the magnetic

media during high volume HDD manufacturing. The STW

has its own voice-coil motor (VCM) and precision encoder

that mechanically interface with the HDD actuator arm and

HDD VCM through an opening in the HDD baseplate. Mod-

ern HDDs can require the STW to make over 500,000 single-

track seeks per disk drive. The single-track seek distance

is determined by the HDD track density; we use a single-

track step size of 1 µrad as a representative angular track

width for a modern HDD. The STW has an encoder sensor

resolution of 0.5 nanorad, and a compensator sample time

of T = 68 µs.

We experimentally identify the STW closed-loop dynam-

ics via pseudo-random sinusoidal injection at 100 angular

positions, with each position separated by 1 track. Fig. 2

shows the experimentally identified frequency response of

HCL at each angular location, with a weighted least-squares

model fit to the compilation of all data sets. The weighted

least squares model for HCL is

HCL(z) =
0.10988(z + 0.4947)

(z − 0.1541)(z2 − 1.859z + 0.8695)

×
(z2 − 1.874z + 0.8807)(z2 + 2.389z + 1.574)

(z2 − 1.24z + 0.4409)(z2 + 1.233z + 0.878)
. (10)

This 7th-order model has a closed-loop bandwidth near

1 kHz, unity DC gain, a relative degree of 2, a high frequency

structural mode near 5.3 kHz, and 2 NMP zeros outside the

unit circle at z = − 1.1946 ± j0.3838.

While the 100 frequency responses are indistinguishable in

Fig. 2, there are minor differences as a function of angular
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Fig. 2. Experimental and modeled frequency responses of STW closed-
loop system.
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Fig. 3. Frequency magnitude response, with mean removed, of the closed-
loop system at 100, 1000, and 3000 Hz over 100 tracks.

location. Fig. 3 plots the frequency magnitude response at

100, 1000, and 3000 Hz versus track for each of the 100 data

sets taken over 100 tracks. In each of the three data sets,

the mean has been removed to better visualize the trends.

There is an obvious periodicity that is most pronounced

near the closed-loop bandwidth of 1000 Hz. The period of

the oscillation is 56 tracks, which equates to the diffraction

grating angular fringe spacing within the STW’s optical

encoder. The position-dependant fluctuations in the closed-

loop dynamics result from optical encoder gain fluctuations

as a function of encoder angle. While performing seeks over

many tracks, the encoder gain and closed-loop dynamics

vary periodically. As we will see, these small fluctuations

in the closed-loop dynamics surprisingly lead to pronounced

periodic fluctuations in ts when using a fixed model for HCL

and aggressive yd.

B. Experimental Settling Performance

Fig. 4 shows the simulated and experimental settling

performance over 1000 single-track seeks when using (10)

with d = 3 to derive a fixed model inverse. This is an

extremely aggressive yd given the system order is n = 7.

Simulation predicts ts = 0.544 ms, or 8 samples, for this

choice of yd. While some of the experimental seeks match

this performance periodically, other seeks have settling times

as large as 38 samples. In general, the experimental ts shows

a similar 56 tracks per cycle periodicity as the closed-loop

gain variations in HCL. This track-to-track variability in ts
is extremely undesirable in the HDD application.

Fig. 5 shows both simulated and experimental output tra-

jectories. The simulated response illustrates the FIR behavior

discussed in Section II-B. After 8 samples, the simulated

response is within the settling boundary. After 9 samples,

the response has perfectly achieved the desired final position.

The experimental trajectories include the 1000 seek average

response and individual responses from the 552nd and 572nd

seeks. The average response is dominated by lower frequency

overshoot without considerable high frequency resonance ex-

citation, even for this aggressive yd trajectory. The overshoot

is consistent with misidentification of the dominant closed-
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Fig. 4. Experimental and simulated settling performance over 1000 single-
track seeks.
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Fig. 5. Simulated and experimental output trajectories, including a 1000
seek average and individual trajectories for the 552nd and 572nd seeks.

loop dynamics. The 552nd and 572nd individual seeks are

chosen near the extremes of the periodic variation in the

closed-loop dynamics. Both individual seeks show overshoot

and undershoot that exceed the settling boundary and dra-

matically increase ts. The seemingly random large increases

in ts from Fig. 4 are actually caused by disturbances and

noise pushing output trajectories, already close to the settling

boundary because of overshoot and undershoot, across the

threshold.

This experimental study highlights two serious issues with

nonadaptive dynamic inversion for settling performance:

1) The inverse model is extremely sensitive to the off-line

system identification of HCL. While high frequency

modeling errors become increasingly important with

more aggressive yd’s, it is actually the low and mid fre-

quency modelling errors that dominate our ts results.

Misidentification of the dominant 2nd-order dynamics

are the cause of the overshoot in the average trajectory

in Fig. 5.

2) Time or position-variant dynamics in HCL will cause

any fixed model to be in error over many seeks. The ts
periodic fluctuations in Fig. 4 are the results of similar

periodic fluctuations in the HCL dynamics.
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The following section presents adaptive extensions to dy-

namic inversion for settling performance in an attempt to

address these two issues.

IV. NMP ADAPTIVE INVERSION

Adaptive control approaches can be generally classified

as either direct or indirect. Indirect methods attempt to

identify the relevant system dynamics parameters on-line,

and then use those parameters for controller synthesis. The

indirect self-tuning regulator (STR) [19, Sec. 3.3] is a well-

known example of indirect adaptive control. In contrast,

direct adaptive control approaches attempt to adjust the con-

troller parameters on-line without first identifying the system

dynamics. Model Reference Adaptive Control (MRAC) [19,

Ch. 5] is a well-known direct adaptive feedback control

technique.

NMP zero dynamics provide special challenges for adap-

tive control, especially for direct methods. In order to pro-

hibit MRAC from cancelling the NMP zeros with unstable

poles, the NMP zeros are typically assumed known and

included in a reference model [19, pp. 118-119]. This is prob-

lematic for our HDD application where the NMP zeros may

have significant uncertainty. An alternative direct adaptive

feedforward control technique, specifically formulated for

adaptive NMP inversion, uses an FIR approximation to the

inverse of the closed-loop dynamics [20]. The inverse itself

is constrained to be stable because it is FIR. Unfortunately,

accurate approximations of HCL in our application require

high-order FIR filters to capture both the high and mid-

frequency dynamics. High-order filters require more com-

putation cycles and raise implementation issues given the

limited computational hardware in the HDD application.

Given these concerns with direct adaptive control of NMP

systems, we instead choose an indirect scheme to adaptively

tune the H̃−1

CL system, as shown in Fig. 6. We rely on a

recursive least squares (RLS) parameter estimation algorithm

to estimate the closed-loop dynamics, and then use the inver-

sion technique from II-B to synthesise an inverse system. A

similar approach has been taken in [21], although the authors

use a different inversion procedure designed for accurate

tracking instead of settling performance.

We use the indices i and j to denote, respectively, seek

number and sample number within a seek. Given this defi-

nition, we use the equation error formulation [22, Ch. 3] to

write the output estimate, denoted ŷ, as the inner product of

Fig. 6. Indirect adaptive dynamic inversion block diagram.

a regression vector φ and a parameter estimate vector θ̂

ŷ(i, j) = φT (i, j)θ̂(i, j) , (11)

where

φ(i, j) = [y(i, j − 1) · · · y(i, j − n)

r(i, j + m − n) · · · r(i, j − n)]
T

, (12)

θ̂(i, j) =
[

â1 · · · ân b̂0 · · · b̂m

]T

. (13)

Here, we use the definition of HCL polynomials from (3)

and (6). The ˆ modifier on the polynomial coefficients in

(13) signifies that these values are approximations to the true

closed-loop dynamics.

The recursive least squares algorithm form with forgetting

(RLSF) for updating the parameter estimate [22, Ch. 4] is

θ̂(i, j) = θ̂(i, j − 1) +

L(i, j)
[

y(i, j) − φT (i, j)θ̂(i, j − 1)
]

.(14)

The time-varying vector update gain L(i, j) is

L(i, j) =
P (i, j − 1)φ(i, j)

λ + φT (i, j)P (i, j − 1)φ(i, j)
, (15)

where the matrix P , also known as the covariance matrix, is

P (i, j) =
1

λ
[P (i, j − 1)−

P (i, j − 1)φ(i, j)φT (i, j)P (i, j − 1)

λ + φT (i, j)P (i, j − 1)φ(i, j)

]

. (16)

λ is the forgetting factor and satisfies 0 < λ ≤ 1. λ = 1 uses

no data forgetting in the RLS solution. Once the parameter

estimate, θ̂, is computed, the zero-order Taylor series inverse

approximation procedure from II-B is used to determine the

inverse parameter estimate, θ̂inv .

The parameter estimate, θ̂, from RLS can be shown to

converge to the true parameter vector θ [22, Ch. 5], assum-

ing noise-free and correct model structure conditions. The

closed-loop input r must have “sufficiently rich” frequency

content such that r and y, and consequently φ, contain

information describing all the dynamics included in the

model structure θ̂ [22, Ch. 6]. Exponential convergence can

be achieved with RLSF if λ < 1. The downside of RLSF

is that P can grow without bound if persistent excitation

is not maintained. RLS without forgetting (λ = 1) does

not suffer from this limitation because P will vanish over

many iterations which effectively turns off the parameter

updates in (14). While this ensures P remains bounded, time

variations in the closed-loop dynamics, such as the periodic

fluctuations in sensor gain from Fig. 3, will not be tracked.

We choose to use RLS without forgetting in this paper and

apply covariance resetting in Section V to overcome the

inability to track time-varying parameters.

Persistent excitation can be a difficult requirement to

fulfill in a realistic application with disturbances, noise, and

unmodeled dynamics. It is further complicated when the

adaptive dynamics are responsible for generating the exci-

tation. While the repetitive seek trajectories are aggressive
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Fig. 7. Timing diagram showing when φ(i, j) is measured, and when

θ̂(i, j) and θ̂inv(i, j) are updated.

and highly energetic in our HDD seek application, we are

attempting to use zeros in the adaptive inverse to cancel

poles in the closed-loop dynamics. If we do this well,

we will be limiting the excitation energy in r near those

closed-loop dynamics and limiting our ability to accurately

identify. For our application, the feedback tracking controller

is designed for precise set-point regulation, and thus has a

well-damped dominant closed-loop mode. This relaxes the

need to perfectly cancel the poles with zeros in the inverse.

As we will show with results from our STW experimental ap-

paratus, we are able to achieve the desired aggressive settling

performance predicted with idealized noise-free simulations.

We tolerate some identification errors in those well-damped

closed-loop poles and do not have to resort to the addition

of dithering excitation signals as in [20, Ch. 4] to improve

identification.

We use a specific update procedure for θ̂ and θ̂inv to

reduce computations and memory usage on the STW hard-

ware, depicted in Fig. 7. First, while the closed-loop input r

and output y are measured real-time during the ith seek, the

samples are cached and not immediately used. This allows

the computations for θ̂(i, j) to be implemented outside the

real-time software. Second, we only calculate θ̂inv(i, j) when

the desired action at a given track is complete, such as

reading or writing data. We are only interested in tracking

slow changes that occur over many seeks, and thus can use

θ̂inv(i, j) as a fixed inverse over the (i+1)th seek. Finally, we

do not compute θ̂(i, j) for the first n samples of each seek

(counting from zero), which allows us to populate φ(i, j)
with data taken solely from the ith seek. φ(i, j) can be dis-

carded when the ith action is complete. At the nth sample of

every seek, we require a past parameter vector and covariance

matrix. We use the final values from the previous seek, as in

θ̂(i, n − 1) = θ̂(i − 1, kf ) and P (i, n − 1) = P (i − 1, kf ),
where kf is the final sample when the reading or writing

action is complete.

V. ADAPTIVE INVERSE EXPERIMENTAL RESULTS

A. Baseline Adaptive Results

We begin the adaptive inversion experimental results by

discussing the performance of the baseline adaptive algo-
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rithm. The algorithm is implemented exactly as described in

Section IV and Fig. 6. The low-pass filters (LPFs) from Fig. 6

are set to 1, and we use an extremely poor initial parameter

estimate with unity gain. We match the θ̂ order to the order

of the model in (10), with n = 7 and m = 5. This yields an

initial parameter estimate of θ̂(1, 6) = [01×7 1 01×5]
T

. We

also set the initial covariance matrix to the identity matrix

P (1, 6) = I13×13.

Fig. 8 plots both the average experimental output and each

individual experimental trajectory for all 1000 seeks using

the baseline adaptive inverse algorithm. The nonadaptive

simulation output with an assumed perfect model is included

for comparison. The experimental output trajectories show

extreme undershoot causing the majority of the seeks to have

settling times greater than 40 samples. This is much worse

performance than the nonadaptive algorithm from Fig. 4.

The errors between the average experimental trajectory and

the ideal simulation are predominantly at lower frequencies,

suggesting that our on-line identified model is not accurately

capturing the dominant 2nd-order dynamics.

Fig. 9 plots the parameter estimate vector components

at the end of each seek, θ̂(i, kf ). Not only do we require

these parameters to capture the dominant mode in the closed-

loop dynamics, we also expect them to track the known 56

tracks per cycle periodicity. While initially some parameters
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Fig. 11. Settling time over 1000 seeks for the adaptive inversion algorithm
with low frequency weighting.

do show a 56 tracks per cycle oscillation, it quickly decays

and all parameters show little motion after the 500th seek.

Together, both Figs. 8 and 9 clearly indicate that high

performance settling times will require adjustments to the

baseline adaptive algorithm.

B. Frequency Domain Weighting

Frequency domain weighting is a common technique pre-

scribed to focus the RLS identification algorithm in specified

frequency bands [22, Ch. 18]. In our application, the weight-

ing is accomplished through the use of pre-filters on the

signals r and y, as in Fig. 6. Motivated by the deficiencies in

the baseline adaptive results, we use low-pass filters to more

heavily weight the lower frequencies in r and y. We observe

a wide range of LPFs correct the misidentification, and select

a simple 2nd-order low-pass Butterworth filter with a 100 Hz

corner frequency to produce the remaining results in this

paper.

Fig. 10 shows the experimental output trajectories when

combining the baseline adaptive algorithm with the low-pass

filter. We no longer see the extreme undershoot from Fig. 8.

In fact, the average experimental response is accurately

tracking the idealized simulation with less than 2% error.

The LPFs have aided the RLS identification algorithm in
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Fig. 12. θ̂ parameter trajectories for the adaptive inversion algorithm with
low frequency weighting and covariance resetting.

accurately estimating the dominant lower frequency dynam-

ics. The settling times as a function of seek number, plotted

in Fig. 11, also show promise. After only twenty seeks,

the initial settling time of 25 samples has converged to

the predicted settling time of 8 samples. Given our poor

initial model, this result is very encouraging. Unfortunately,

the settling time results are still affected by the 56 tracks

per cycle position-variant dynamics. The RLS parameter

identification algorithm is clearly not tracking this variation

in the closed-loop dynamics.

C. Covariance Resetting

With an RLS algorithm without forgetting, the parameter

estimate update gain, L(i, j) in (14), rapidly decreases with

each subsequent seek. New information contained in the r

and y signals has little effect on the parameter update when

L(i, j) is small. This is a classic problem with RLS parame-

ter identification and has multiple possible solutions. We use

covariance matrix resetting [22, Sec 3.1] to keep L(i, j) large

and allow new information to influence θ̂. The covariance

matrix, P (i, j), is initialized and allowed to propagate over

the first two seeks as in Section V-A. On the third and all

subsequent seeks, the covariance matrix is preloaded to its

final value from the second seek P (i, 6) = P (2, kf ) for all

i > 2. While the particular choice of the 2nd seek is not

significant, we find this provides an adequately sized P and

allows θ̂ to track time-varying dynamics.

Fig. 12 shows the parameter estimate θ̂ evolve over

all 1000 seeks. Unlike Fig. 9 without resetting, multiple

parameters show a consistent 56 tracks per cycle oscillation

that does not decrease as seek number increases. The RLS

identification algorithm is now responding to the closed-loop

dynamics periodic variation. Fig. 13 plots the simulated and

experimental settling times over all 1000 seeks. Similar to the

low-pass filter results in Fig. 11, the settling time starts out

large and quickly converges to the predicted 8 sample settling

time over the first 20 seeks. Unlike the previous results,

we no longer see periodic error in the settling performance.

After the initial convergence, the settling times deviate from

ideal simulation randomly by ±1 sample. The combination
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Fig. 13. Settling time over 1000 seeks for the adaptive inversion algorithm
with low frequency weighting and covariance resetting.

of low-pass filtering and covariance resetting is required in

this application to produce high performance settling times.

The benefits of the adaptive algorithm are clear when com-

paring with the nonadaptive solution. The average adaptive

settling time is 7.9 samples, compared to 10.1 samples for the

nonadaptive distribution. The settling time standard deviation

for the adaptive algorithm is 1.4 samples versus 3.0 samples

for the nonadaptive case. The adaptive solution clearly pro-

vides for faster and more consistent settling performance. It

is also important to note that the nonadaptive results rely

on an accurate off-line model. The settling time distribution

for the nonadaptive case would likely be much worse for a

different STW in the population.

VI. CONCLUSIONS

Adaptive dynamic inversion is an effective and practical

means to achieve high performance settling times. With

very poor initial models, the adaptive inverse algorithm is

able to quickly identify the relative closed-loop dynamics

over very few seeks and lower the settling time. Further,

the adaptive algorithm tracks position-dependent dynamics

as we seek over many tracks and maintains a consistent

settling performance. We see substantial improvements in

both the average settling time and settling time standard

deviation when compared with a nonadaptive solution. The

benefits of the adaptive algorithm are further strengthened

when considering the nonadaptive results were taken with an

accurate system identification model of the specific hardware.

The benefits of the adaptive inversion algorithm are not for

free. In order to obtain the desired settling performance, both

low-pass filtering and covariance resetting were required ad-

ditions to the baseline adaptive algorithm. These two features

add additional design parameters that may require changes

for different families of closed-loop dynamics, different time-

or position-variant dynamics, or different yd trajectories.

Extensions of this work focus on variable yd trajectories

and computational improvements through the use of fixed-

covariance matrices.
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