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Abstract— In this paper, direct adaptive-state feedback con-
trol schemes are developed to solve the problem of asymptotic
tracking and disturbance rejection for a class of distributed
large-scale systems with faulty and perturbed interconnection
links. Adaptation laws are proposed to update controller
parameters on-line when all interconnected fault factors, the
upper bounds of perturbations in interconnection links and
external disturbances on subsystems are unknown. Then a
class of distributed state feedback controllers is constructed
to automatically compensate the fault and perturbation effects,
and reject the disturbances simultaneously based on the infor-
mation from adaptive schemes. The proposed adaptive robust
tracking controllers can guarantee that the resulting adaptive
closed-loop distributed system stable and each subsystem can
asymptotically-output track the corresponding reference signal.
The proposed design technique is finally evaluated in the light
of a simulation example.

I. INTRODUCTION

A large class of practical control systems, such as chemical

processes, vehicular platoons and Microelectromechanical

system (MEMS), can be considered as large-scale systems

composed with a large number of spatially interconnected

units. And many approaches have been developed to synthe-

size some types of distributed controllers for guaranteeing

the dynamic large scale system well-posed, stable, and

contractive (see, e.g., [1]− [11], and the references therein) in

recent. Using networks, communications among subsystems

play a very important role in distributed systems. Thus,

many issues which always exist in communications, such

as single attenuations [1], bandwidth limitations (bit rate

limitations) [5], time delays [6]− [8] and perturbations [9], are

addressed by some researchers. LMI methods are adopted to

deal with these issues for guaranteeing the well-posedness,

stability, and contractiveness of the system in above works.

However, to the best of the authors’ knowledge, the problem

of asymptotic tracking for distributed control systems with

faulty and perturbed interconnection links has not yet been

investigated by using adaptive method.

The asymptotic tracking problem is more challenging

in the presence of unknown time-varying disturbances.
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Continuous robust adaptive control laws in the presence

of bounded disturbances can generally ensure closed-loop

signal boundedness and convergence of the tracking error

to a residual bounded set with size of the order of the

disturbance magnitude, but not asymptotic tracking [20], [21].
Recently, the problem of disturbance rejection has received

considerable attention, and robust adaptive controllers have

been developed in [15], [17], [18] and [19] to guarantee

asymptotic tracking for systems. In this paper, a new method

is proposed to deal with disturbance rejection problem of

guaranteeing asymptotic tracking for distributed systems.

In this paper, a general fault model for signal attenuation

and perturbations in interconnection channels is considered.

Each signal attenuation factor and upper bound of per-

turbations are assumed to be unknown. We also assume

that the unknown external disturbances exist on the sub-

systems all the time. A direct adaptive method is proposed

to solve the robust tracking problem for developing some

distributed state feedback controllers. For this purpose, we

first propose some adaptation laws to update the controller

parameters. Then, the distributed controllers are constructed

by using the updated values of these estimations. Based

on the Lyapunov stability theory, the adaptive closed-loop

large-scale system can be guaranteed to be stable and each

subsystem can asymptotically-output track the corresponding

reference signal in the presence of faults and perturbations

in interconnection channels, and external disturbances.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: R stands for the set of real numbers, and

for a real matrix E, λmax(E) represents the largest eigen-

value of E. Given matrices Mk,k = 1, . . . ,n, the notation

diagn
k=1[Mk] denotes the block-diagonal matrix with Mk along

the diagonal and denoted diagk[Mk] for brevity. For signals

or vectors xk, the notation catnk=1xk denotes the signal or

vector (x1,x2, . . . ,xn) formed by concatenating xk. This is

also usually denoted catkxk for brevity.

In this paper, we consider a large-scale system G com-

posed of N interconnected linear time-invariant continuous

time subsystems Gi, i = 1,2, . . . ,N. Each subsystem is cap-

tured the following state-space equation:





ẋi(t)
wi(t)
yi(t)



 =





Ai
T T Ai

T S Bi
T d Bi

Tu

Ai
ST Ai

SS Bi
Sd Bi

Su

Ci
T Ci

S Di
d Di

u













xi(t)
vi(t)
di(t)
ui(t)









(1)

where xi(t)∈ Rni is the state, ui(t)∈ Rmi is the control input,

yi(t) ∈ Rli is the measured output, di(t) ∈ Rpi is the external
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Fig. 1. Example of interconnected closed-loop system with N = 3
subsystems.

disturbance, and vi := cat j(vi j), vi j ∈Rq ji and wi := cat j(wi j),
wi j ∈ Rqi j j = 1,2, . . . ,N are the interconnection input to

each subsystem and the interconnection output from each

subsystem, respectively. All system matrices are known real

constant matrices with appropriate dimensions.

In the normal case, once the relationships between the

inputs and outputs at each subsystem have been defined,

the distributed system can be described by closing all loops

by imposing the constraints of interconnection with the

interconnection condition such that

vi j(t) = w ji(t). (2)

Here, we assume every subsystem is controllable and

the states of each subsystem are available at every instant.

Moreover, every state has its interconnection channel in-

terconnected with other subsystems. We also assume the

controller and plant use identical interconnection channels.

Then, a state feedback controller with same interconnection

structure for this system has controllers Ki given by
[

ui(t)
wK

i (t)

]

=

[

Ki11 Ki12

Ki21 Ki22

][

xi(t)
vK

i (t)

]

(3)

where vK
i (t) := cat j(v

K
i j), wK

i (t) := cat j(w
K
i j) and vK

i j(t),

w ji(t) ∈ R
qK

ji also have interconnection condition with

vK
i j(t) = wK

ji(t) (4)

in the normal case. Then, the closed-loop system can be

illustrated for example in Fig.1.

We make the following assumption on the subsystem

matrices:

Assumption 1. The subsystems are interconnected only

through their states, that means,

Ai
SS = 0, Bi

Su = 0, Bi
Sd = 0, Ki22 = 0. (5)

In this paper, we formulate the faults including faulty

interconnection links between communicating subsystems.

Let vhF
i j (t) represent the signals from the jth communicating

subsystem that have failed in the hth faulty mode. Then we

denote the fault model as follows:

vhF
i j (t) = ρh

ji(t)vi j(t), i, j = 1,2, . . . ,N, h = 1,2, . . . ,L (6)

where ρh
ji(t) is unknown interconnected factor, the index h

denotes the hth faulty mode and L is the total faulty modes.

For every faulty mode, ρh

ji
and ρ̄h

ji represent the lower and

upper bounds of ρh
ji(t), respectively. Note the practical case,

we have 0 ≤ ρh

ji
≤ ρh

ji(t)≤ ρ̄h
ji, and when ρh

ji
= ρ̄h

ji = I, there

are no faults for the jth interconnection links vi j. when ρh

ji
=

ρ̄h
ji = 0 jth interconnection link is complete disconnection.

when 0 < ρh

ji
≤ ρ̄h

ji < I, that means the type of fault is loss

of effectiveness.

Denote

vhF
i j (t) = [vhF

i j1(t),v
hF
i j2(t), · · · ,v

hF
i jq ji

(t)]T = ρh
ji(t)vi j(t) (7)

where ρh
ji(t) = diag[ρh

ji1(t),ρ
h
ji2(t), . . . ,ρ

h
jiq ji

(t)], ρh
jik(t) ∈

[ρh

jik
, ρ̄h

jik].

Then, the sets of operators with above structures are

denoted by

∆ρh
ji

= {ρh
ji(t) : ρh

jik(t) ∈ [ρh

jik
, ρ̄h

jik],k = 1,2, . . . ,q ji}. (8)

For convenience in the following sections, for all possible

faulty modes L, the following uniform interconnection links

fault model is exploited:

vF
i j(t) = ρ ji(t)vi j(t), ρ ji(t) ∈ {ρ1

ji(t) · · ·ρ
L
ji(t)}. (9)

Here, we let w̄ ji(t) ∈ Rq ji denote perturbation which com-

bined by unknown time-varying parameter variation, noise,

and nonlinearity of the transmission channel between ith and

jth subsystems.

Then, based on the above description, the equation (2) can

be represented by

vi j(t) = ρ ji(t)w ji(t)+ w̄ ji(t) (10)

for all i, j = 1 . . .N, and the dynamics with faulty intercon-

nection links (1) can be rewritten by

ẋi(t) = Ai
T T xi(t)+

N

∑
j=1

A
i j
T Sρ ji(t)A

ji
ST x j(t)

+
N

∑
j=1

A
i j
T Sw̄ ji(t)+Bi

Tuui(t)+Bi
T ddi(t),

(11)

yi(t) = Ci
T xi(t)+

N

∑
j=1

C
i j
S ρ ji(t)A

ji
ST x j(t)

+
N

∑
j=1

C
i j
S w̄ ji(t)+Di

uui(t)+Di
ddi(t).

(12)

Since we assume the controller and plant use identical

interconnection channels, then we have

vK
i j(t) = ρ ji(t)w

K
ji(t)+ w̄ ji(t) (13)

where ρ ji(t) and w̄i j(t), i, j = 1 . . .N are denote as before.

Then, in terms of (3) and Assumption 1, the controller form

can be described as:

ui(t) = K̂1i(t)xi(t)+
N

∑
j=1

K2iρ ji(t)K̂3i(t)x j(t)

+
N

∑
j=1

K2iρ ji(t)w̄ ji(t)x j(t)+K4i(t)

(14)

where ρ ji(t) ∈ ∆ρh
ji
; K̂1i(t), K̂3i(t) are the estimate of K1i(t)

and K3i(t), respectively; K2i is an appropriate dimensions
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matrix chosen by the system designer; Ki4(t) is given by

a function. All controller parameters will be designed in

section 3 in detail.

Then, consider the large scale system described by (11)

and (12) with interconnected faults and perturbations given

by (10). The design problem under consideration is to find

a direct adaptive state feedback controller (14) such that

1). During normal transmission, the closed-loop system is

stable, and the output Syi(t) tracks the reference signal ri(t)
without steady-state error, that is limt→∞ ei(t) = 0,

ei(t) = ri(t)−Siyi(t), i = 1,2, . . . ,N (15)

Where Si ∈ Rsi×li is a known constant matrix used to form

the output required to track the reference signals.

2). In the event of faults and perturbations in intercon-

nection channels, the closed-loop system is still stable, and

the output Siyi(t) tracks the reference signal ri(t) without

steady-state error.

Combining equations (1) and (15), we have the following

augmented subsystem Gai, i ∈ {1,2, . . . ,N}

ξ̇i(t) = Ai
aξi(t)+

N

∑
j=1

A
i j
a ξ j(t)+Bi

aui(t)+Gi
azi(t)+

N

∑
j=1

Ā
i j
a w̄ ji(t)

(16)

where ξi(t) = [ηT
i (t), xT

i (t)]T ,ηi(t) =
∫ t

0 ei(τ)dτ , zi(t) =
[rT

i (t), dT
i (t)]T , and

Ai
a =

[

0 −SiC
i
T

0 Ai
T T

]

,A
i j
a =









0 −Si

N

∑
j=1

C
i j
S ρ jiA

ji
ST

0
N

∑
j=1

A
i j
T Sρ jiA

ji
ST









,

Bi
a =

[

−SiD
i
u

Bi
Tu,

]

, Ā
i j
a =









−Si

N

∑
j=1

C
i j
S

N

∑
j=1

A
i j
T S









,Gi
a =

[

I −SiD
i
d

0 Bi
T d

]

.

An assumption which is quite natural and common in the

robust control literature introduced as follows:

Assumption 2: The perturbations, reference signals, and

external disturbances are piecewise continuous bounded

functions; that is there exist positive constants ¯̄w ji and z̄i

such that

‖w̄ ji(t)‖ ≤ ¯̄w ji, ‖zi(t)‖ ≤ z̄i,

respectively.

Now, the main objective of this paper is to synthesize

the distributed adaptive controller ui(t) given in (14) such

that the state ηi(t) in subsystem Gai (16) can be guaran-

teed to converge to zero. Then the outputs of distributed

subsystems can asymptotically track corresponding reference

signals ri(t) in the presence of failures and perturbations in

interconnection channels, external disturbances.

III. DISTRIBUTED ADAPTIVE TRACKING

CONTROL SYSTEM DESIGN

Considering a large scale system Gai described by (16)

and controller model given by (14), the controller gain

K̂1i(t) = [K̂1i,1(t), K̂1i,2(t), . . . , K̂1i,m(t)]T ∈ Rmi×ni updated by

the following adaptive law: i = 1,2, . . . ,N,k = 1,2, . . . ,mi

dK̂1i,k(t)

dt
= −Γ1i,kξiξ

T
i Pib

i
ak

(17)

where Γ1i,k is any positive constant, K̂1i,k(t0) is finite, Pi is a

positive symmetric matrix, and bi
ak is the kth column of Bi

a;

K2i is an appropriate dimensions matrix chosen by the system

designer; K̂3i(t) = [K̂3i,1(t), K̂3i,2(t), . . . , K̂3i,mi
(t)]T ∈ Rmi×ni

updated according to the adaptive law: i, j = 1,2, . . . ,N,k =
1,2, . . . ,mi

dK̂3i,k(t)

dt
= −Γ3i,kξ jξ

T
i PiB

i
ak2ik

(18)

where Γ3k is any positive constant, K̂3i,k(t0) is finite, k2ik

is the kth column of K2i; K4i(t) is given by the following

function:

K4i(t) =
−(ξ T

i PiB
i
a)

T βi ‖ ξ T
i Pi ‖ k̂5i(t)

‖ ξ T
i PiBi

a ‖
2 αi

, i = 1,2, . . . ,N (19)

where αi, βi are suitable positive constants which satisfied:

αi ≤ βi, (20)

and k̂5(t) ∈ R is updated by the following adaptive law:

dk̂5i(t)
dt

= γi ‖ ξ T
i Pi ‖ i = 1,2, . . . ,N (21)

where γi is any positive constant, k̂5i(t0) is finite, and from

(21), we can see k̂5i(t) ≥ 0 if k̂5i(t0) ≥ 0.

Then the large scale closed-loop system model can be

written by

ξ̇i(t) = (Ai
a +Bi

aK̂1i)ξi(t)+
N

∑
j=1

(Ai j
a +Bi

aK2iρ jiK̂3i)ξ j(t)

+Bi
a

N

∑
j=1

K2iρ jiw̄ ji +Bi
aK4i +

N

∑
j=1

Ā
i j
a w̄ ji +Gi

azi.

(22)

On the other hand, letting

K̃1i,k(t) = K̂1i,k(t)−K1i,k,

K̃3i,k(t) = K̂3i,k(t)−K3i,k,

k̃5i(t) = k̂5i(t)− k5i

(23)

where i = 1,2, . . . ,N,k = 1,2, . . . ,mi.

Due to K1i,k, K3i,k, and k5i are unknown constants, we can

write the following error system

dK̃1i,k(t)

dt
= −Γ1i,kξiξ

T
i Pib

i
ak,

dK̃3i,k(t)

dt
= −Γ3i,kξ jξ

T
i PiB

i
ak2ik,

dk̃5i(t)
dt

= γi ‖ ξ T
i Pi ‖

(24)

where i, j = 1,2, . . . ,N,k = 1,2, . . . ,mi.

Before giving our main result, the following Lemmas are

introduced firstly:

Lemma 1. For appropriate dimension matrices X , Y , and

any ζ > 0, the following inequality holds true

XTY +Y T X ≤ ζ XT X +ζ−1Y TY. (25)

Lemma 2. ([25], [16]) Consider the following Riccati

equation:

AT P+PA+PRP+Q = 0. (26)
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If R = RT ≥ 0, Q = QT > 0, A is Hurwitz, and the associated

Hamiltonian matrix

H =

[

A R

−Q −AT

]

has no eigenvalue on the imaginary axis, then there exists a

P = PT > 0, which is the solution of (26).

In the following, by (ξ , K̃1i, K̃3i, k̃5i)(t) we denote a solu-

tion of the closed-loop system and the error system. Then, the

following theorem can be obtained which shows the globally

boundedness of the solutions of the adaptive closed-loop

system described by (22) and (24).

Theorem 1. Consider the adaptive closed-loop system

described by (22) and (24). The closed-loop large scale

system is uniformly bounded and the tracking error e(t)
converges asymptotically to zero for any ρ(t) ∈ ∆ρh

ji
if there

exist a symmetric matrix Pi, and K̂1i,k, K̂3i,k, k̂5i determined

according to the adaptive laws (17), (18) and (21), and

control gain function K4i given by (19).

Proof: For the adaptive closed-loop large scale system

described by (22), we first define a Lyapunov functional

candidate as:

V =
N

∑
i=1

ξ T
i Piξi +

N

∑
i=1

m

∑
k=1

K̃T
1i,kΓ−1

1i,kK̃1i,k

+
N

∑
i=1

N

∑
j=1

m

∑
k=1

ρ jiK̃
T
3i,kΓ−1

3i,kK̃3i,k +
N

∑
i=1

γ−1k̃2
5i

(27)

Then, according to equations (19) and (23), the time deriva-

tive of V for t > 0 associated with a certain failure mode

ρ ∈ ∆ρh
ji

can be derived:

V̇ (t)

=
N

∑
i=1

ξ T
i [(Ai

a +Bi
aK̂1i)

T Pi +Pi(A
i
a +Bi

aK̂1i)]ξi

+
N

∑
i=1

N

∑
j=1

ξ T
i Pi(A

i j
a +Bi

aK2iρ jiK3iξ j)

+
N

∑
i=1

N

∑
j=1

ξ T
j (Ai j

a +Bi
aK2iρ jiK3i)

T Piξi

+2
N

∑
i=1

N

∑
j=1

ξ T
i PiB

i
aK2iρ jiK̃3iξ j

−
N

∑
i=1

2‖ξ T
i PiB

i
a‖

2βi‖ξ T
i Pi‖k̂5i

‖ξ T
i PiB

i
a‖

2αi
+

N

∑
i=1

2ξ T
i PiB

i
a

N

∑
j=1

K2iw̄ ji

+
N

∑
i=1

2ξ T
i Pi

N

∑
j=1

Ā
i j
a w̄ ji +

N

∑
i=1

2ξ T
i PiG

i
azi

+
N

∑
i=1

N

∑
j=1

m

∑
k=1

2ρ jiK̃
T
3i,kΓ−1

3i,k
˙̃K3i,k

+
N

∑
i=1

m

∑
k=1

2K̃T
1i,kΓ−1

1i,k
˙̃K1i,k +

N

∑
i=1

2γ−1k̃5i
˙̃k5i.

(28)

Thus, by the light of Lemma 1, inequality (20), and

Assumption 2, we choose adaptive laws (18) and rewrite

(28) as

V̇ (t)

≤
N

∑
i=1

ξ T
i [(Ai

a +Bi
aK̂1i)

T Pi +Pi(A
i
a +Bi

aK̂1i)+ζiNP2
i

+
N

∑
j=1

ζ−1
i (A ji

a +B
j
aK2 jρi jK3 j)

T (A ji
a +B

j
aK2 jρi jK3 j)]ξi

+2
N

∑
i=1

N

∑
j=1

ξ T
i PiB

i
aK2iρ jiK̃3iξ j

−
N

∑
i=1

2 ‖ ξ T
i Pi ‖ k̂5i +

N

∑
i=1

2 ‖ ξ T
i Pi ‖‖ Bi

a

N

∑
j=1

K2i ‖ ¯̄w ji

+
N

∑
i=1

2 ‖ ξ T
i Pi ‖‖

N

∑
j=1

Ā
i j
a ‖ ¯̄w ji

+
N

∑
i=1

2 ‖ ξ T
i Pi ‖‖

N

∑
j=1

Gi
a ‖ z̄i

+
N

∑
i=1

N

∑
j=1

m

∑
k=1

2ρ jiK̃
T
3i,kΓ−1

3i,k
˙̃K3i,k

+
N

∑
i=1

m

∑
k=1

2K̃T
1i,kΓ−1

1i,k
˙̃K1i,k +

N

∑
i=1

2γ−1k̃5i
˙̃k5i.

(29)

According to Lemma 2, we let

ιi =

λmax(
N

∑
j=1

ζ−1
i (A ji

a +B
j
aK2 jρi jK3 j)

T (A ji
a +B

j
aK2 jρi jK3 j).

(30)

Hence, if there exist constants K1i, K3 j, i, j = 1,2, . . . ,N

let Ai
a + Bi

aK1i Hurwitz and Hamiltonian matrix H has no

eigenvalue on the imaginary axis, then for any ρ(t) ∈ ∆ρh
ji
,

there exist a solution Pi > 0 such that

(Ai
a +Bi

aK1i)
T Pi +Pi(A

i
a +Bi

aK1i)+ζiNP2
i +ζ−1

i (ιi +εi)I = 0.

(31)

On the other hand, since ¯̄w ji and z̄i are unknown bounded

positive constants, there always exists a constant k5i, i =
1,2, . . . ,N let the following inequality holds true:

‖ ξ T
i Pi ‖ k5i ≥‖ ξ T

i Pi ‖‖ Bi
a

N

∑
j=1

K2i ‖ ¯̄w ji

+ ‖ ξ T
i Pi ‖‖

N

∑
j=1

Ā
i j
a ‖ ¯̄w ji+ ‖ ξ T

i Pi ‖‖
N

∑
j=1

Gi
a ‖ z̄i.

(32)

Then, based on the above mention, definition (23), chosen

the adaptive laws (17), (21), it follows from (29) that

V̇ (t)

≤−
N

∑
i=1

ζ−1
i εiξ

T
i ξi −

N

∑
i=1

2 ‖ ξ T
i Pi ‖ k̃5i +

N

∑
i=1

2ξ T
i PiB

i
aK̃1iξi

+
N

∑
i=1

N

∑
j=1

2ξ T
i PiB

i
aK2iρ jiK̃3iξ j +

N

∑
i=1

m

∑
k=1

2K̃T
1i,kΓ−1

1i,k
˙̃K1i,k

+
N

∑
i=1

N

∑
j=1

m

∑
k=1

2ρ jiK̃
T
3i,kΓ−1

3i,k
˙̃K3i,k +

N

∑
i=1

2γ−1k̃5i
˙̃k5i.

= −
N

∑
i=1

ζ−1
i εiξ

T
i ξi

(33)

Hence, it is easy to see that V̇ (t) < 0 for any ξi 6= 0.
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Equation (33) also implies

t
∫

0

N

∑
i=1

||ξi(τ)||2dτ ≤
V (0)−V (t)

ζ−1
minεmin

(34)

where ζ−1
min = min(ζ−1

i ), εmin = minξi, i = 1,2, . . . ,N. Since

the right hand side of (34) is bounds, following Barbalat

lemma, it indicates lim
t→∞

ξi(t) = 0. Thus, the solutions of

closed-loop distributed system are uniformly bounded, and

the state ξi(t) converges asymptotically to zero.

Thus, for large-scale system (16) with signal attenuations,

perturbation and disturbance effects, from (18), (19), (21) and

(24), we can obtain the distributed adaptive controllers (14),

by which the solutions of the resulting adaptive closed-loop

large-scale system can be guaranteed to be stable, and the

output of each subsystem is uniformly asymptotically track

the reference signal with disturbance rejection.

IV. SIMULATION EXAMPLE

In this section, an example of robust tracking control sys-

tem design is given to demonstrate the proposed method. A

large-scale dynamical system is composed of two dynamical

subsystems borrowed from [14] with interconnection input,

interconnection output and measured output added:





ẋi(t)
wi j(t)
yi(t)



 =





Ai
T T A

i j
T S Bi

T d Bi
Tu

A
ji
ST 0 0 0

Ci
T Ci

S Di
d Di

u













xi(t)
ρ jivi j(t)

di(t)
ui(t)









(35)

where i = 1, j = 2 or i = 2, j = 1 and

A1
T T =

[

3 0
−2 −1

]

, A2
T T =

[

−3 −1
1 2

]

, A21
T S =

[

2 −2
0.5 −1

]

,

A12
T S =

[

1 −2
1 −1

]

, A21
ST =

[

3 −2
−1 1

]

, A12
ST =

[

−2 −1
3 1

]

,

B1
Tu =

[

0.1 0.5
−1 −1

]

, B2
Tu =

[

0.2 1
−1.5 −1

]

,D1
d =

[

−2 0.5
0.7 1

]

,

B1
T d =

[

1 −0.5
−0.1 1

]

, B2
T d =

[

1 0.5
0.5 1

]

,D2
d =

[

1 0.5
1 2

]

C1
T =

[

−1 2
0.5 −1

]

, C2
T =

[

1 2
0.5 −1

]

, C1
S =

[

2 −3
−1.5 1

]

,

C2
S =

[

2 −2
−1.5 2

]

, D1
u =

[

0.2 1
−1 0.6

]

, D2
u =

[

0.7 1
−1 1

]

.

Here, the dimension of interconnection signal qii = 0, i =
1,2, which means the subsystem is not fed back into itself.

We let Cs
i j denote the sth interconnection channel with the

signals transmit from ith subsystem to jth subsystem. We

assume each of the four interconnection channels may lose

its effectiveness and consider the following three possible

faulty modes:

Normal mode 1: Both of the two subsystems interconnection

channels are normal, that is, ρ1
11(t) = ρ1

12(t) = ρ1
21(t) =

ρ1
22(t) = 1.

Faulty mode 2: Interconnection channels C1
12 and C1

21 are

completely disconnected, the other channels may be normal

or attenuations, that is, ρ2
11(t) = ρ2

21(t) = 0 and a2 < ρ2
12(t)≤

1,b2 < ρ2
12(t) ≤ 1,a2 = 0.3,b2 = 0.5.

Faulty mode 3: Interconnection channels C2
12 and C2

21are

completely disconnected, the other channels may be normal

or attenuations, that is, ρ3
12(t) = ρ3

22(t) = 0 and a3 < ρ3
11(t)≤

1,b3 < ρ3
21(t) ≤ 1,a3 = 0.5,b3 = 0.3.
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Fig. 2. Response curves of the tracking errors with distributed controllers.
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Fig. 3. Response curves of the estimates of controller parameters K1i, i =
1,2.
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Fig. 4. Response curves of the estimates of controller parameters K3i, i =
1,2.
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Fig. 5. Response curves of the estimates of controller parameters K5i, i =
1,2.
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To verify the effectiveness of the proposed adaptive

method, the simulations are given with the following pa-

rameters and initial conditions:

Γ1i,k = I3,Γ3i,k = I3,γ1 = 1.5,γ2 = 1,αi = 1,βi = 3,

K̂1i,k(0) = 0, K̂3i,k(0) = 0,k51(0) = 0,k52(0) = 2,

S1 = S2 = [1 1],ζi = 1, i = 1,2,k = 1,2,

K21 =

[

1 0.5

0.5 1

]

,K22 =

[

−1 2

2 1

]

.

Here, the reference signals r1(t) and r2(t) are denoted by

r1(t) =

{

1.5 0 ≤ t ≤ 5

3 t > 3
,r2(t) =

{

−1.5 0 ≤ t ≤ 5

−3 t > 3
,

and the following faulty case is considered in the simula-

tions, that is, before 10 second, the interconnected systems

operate in normal case, and the external disturbances d1(t) =
[−0.5, 0.5sin(t)]T and d2(t) = [−0.5, 0.5sin(0.2t)]T enter

into the subsystems G1 and G2 at the beginning (t ≥ 0),
respectively. At 10 second, some faults in interconnection

channels have occurs, described by ρ12 = ρ21 = diag[0,1],
and at the same time, the first channels of G12 and G21 have

enter perturbations w̄21(t) = [−0.5, 0.5 +0.1sin(0.3t)]T and

w̄12(t) = [−0.6, 0.5cos(0.2t)]T .

Fig.2 is the tracking error curves of two subsystems. It

can be observed from Figs.2 that the resulting distributed

adaptive state feedback controllers can get satisfied tracking

results with faulty and perturbed interconnected links, and

external disturbances. Fig.3-Fig.5 are the response curves

of the estimations of controller parameters K̂1i, K̂3i and k̂5i,

i = 1,2, respectively. It is easy to see the estimations can

converge and all signals are uniformly bounded.

V. CONCLUSIONS

This paper has shown a direct adaptive design method

to solve the asymptotic tracking control and disturbance

rejection problem for distributed large scale systems with

faulty and perturbed interconnection links. For the sake of

automatically compensating the effects of single attenuation

and unknown perturbations in interconnection links and

external disturbances on subsystems, the distributed state

feedback controllers are constructed by the adaptive schemes,

which are based on update adaptation laws to estimate the

unknown controller parameters on-line. On the basis of

Lyapunov stability theory, it has shown that the resulting

adaptive closed-loop large-scale system can be guaranteed

to be stable and each subsystem can asymptotically-output

track the corresponding reference signal under the influence

of faults and perturbations in interconnection links, and

external disturbances. A numerical example has shown the

effectiveness of the proposed method.
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