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Abstract— Teleoperation systems that are distributed over
large physical distances where time delays become non-
negligible are becoming popular in areas such as remote
medicine and operating in hazardous environments. This work
proposes a new approach to the bilateral control problem
that extends an earlier approach [1] based on a sliding mode
controller. The existing approach requires full state and force
measurements at both the master and slave sides. Here, we
propose the use of unknown input sliding mode observers
to estimate the states and forces and use the estimates in
the controllers. This significantly reduces the difficulty of
implementation and the cost of such a system, as one need
only measure positions in the system. The velocity and force
signals are then estimated. A proof of stability for this new
approach is given. As well, the approach is verified through a
numerical simulation study as a precursor to ongoing experi-
mental verification.

Index Terms— Sliding mode control, sliding mode observer,
bilateral teleoperation, unknown input estimation

I. INTRODUCTION

Teleoperation is an area that holds a significant amount

of interest to researchers. There can be great benefits to

being able to operate machines from a distance. One example

is the ability to send a robotic vehicle which is remotely

controlled into a hazardous environment. Another useful

application of teleoperation is in the field of remote medicine.

A highly skilled surgeon could perform surgery on a patient

who is located in another city, or even country. A doctor

could also interact with a patient located somewhere else

through a robotic interface in order to make a diagnosis.

Another example of a teleoperated system is in Earth-to-

space operations, where someone on the surface of the Earth

controls a robot in space [2]. Note that not all of these

applications consider force feedback, though systems using

force feedback are of importance in this work.

When designing such teleoperation systems, one must con-

sider which signals to pass between the master manipulator

and the slave manipulator. The work here considers bilateral

teleoperation, which involves some force feedback from the

slave side to the master side. Two common bilateral teleoper-

ation approaches are the position-position and the position-

force architectures [3]. In the former approach, the master

position is passed to the slave side, and the slave position is

passed back to the master side. Position controllers at both

the master and slave sides ensure that the two manipulators

follow each other. This approach is not particularly desirable

in cases of free motion, since differences between the master
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and slave position can cause the operator at the master

side to feel large reaction forces [3], which are not due

to any environmental contact at the slave side. However,

no force sensors are required for such a system. One well

known implementation of a variant of the position-position

architecture is the wave variables approach of Niemeyer and

Slotine [4].

In contrast, the position-force architecture requires force

sensing at the slave side. However, the advantages to this

are perfect force tracking and a better perception of the

system in free motion than the position-position architecture

provides [5]. The increased performance, from a transparency

point of view, of the position-force architecture motivates

research into teleoperation systems where the forces are mea-

sured. However, force sensors are costly, can be unreliable,

and provide noisy signals. Therefore, this work seeks to

develop an approach where the benefits of a teleoperation

architecture using force sensors are obtained, without the

need to actually measure the forces.

The area of research involving unknown input observers

provides a useful framework for the problem of estimating

external forces acting on a robot manipulator. Unknown input

observers are commonly used when estimating the state of

systems subject to disturbances and in the area of fault

detection and diagnosis [6]. In the context of robotics and

teleoperation, one may consider that a robot has two inputs

– the control input and the force input applied to the robot

by an external environment. The control input is clearly a

known input, but without a force sensor the external force

input may be viewed as an unknown input to be estimated. To

the best of the authors knowledge, implementing unknown

input observers as external force estimators has yet to be

studied in the robotics field. The work presented here will

study the estimation of the external forces on the master and

slave robots in combination with a modified version of the

sliding mode bilateral teleoperation algorithm, developed by

Cho et al. [7], that normally requires both full state estimates

and force sensors at both the master and slave sides. This

work extends existing results in bilateral teleoperation by

modifying an existing approach, shown to work well through

experiments [7], such that only the position states need to

be measured and force sensing is no longer required for the

implementation. Additionally, a proof of stability of the new

modified approach is presented.

In Section II, the concept of sliding mode unknown input

observers is introduced. Section III presents the bilateral

control algorithm of Cho et al. and the modification to the

algorithm that makes use of the unknown input observers to
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estimate the plant states as well as human and environmental

forces at the master and slave manipulators. A proof of

stability is then presented. Simulation results showing the

performance of this modified algorithm are given in Sec-

tion IV. Finally, conclusions are presented in Section V.

II. UNKNOWN INPUT SLIDING MODE OBSERVERS

The field of unknown input observers is one that has re-

ceived noteworthy attention from researchers over the years.

These observers are useful in a number of situations, such as

those in which estimation is being performed for a plant that

is subject to unknown disturbances. In a classical observer

these disturbances would affect the estimate of the state, but

unknown input observers provide a framework to generate

accurate state estimates despite the presence of disturbances.

Initial work on unknown input observers resulted in de-

signs that require that a matching condition be satisfied. In

particular, consider a linear time-invariant system,

ẋ = Ax + Bu + Dw (1)

y = Cx (2)

where u represents the known input vector and w represents

the unknown input vector. In designing a “standard” un-

known input observer, the system must satisfy the condition

rank(CD) = rank(D). This condition effectively requires

that the state that is directly coupled to the unknown inputs

must be available from the measurements [8]. In the case of

the robot systems considered here, this is not the situation.

The external force input, considered the unknown input

in this case, comes in through the velocity state, but it

is typical to measure position only. However, a class of

unknown input sliding mode observers has been developed

which do not depend on satisfying this rank condition [9].

Rather, the system being observed must be in the so-called

block triangular observer form. Robot dynamics are easily

expressed in this form. Consider a second order mass-spring-

damper plant of the form,

ẋ1 = x2 (3)

ẋ2 = −
k

m
x1 −

b

m
x2 +

1

m
u +

1

m
F (4)

y = x1 (5)

where m, b, and k are the mass, damping constant, and spring

constant of the system, u represents a known input, and F
represents an unknown input. A step by step sliding mode

observer for this plant may be designed as [10],

˙̂x1 = x̂2 + λ1sgn(y − x̂1) (6)

˙̂x2 = −
k

m
x̂1 −

b

m
x̂2 +

1

m
u + E1λ2sgn(x̃2 − x̂2) (7)

where x̂1 and x̂2 are the estimate position and velocity,

respectively, and x̃2 = x̂2 + (λ2sgn(y − x̂1))eq . The term

E1 = 0 if y − x̂1 6= 0 and E1 = 1 otherwise. The notation

(·)eq is used to denote a low pass filtering operation on the

discontinuous switching term to obtain the equivalent output

injection [11]. The equivalent output injection is analogous

to the notion of equivalent control in sliding mode control

It will be shown in Section III that for large enough

choices of the sliding gains λ1 and λ2 the observer estimates

will converge to the true states in finite time and the unknown

input may be obtained from the observer as well.

Having presented the unknown input sliding mode ob-

server that will be used in the teleoperation system, the next

section will present the bilateral control algorithm of Cho et

al. [1] and show the modification to make use of the unknown

input observer.

III. SLIDING MODE BILATERAL TELEOPERATION

Sliding mode control is an appealing approach for con-

troller design, due in part to its robustness to a certain class

of uncertainties and disturbances [12]. Park and Cho [7]

and Cho et al.[1] make use of sliding mode control in

the context of bilateral time-delayed teleoperation in order

to ensure stable teleoperation despite the presence of the

time delays. This bilateral control algorithm makes use of

an impedance controller at the master side and a sliding

mode controller at the slave side. However, the approaches

presented in [7], [1] assume that the full state of both robots

is measured and that external forces are measured on both

sides as well. By introducing unknown input sliding mode

observers, as presented in Section II, the full state of both

the master and slave as well as the external forces acting

on each manipulator can be estimated from just position

measurements.

This algorithm is presented in the context of a system

with fixed time delays. For simplicity in development of the

algorithm and proof, assume a constant delay of T seconds

that is equal in both directions. Consider the following

dynamics for the master manipulator,

ẋm1
= xm2

(8)

ẋm2
= −

km

mm

xm1
−

bm

mm

xm2
+

1

mm

um +
1

mm

Fh(9)

where mm is the mass, bm is the damping constant, km is

the spring constant, xm1
is the master position, xm2

is the

master velocity, um is the master control input, and Fh is the

force applied by the human to the plant. The slave dynamics

are expressed as,

ẋs1
= xs2

(10)

ẋs2
= −

ks

ms

xs1
−

bs

ms

xs2
+

1

ms

us −
1

ms

Fe (11)

where ms is the mass, bs is the damping constant, ks is the

spring constant, xs1
is the slave position, xs2

is the slave

velocity, us is the slave control input, and Fe is the force

exerted on the slave by the environment.

In this teleoperation approach, the goals involve ensuring

that the slave manipulator position tracks the delayed master

position and remains stable despite the presence of time
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delay. This is accomplished using the sliding mode controller.

As well, the environmental force acting on the slave is re-

flected back to the master so that the operator may experience

the forces acting on the slave. An impedance controller at the

master side is used to give the master manipulator a desired

characteristic impedance.

In this system, the master sends its position, velocity, force

exerted on it by the human, and a delayed copy of the slave

force back to the slave side. The following notation for a

signal x(t) delayed by T seconds is used,

xd = x(t − T )

A signal delayed by twice the time delay is denoted,

xdd = x(t − 2T )

The slave sends only the force exerted on it by the environ-

ment to the master. The master receives F d
e = Fe(t − T ).

Defining the master-slave position and velocity tracking

error as er1
= xs1

− xd
m1

and er2
= xs2

− xd
m2

respectively,

a desired closed loop impedance model for the slave side

is [1],

I = m̄sėr2
+ b̄ser2

+ k̄ser1
− Fe = 0 (12)

When (12) is satisfied, the slave side has the desired

closed loop impedance. In order to ensure that this desired

impedance characteristic is satisfied, a sliding surface for the

slave controller is defined as [1],

s =
1

m̄s

∫ t

0

I(τ) dτ = 0 (13)

Once the sliding mode controller has driven the system

trajectories to s = 0 then (12) will be satisfied [1] and

the slave manipulator will have the desired closed loop

behaviour.

However, this work examines output feedback control. In

order to estimate the master states and human input force,

we propose the following step by step sliding mode observer

for the master side,

˙̂xm1
= x̂m2

+ λm1
sgn(xm1

− x̂m1
) (14)

˙̂xm2
= −

km

mm

x̂m1
−

bm

mm

x̂m2
+

1

mm

um

+λm2
sgn(x̃m2

− x̂m2
) (15)

where x̃m2
= x̂m2

+λm2
sgn(xm1

− x̂m1
)eq. The terms λm1

and λm2
are the sliding mode gains. The slave observer

dynamics are given as,

˙̂xs1
= x̂s2

+ λs1
sgn(xs1

− x̂s1
) (16)

˙̂xs2
= −

ks

ms

x̂s1
−

bs

ms

x̂s2
+

1

ms

us

+λs2
sgn(x̃s2

− x̂s2
) (17)

where x̃s2
= x̂s2

+ λs2
sgn(xs1

− x̂s1
)eq . The terms λs1

and

λs2
are the sliding mode gains.

The master side impedance controller is expressed as,

um =

(

km −
mm

m̄m

k̄m

)

x̂m1
+

(

bm −
mm

m̄m

b̄m

)

x̂m2

+

(

mm

m̄m

− 1

)

F̂h −
mm

m̄m

F̂ d
e (18)

where k̄m, b̄m, and m̄m represent the desired spring constant,

damping constant, and mass parameters. This control law is

a modification of the master control law presented in [1] that

makes use of the estimated plant states and forces. The esti-

mated forces F̂h and F̂e are obtained from the sliding mode

observers as follows: F̂h = mm(λm2
sgn(x̃m2

− x̂m2
))eq and

F̂e = −ms(λs2
sgn(x̃s2

− x̂s2
))eq .

For the slave controller, an output feedback version of the

impedance model is defined as,

Î = m̄s
˙̂er2

+ b̄sêr2
+ k̄sêr1

− F̂e = 0 (19)

where êr1
= x̂s1

− x̂d
m1

and êr2
= x̂s2

− x̂d
m2

. Now, the

sliding surface in the output feedback case is defined as,

ŝ =
1

m̄s

∫ t

0

Î(τ) dτ

= êr2
+

∫ t

0

(

b̄s

m̄s

êr2
+

k̄s

m̄s

êr1
−

1

m̄s

F̂e

)

dτ

= 0 (20)

Then, the slave side sliding mode controller is given as,

us = −ms

[(

k̄s

m̄s

−
ks

ms

)

x̂s1
+

(

b̄s

m̄s

−
bs

ms

)

x̂s2

+

(

k̄m

m̄m

−
k̄s

m̄s

)

x̂d
m1

+

(

b̄m

m̄m

−
b̄s

m̄s

)

x̂d
m2

−

(

1

m̄m

−
1

mm

)

F̂ d
h +

1

m̄m

F̂ dd
e −

1

m̄s

F̂e

+(λs2
sgn(x̃s2

− x̂s2
))eq

−
(

λm2
sgn(x̃d

m2
− x̂d

m2
)
)

eq
+ Kgsat(ŝ/ǫ)

]

(21)

Note that in the slave control law a sat(·) function is used

for the sliding surface ŝ instead of a sgn(·) function. This

is to eliminate the problem of chattering that is common in

sliding mode control [12]. The parameter ǫ is the width of

the boundary layer and determines the upper bound on ŝ
once it has reached the set {ŝ ≤ ǫ}. The term Kg is the

sliding mode gain which, when set large enough, drives the

system trajectories to the boundary layer {ŝ ≤ ǫ} and keeps

them there for all time.

To summarize, for master plant (8), (9) and slave plant

(10), (11) connected bilaterally through a time delay of T
seconds in each direction, the system may be controlled using

the master control law (18) with master side observer (14),

(15) and slave sliding mode control law (21) with slave side

observer (16), (17).

In order to show stability of this system, the following

assumption is made.
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Assumption 3.1: The external forces acting on both master

and slave are bounded for all time with some known upper

bounds.

The next theorem presents the main theoretical result of

the paper, showing asymptotic stability of both the master

and slave under output feedback with force estimation, and

in the presence of time delays in the communications.

Theorem 3.1: Consider master plant (8), (9) and slave

plant (10), (11) connected bilaterally through a time delay

of T seconds in each direction, with master control law

(18), master side observer (14), (15) and slave sliding mode

control law (21) with slave side observer (16), (17). Then,

there exists a sliding mode controller gain

Kg > |λs2
sgn(x̃s2

− x̂s2
) − (λs2

sgn(x̃s2
− x̂s2

))eq

− (λm2
sgn(x̃m2

− x̂m2
)

+(λm2
sgn(x̃m2

− x̂m2
))eq)| + εg (22)

where εg > 0 and observer gains λs1
, λs2

, λm1
, and λm2

such that the state estimates recover the true state in finite

time, the master plant has the desired impedance model, and

the slave plant dynamics converge to a boundary layer of

width ǫ around the desired slave impedance model in finite

time. The value of ǫ can be made arbitrarily small, and in

the limit as ǫ approaches zero, the slave dynamics approach

the desired slave impedance in finite time.

Proof: The first step is to show that the estimated states

converge to the true states in finite time. The analysis is

only shown for the slave side observer, but a similar result

is obtained when analyzing the stability of the master side

observer. Define the slave observer error as es1
= xs1

− x̂s1

and es2
= xs2

−x̂s2
. Then, the slave observer error dynamics

are expressed as,

ės1
= es2

− λs1
sgn(xs1

− x̂s1
) (23)

ės2
= −

ks

ms

es1
−

bs

ms

es2
−

1

ms

Fe (24)

−E1λs2
sgn(x̃s2

− x̂s2
) (25)

Begin by showing stability of the first observer error state.

Choose as a Lyapunov function candidate,

V1 =
1

2
e2

s1
(26)

Taking the derivative of the Lyapunov function along the

trajectories of the system one arrives at,

V̇1 = es1
ės1

= −λs1
|es1

| + es1
es2

(27)

≤ −λs1
|es1

| + |es1
||es2

| (28)

= −|es1
|(λs1

− |es2
|) (29)

Choosing λs1
> |es2

| + ε1, where ε1 > 0 yields V̇1 ≤
−|es1

|ε1. This ensures that V̇1 < 0 for all es1
6= 0. Using

the Comparison Lemma [12, p. 102] it may be shown that the

surface es1
= 0 is reached in finite time. An upper bound Ts1

on this convergence time is determined from the Comparison

Lemma as,

Ts1
,

|es1
(t0)|

ε1

+ t0 (30)

Therefore by the time t = Ts1
the state es1

will have

converged to the sliding surface es1
= 0. On that surface

es1
= ės1

= 0 and solving for the equivalent output injection

yields (λs1
sgn(es1

))eq = es2
. This results in x̃s2

= xs2
on

the sliding surface. Following [13], the equivalent control is

obtained by a low pass filtering operation of λs1
sgn(es1

).
After time Ts1

the slave observer error dynamics have the

form,

ės1
= es2

− λs1
sgn(e1) = 0 (31)

ės2
= −

ks

ms

es1
−

bs

ms

es2
−

1

ms

Fe (32)

−λs2
sgn(es2

) (33)

We may then choose the Lyapunov function candidate

V2 = (1/2)e2

s1
+ (1/2)e2

s2
= (1/2)e2

s2
, since at this

point es1
= 0. Then taking the derivative of V2 along the

trajectories of the system,

V̇2 = es2
ės2

≤ −λs2
|es2

| + |es2
|

∣

∣

∣

∣

−
ks

ms

es1
−

bs

ms

es2
−

1

ms

Fe

∣

∣

∣

∣

= −|es2
|

(

λs2
−

∣

∣

∣

∣

−
ks

ms

es1
−

bs

ms

es2
−

1

ms

Fe

∣

∣

∣

∣

)

(34)

Then choosing,

λs2
>

∣

∣

∣

∣

−
ks

ms

es1
−

bs

ms

es2
−

1

ms

Fe

∣

∣

∣

∣

+ ε2

ensures that V̇2 ≤ −|es2
|ε2 < 0, for all es2

6= 0. This choice

of gain is possible due to Assumption 3.1 which ensures

that the force Fe is bounded. Finite time convergence to the

surface es2
= 0 is achieved by the Comparison Lemma. It

can be verified that an upper bound on the time to reach the

sliding surface es2
= 0 is given as,

Ts2
,

|es2
(Ts1

)|

ε2

+ Ts1
(35)

At this point, an estimate of the environmental force may

be obtained. Solving for the equivalent output injection when

es2
= ės2

= 0 yields (λs2
sgn(es2

))eq = −(1/ms)Fe. So the

unknown environmental input is computed as,

F̂e = −ms(λs2
sgn(es2

))eq (36)

This completes the portion of the proof showing finite

time convergence of the state estimates to the true states

and the availability of the environmental force estimate.

The development for the master side observer is the same

except that convergence times Tm1
and Tm2

are obtained

92



for observer error states em1
and em2

, respectively. The

human force input on the master may be obtained as F̂h =
mm(λm2

sgn(em2
))eq .

To show stability of the master plant, substitute the master

control law (18) into the master plant (8), (9). Simplifying,

one arrives at,

ẋm1
= xm2

(37)

ẋm2
= −

k̄m

m̄m

x̂m1
−

b̄m

m̄m

x̂m2
+

1

m̄m

F̂h

−
1

m̄m

F̂ d
e −

km

mm

em1
−

bm

mm

em2

+
1

mm

(

Fh − F̂h

)

(38)

The master dynamics will remain in this form until time

t = maxt(Tm2
, Ts2

) when the observers converge. At this

time the states of the master plant are finite and the observer

errors go to zero. Then, the closed loop master dynamics

become,

ẋm1
= xm2

(39)

ẋm2
= −

k̄m

m̄m

xm1
−

b̄m

m̄m

xm2
+

1

m̄m

Fh

−
1

m̄m

F d
e (40)

That is, after observer convergence the master manipulator

has the desired impedance characteristic and is stable.

To show stability of the slave plant the goal is to show

finite time convergence to the set {ŝ ≤ ǫ}. Consider the

Lyapunov function candidate,

Vs =
1

2
ŝ2 (41)

Taking the derivative of Vs along the trajectories of the

system,

V̇s = ŝ ˙̂s

= ŝ

[(

k̄s

m̄s

−
ks

ms

)

x̂s1
+

(

b̄s

m̄s

−
bs

ms

)

x̂s2

+

(

k̄m

m̄m

−
k̄s

m̄s

)

x̂d
m1

+

(

b̄m

m̄m

−
b̄s

m̄s

)

x̂d
m2

−

(

1

m̄m

−
1

mm

)

F̂ d
h +

1

m̄m

F̂ dd
e −

1

m̄s

F̂e

+
1

ms

us + λs2
sgn(x̃s2

− x̂s2
)

−λm2
sgn(x̃d

m2
− x̂d

m2
)
]

(42)

Outside of the boundary layer, that is when |ŝ| > ǫ,

sat(ŝ/ǫ) = sgn(ŝ). So when the sliding surface is outside

of the boundary layer, the sat(·) term in the control may be

expressed as a sgn(·) term. Substituting the slave control law

(21) into (42) and simplifying, one arrives at,

V̇s ≤ −|ŝ| (Kg − |λs2
sgn(x̃s2

− x̂s2
)

−(λs2
sgn(x̃s2

− x̂s2
))eq

− (λm2
sgn(x̃m2

− x̂m2
)

+(λm2
sgn(x̃m2

− x̂m2
))eq)|) (43)

for |ŝ| > ǫ. So choosing,

Kg > |λs2
sgn(x̃s2

− x̂s2
) − (λs2

sgn(x̃s2
− x̂s2

))eq

− (λm2
sgn(x̃m2

− x̂m2
)

+(λm2
sgn(x̃m2

− x̂m2
))eq)| + εg (44)

where εg > 0 ensures that V̇s ≤ −|ŝ|εg when |ŝ| > ǫ.

Then, V̇s < 0, for all |ŝ| > ǫ. This result ensures finite

time convergence of the trajectories to the set {ŝ ≤ ǫ}
Once the system reaches the boundary layer it will remain

in there for all time [12]. The use of the boundary layer

results in some small deviation from the desired behaviour

that would be achieved if the sliding surface ŝ = 0 were

reached. The magnitude of this deviation is directly related

to the value chosen for ǫ. The advantage, though, is that

within the boundary layer a smooth control action is applied

to the plant, which eliminates the effect of chattering found

in ideal sliding mode control [12].

It can be shown using the Comparison Lemma that the

time for the system trajectories to reach the set {ŝ ≤ ǫ} is

given by,

Tg ,
|ŝ(t0)|

εg

+ t0 −
ǫ

εg

(45)

By time t = maxt(Ts2
, Tm2

, Tg) both sliding mode

observers will have reached their respective sliding manifolds

and the slave trajectories will have reached the set {ŝ ≤ ǫ}.

At this point ŝ = s and the characteristic slave impedance

estimate will be equal to the desired characteristic slave

impedance. That is, Î = I . The system then recovers the

performance of a system where all states and forces are

measured. Due to the linear nature of the plants, all states will

be finite at time t = maxt(Ts2
, Tm2

, Tg) (i.e. the system does

not have a finite escape time) and both the master and slave

will be stabilized by their controllers at this point. Therefore,

both plants achieve stable behaviour despite the presence of

the time delay and with state and force estimates instead of

measurements. The slave manipulator will track the delayed

master position, while the master manipulator will experience

a delayed version of the environmental force acting on the

slave.

One can additionally show using a small gain argument that

closed loop impedance parameters for the master and slave

can always be chosen to ensure a stable closed loop system

despite the presence of time delays. However, this proof is

omitted here due to space constraints.

Having examined the proposed algorithm and shown its

stability, Section IV will present a numerical example.
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IV. SIMULATION RESULTS

The performance of the algorithm proposed in this work

is examined in this section through a simulation study. The

master plant (8), (9) with master control (18) and observer

(14), (15) is implemented. The slave dynamics (10), (11)

with sliding mode controller (21) and observer (16), (17)

are also implemented. Both master and slave have the same

dynamic parameters of ms = mm = 5 kg, bs = bm = 1.5
Ns/m, and ks = km = 1 N/m. The desired impedance for

the master and slave is set the same in each of the controllers

as well, with m̄s = m̄m = 5 kg, b̄s = b̄m = 50 Ns/m, and

k̄s = k̄m = 125 N/m.

The sliding mode observer gains are chosen as λs1
=

λm1
= 10, λs2

= λm2
= 20. The sliding mode controller

gain is chosen as Kg = 50, which is large enough to ensure

that a sliding mode occurs. In order to obtain the equivalent

output injection signals in the sliding mode observers, two

first order filters are used in each observer. The first filter

in each observer has a bandwidth of 628 rad/sec. The

second filter in each observer has a bandwidth of 30 rad/sec.

The filter bandwidths must be selected such that the lower

frequency equivalent signals are passed through while the

higher frequency switching components are filtered out [13].

The human force applied to the master manipulator is a sine

wave with amplitude of 20 N, frequency of 2/3 rad/sec, and

a phase shift of −π/4. The environment on the slave side is

modeled as a spring at a position of 0.1 m with a stiffness

of Ke = 150 N/m.

In order to show that the system functions in the presence

of time delays, a time delay of 0.25 seconds is used in each

direction, for a round trip time delay of 0.5 seconds. Both

the master and slave manipulators are started with the initial

conditions xm = xs = [0, 0]T . To show convergence of the

observer error dynamics, both the master and slave sliding

mode observers are given initial conditions of x̂m = x̂s =
[0.1, 0]T . The simulation is implemented in C using a fixed

step fifth order Runge-Kutta solver to integrate the dynamics.

The controller and plant simulations are run at a sample

period of To = 1 msec. The sliding mode observers are run at

a sample period of Ti = 10 µsec. The sliding mode observers

are run at a higher rate in order to minimize the numerical

error due to the discontinuous switching terms [14].

Figure 1 shows the performance of the system in terms

of the master and slave positions. It is clear that when

the slave is in free motion it accurately tracks the delayed

master position. When the slave comes into contact with the

environment, at xs = 0.1 m, the slave no longer tracks the

master reference signals, as expected. Instead, the external

force acting on the slave grows and is transmitted back to

the master side. When the slave manipulator leaves contact

with the environment it resumes tracking the delayed master

position. The slave environmental force is shown in Figure 2.

The force reflected back to the master is zero when the

slave is in free motion, as desired. This is in contrast to

position-position architectures such as that of Niemeyer and

Slotine [4] where the tracking error is reflected back to the

Fig. 1. Position of the master and slave manipulators.

Fig. 2. Actual and estimated slave environment force.

master side, having the effect that even when the slave is in

free motion it is possible that a force gets reflected back to

the master side.

Examining Figure 2, once can see the effectiveness of the

force estimation scheme. There is some initial peaking and

error in the force estimate before convergence of the observer

error dynamics to the sliding surfaces. The force applied by

the human, along with its estimate, is shown in Figure 3.

The same behaviour is observed in this plot. There is an

initial peak in the estimate, but convergence to the actual

force signal occurs in a short amount of time – less than 0.5

seconds. As seen in the plots, the accuracy of these force

estimates justifies their use in the controllers instead of force

measurements. Note that some high frequency components

of low amplitude remain in the force estimates, but these

components are effectively filtered out by the master and

slave plants.

The simulation results presented in this section have shown

that using unknown input observers to estimate the state of,

and external force applied to, the robot manipulators is an

effective alternative to actual force measurements. Through
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Fig. 3. Actual and estimated human applied force.

a numerical example, the system has been shown to be

feasible.

V. CONCLUSION

This work has presented a new approach to control of a

bilateral teleoperation system using force estimates instead

of the actual force measurements. By modifying the control

approach of Cho et al. [1] in such a way that only position

measurements are required at the master and the slave sides

and using unknown input sliding mode observers to estimate

the forces, an algorithm with all of the desirable properties

of both the position-position and position-force architectures

is achieved. That is, one does not need to measure any of the

forces on either manipulator, but the use of force estimates

ensures that the increased performance of a position-force

architecture is obtained. This new approach was shown to

be stable and its feasibility was verified through simulation

results. The results showed particularly that accurate esti-

mates of the human and environment forces can be obtained

and used for feedback.

This work will be further studied on the experimental

side. Experimental validation of this technique is currently

underway. As well, an examination of situations involving

unmodeled friction in the plants and its effect on force

estimation will be carried out to further ensure the practical

implementability of this approach when portions of the

dynamic model are not well known.
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