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Abstract— This paper addresses the positivity check of poly-
nomials in which the region of indeterminates is given as
a hyper-rectangle. A new tractable quadratically parameter-
dependent condition is proposed using Parameter-Dependent
Slack Variables (PDSVs) which are up to second-order with
respect to the indeterminates. It is proved that our derived con-
dition always holds if the condition via Sum-Of-Squares (SOS)
approach holds. In addition, as the polynomials defining the
region of the indeterminates always satisfy constraint qualifi-
cation, our proposed method is proved to be a sufficient con-
dition which asymptotically becomes a necessary and sufficient
condition for our addressed problem with increase of the sizes
of PDSVs.

I. INTRODUCTION

Identifying given matrix-valued polynomials as being

positive definite is a very important problem for control

theory, because it is relevant to recently developed con-

trol theory, such as, robust stability/performance analysis,

robust controller design, gain-scheduled controller design,

etc. some of which are reported in [1]. One of the most

effective approaches for this problem is Sum-Of-Squares

(SOS) approach in which SOS decomposition technique is

applied for given polynomials to identify the non-negativity.

Following this approach, Shor has proposed a method for

obtaining the global minimum of scalar polynomials [2].

After his proposal, Chesi et al. [3], Lasserre [4], and Parrilo

[5] independently have shown that SOS decomposition can

be cast to Semi-Definite Programming (SDP). Unfortunately,

the set of SOS polynomials generally has a gap from the set

of non-negative polynomials apart from very simple cases;

single indeterminate case, quadratic form with arbitrary many

indeterminates case, and quartic form in two indeterminates

case [2], [6]. However, Lasserre has proved that all non-SOS

polynomials, which are non-negative, can be approximated

by other polynomials [4], and they can be approximated by

some SOS polynomials with small SOS polynomial pertur-

bations [7], [8], [9]. Scherer and Hol have shown the matrix

version of Putinar’s SOS representation [10]. After these

papers, SOS approach has been known as a very powerful

tool for control theory and been applied to a wide variety of

control problems, such as nonlinear system analysis, hybrid

system analysis, etc., some of which are surveyed in [11],

[1]. Recently, some interesting results on the robust stability

analysis for polytopic systems via SOS approach have been
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reported [12], [13], some of which have been proved their

necessity for their problems [14], [15].

On the non-negativity check of matrix-valued polynomials,

it has been proved that SOS approach is equivalent to Slack

Variable (SV) approach when the indeterminate region de-

fined by polynomials is unbounded [16]. Further, if the inde-

terminate region is bounded, then it has been proved that SV

approach encompasses SOS approach; that is, SV approach

is no more conservative than SOS approach [16]. When the

indeterminate region is bounded and given as a convex set,

the methods therein give a series of parametrically affine

Linear Matrix Inequality (LMI) conditions which combine

the coefficients of the polynomials defining the indeterminate

region, and they only have to be checked at the vertices of

the convex set. However, it is not clear how combining the

coefficients of the polynomials which define the indetermi-

nate region works to reduce conservatism compared to SV

approach without combining the coefficients, which has been

used for some numerical examples in [17], [18] and robust

stability/performance analysis in [19], [20]. In other words,

if the indeterminate region is bounded and given as a convex

set, the relationship between SV approach without combining

coefficients of the polynomials defining the indeterminate

region and SOS approach combining coefficients of the

polynomials has not yet been clarified.

In this paper, we propose a new formulation for the posi-

tivity check of scalar polynomials, in which the indeterminate

region is given as a hyper-rectangle, via SV approach. Our

formulation uses Parameter-Dependent SVs (PDSVs), which

generally leads to polynomially parameter-dependent LMI

conditions that are hard to check for all possible values of the

indeterminates due to lack of convexity. To circumvent this

difficulty, we use structured PDSVs which are up to second-

order with respect to the indeterminates and derive LMI

conditions only with constant and quadratically parameter-

dependent terms. Due to this parameter-dependency, the

derived LMIs are equivalently converted to parametrically

affine LMIs which can be easily solved numerically with

some software, such as [21]. In addition, it is proved that

our derived LMIs always hold if the condition via SOS

approach holds. Further, since the polynomials which define

the indeterminate region satisfy the constraint qualification

[10] (it is called as Putinar’s condition in [22]), the condition

via SOS approach always holds with sufficiently high-order

monomials in SOS decompositions, which consequently

means that our derived condition is a sufficient condition

which asymptotically becomes a necessary and sufficient

condition for our addressed problem with increase of the
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sizes of PDSVs.

Methods using PDSVs have already been proposed by

several researchers, e.g. Löfberg [23], Oliveira et al. [24],

[25], [26], [27], [28], and Oishi [29], [30], [31]. However,

the methods proposed by Oliveira et al. and Oishi focus

on the proposition of less conservative conditions compared

to existing methods and the asymptotic exactness of their

methods with increase of numerical complexity using Pólya’s

theorem [32] or region dividing approach. Thus, the relation-

ship between their methods and other effective methods, such

as SOS approach method, has not been clarified. Löfberg [23]

has proposed a very similar method to our method; however,

the relationship between the proposed method and SOS

approach method has not been clarified, as mentioned in

the report. Thus, although his method is very effective

compared to Parameter-inDependent SV (PiDSV) approach

(e.g. [19], [20] and references therein) as demonstrated in the

report, the necessity of the proposed method for the problem

is not proved. Considering these, the contribution of this

paper is summarized as follows: First, a new tractable LMI

condition which identifies the positivity of given polynomials

is proposed; second, the method is proved to be no more

conservative than SOS approach when using same expres-

sions; third and last, the method is proved to be a necessary

and sufficient condition for the problem with sufficiently

large sized PDSVs. Consequently, this paper clarifies the

relationship between SOS approach and SV approach when

the indeterminate region is given as a hyper-rectangle; that is,

combining the products of SOS polynomials and polynomials

which define the indeterminate region in SOS decomposition

framework corresponds to adding parameter-dependent terms

in SV framework.

Hereafter, 〈X〉 is the shorthand notation of X + XT ,

0n,m, In and 0 respectively denote an n × m-dimensional

zero matrix, an n-dimensional identity matrix and an ap-

propriately dimensional zero matrix, Rn×m, Sn and Qn

respectively denote sets of n×m dimensional real matrices,

n × n dimensional symmetric real matrices and n × n
dimensional skew-symmetric real matrices, Z+ denotes the

set of non-negative integers, ⊗ denotes Kronecker product,

and X⊥ ∈ Rn×(n−r) denotes a matrix satisfying XX⊥ = 0

and X⊥T
X⊥ > 0, where X ∈ Rm×n and rank(X) = r.

For vectors vi, (i = q, · · · , r), q, r ∈ Z+, v[q,r] denotes

vq ⊗ · · · ⊗ vr with v[q+1,q] being defined as 1.

II. PRELIMINARIES

In this section, first, our addressed problem is defined, then

several PiDSV approachs, one of which is equivalent to SOS

approach, for the problem are recalled.

A. Problem Definition

Let us consider a scalar polynomial f(θ) with k inde-

terminates θ = [θ1 · · · θk]
T

. To define such f(θ), let us

introduce the vector of the power series of θi (i = 1, · · · , k)
ranging from 0-th to mi-th as

θ̆i =
[

θ0
i · · · θmi

i

]T
∈ Rσi ,

where σi = mi+1 (i = 1, · · · , k). Without loss of generality,

it is assumed that the lowest degrees of θi are zeros in this

paper.

Define the vector of all monomials obtained as products

of all θj
i elements with i = 1, · · · , k, j = 0, · · · , mi:

θ̆ = θ̆[1,k] ∈ Rσ,

where σ = σ(1, k), and σ(q, r) = Πr
i=qσi. By definition, let

σ(1, 0) = 1 and σ(k + 1, k) = 1.

Using these definitions, all polynomials with k indetermi-

nates, which have monomials obtained as products of all θj
i

elements with i = 1, · · · , k and j = 0, 1, · · · , 2mi, can be

expressed as follows:

f(θ) = θ̆T f̂ θ̆ (1)

with an appropriately defined f̂ ∈ Sσ .

Remark 1: The matrix f̂ is to be symmetric; however,

the expression of f̂ for f(θ) is not unique. Similarly, the

expression of θ̆ is neither unique. For example, we can

use arbitrary positively high-order indeterminate vector θ̆ to

express positively low-order f(θ), similarly in [16], [17],

[18].

In this paper, the region of the indeterminates θ is assumed

to be a hyper-rectangle; that is, the region is defined as

follows:

Ω =
{

θ ∈ Rk : |θi| ≤ δi (i = 1, · · · , k)
}

,

where δi(≥ 0) are given a priori. Alternatively, this set is

expressed as follows:

Ω =
{

θ ∈ Rk : gi(θ) = δ2
i − θ2

i ≥ 0 (i = 1, · · · , k)
}

. (2)

Let us define vector θ[2] and set Ω[2] as follows:

θ[2] =
[

θ2
1 · · · θ2

k

]T
,

Ω[2] =
{

θ[2] ∈ Rk : 0 ≤ θ2
i ≤ δ2

i (i = 1, · · · , k)
}

,

that is, Ω[2] denotes the region of indeterminate vector θ[2].

Now we are ready to pose our problem.

Problem 1: For a given polynomial f(θ) in (1), identify

whether or not the polynomial is positive over Ω.

B. PiDSV Approach

We recall PiDSV approach for Problem 1.

To describe the PiDSV approach for Problem 1, first, let

us define several notations.

Define the following matrices.

ηi(θi)= θiη
[∞]
i + η

[0]
i

η
[∞]
i =

[

Imi

01,mi

]

∈ Rσi×mi

η
[0]
i =−

[

01,mi

Imi

]

∈ Rσi×mi

Ψi(θi)= θiΨ
[∞]
i + Ψ

[0]
i

Ψ
[∞]
i = Iσ(1,i−1) ⊗ η

[∞]
i ⊗ Iσ(i+1,k) ∈ Rσ×πi

Ψ
[0]
i = Iσ(1,i−1) ⊗ η

[0]
i ⊗ Iσ(i+1,k) ∈ Rσ×πi
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Here, πi denotes σmi/σi. Note that matrix ηi(θ) satisifies

(ηi(θi)
T )⊥ = θ̆i and θ̆T Ψi(θi) = 0.

PiDSV approach without combining the polynomials gi(θ)
for Problem 1 is described as follows.

Lemma 1: If there exist a positive number ε, matrices

Ni ∈ Rπi×σ (i = 1, · · · , k) such that (3) holds for all the

vertices of Ω, then f(θ) is positive over Ω.

f̂ +

〈

k
∑

i=1

Ψi(θi)Ni

〉

−

[

ε 0

00

]

≥ 0 (3)

Note that this lemma is a particular case of Theorem 1

in [16] setting matrices Ĥ
[p]
q be zeros. Thus, the proof is

omitted here. In the next section, this lemma will be extended

for the use of PDSVs (i.e. Ni(θ)) instead of PiDSVs (i.e. Ni).

At the last of this section, we show a PiDSV approach

which has been proved to be equivalent to a method using

SOS decomposition technique.

We first recall Theorem 2 in [16] for scalar polynomials.

To do that, polynomial constraints gi(θ) are assumed to be

expressed as θ̆T ĝiθ̆ with some matrices ĝi ∈ Sσ . Then

Theorem 2 in [16] is given as follows with a slight revision.

Lemma 2 (Theorem 2 in [16]): f(θ) is positive over Ω if

there exist a positive number ε, k scalars hi and k skew-

symmetric matrices N̂i ∈ Qπi such that (4) and (5) hold.

f̂ +

〈

k
∑

i=1

Ψ
[0]
i N̂iΨ

[∞]
i

T

〉

−

[

ε 0

00

]

≥

k
∑

i=1

ĝi ⊗ hi (4)

hi ≥ 0, i = 1, · · · , k (5)

Remark 2: Note that

〈

Ψ
[0]
i N̂iΨ

[∞]
i

T
〉

is equivalent to
〈

Ψi(θ)N̂iΨ
[∞]
i

T
〉

because of N̂i ∈ Qπi .

Remark 3: Considering Lemma 1 in [16], the condition

of this lemma is a necessary and sufficient condition for

f(θ) − ε −
∑k

i=1 gi(θ)hi to be SOS.

As suggested in [16], it is possible to extend hi be SOS

polynomials. To do this extension, we make some more

preliminaries. Let us assume that mi ≥ 2. Although this

assumption generally increases the size of f̂ as well as N̂i,

this can be done without loss of generality. If polynomial

constraints gi(θ) is given as gi(θ) = θ̆T ĝi, where ĝi is

defined as

e[1,i−1] ⊗







δ2
i

0
−1

0mi−2,1






⊗ e[i+1,k], ei =

[

1
0mi,1

]

,

and SOS polynomials hi(θ) are set as hi(θ) = ĥT
i θ̆ with

some vectors ĥi ∈ Rσ , then Lemma 2 is revised as follows.

Lemma 3: f(θ) is positive over Ω if there exist a positive

number ε, k vectors ĥi ∈ Rσ , k skew-symmetric matrices

N̂i ∈ Qπi , and k2 skew-symmetric matrics N̄ji
∈ Qπi such

that (6) and (7) hold.

f̂ +

〈

k
∑

i=1

Ψ
[0]
i N̂iΨ

[∞]
i

T

〉

−

[

ε 0

00

]

≥

〈

k
∑

i=1

ĝiĥ
T
i

〉

(6)

〈

eĥT
j

〉

+

〈

k
∑

i=1

Ψ
[0]
i N̄ji

Ψ
[∞]
i

T

〉

≥ 0, j = 1, · · · , k (7)

where e is defined as e[1,k].

Remark 4: Considering Lemma 1 in [16], Lemma 3 is

equivalent to the following.

f(θ) − ε − 2

k
∑

i=1

gi(θ)hi(θ) = SOS

2hi(θ) = SOS

Remark 4 implies that Lemma 3 is an extention of

Theorem 2 in [16] for the case in which SOS polynomials

hi(θ) are used instead of constants hi.

Lemma 3 will be used in the next section to demonstrate

that our new condition for Problem 1 is no more conservative

than SOS approach (i.e. Lemma 3).

III. MAIN RESULTS

In this section, we first show a new tractable sufficient

condition for Problem 1 using PDSVs, whose entries are up

to second-order with respect to the indeterminates. Next, it

is shown that the new condition is a necessary condition

for Lemma 3. Finally, we show that the new condition is a

sufficient condition which becomes a necessary and sufficient

condition for Problem 1 with increase of the sizes of PDSVs.

A. PDSV Approach

A new condition for Problem 1 using PDSVs is given as

follows.

Theorem 1: If there exist a positive number ε, k skew-

symmetric matrices M̂i ∈ Qπi , k2 skew-symmetric matrices

M̄ij
∈ Qπi and k vectors l̂i ∈ Rσ such that (8) holds for all

the vertices of Ω[2], then f(θ) is positive over Ω.

f̂ +

〈

k
∑

i=1

Ψi(θi)Mi(θ)

〉

−

[

ε 0

00

]

≥ 0, (8)

where Mi(θ) (i = 1, · · · , k) are given as

Mi(θ)=M̂iΨ
[∞]
i

T

+
(

∑k

j=1

(

δ2
j − θ2

j

)

M̄ij

)

Ψ
[∞]
i

T

+



e[1,i−1] ⊗





θi

1
0mi−2



⊗ e[i+1,k]



 l̂Ti .
(9)

Proof: We first show that (8) has only constant and

quadratically parameter-dependent terms. Considering that

M̂i, M̄ij
∈ Qπi , the followings hold (see Remark 2).

〈

Ψi(θi)M̂iΨ
[∞]
i

T
〉

=

〈

Ψ[0]M̂iΨ
[∞]
i

T
〉
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〈

Ψi(θi)





k
∑

j=1

(δ2
j − θ2

j )M̄ij



Ψ
[∞]
i

T

〉

=

k
∑

j=1

(

(δ2
j − θ2

j )

〈

Ψ
[0]
i M̄ij

Ψ
[∞]
i

T
〉)

That is, multiplications of Ψi(θi) and M̂iΨ
[∞]
i

T

,
∑k

j=1(δ
2
j −

θ2
j )M̄ij

Ψ
[∞]
i

T

produce only constant and quadratically

parameter-dependent terms. Next, consider the remain-

ing term, i.e.

〈

Ψi(θi)



e[1,i−1] ⊗





θi

1
0



⊗ e[i+1,k]



 l̂Ti

〉

.

Some direct algebraic calculations give the following.

〈






e[1,i−1] ⊗







θ2
i

0
−1

0mi−2






⊗ e[i+1,k]






l̂Ti

〉

Thus, it is proved that inequality (8) has only constant and

quadratically parameter-dependent terms.

Next, we show that if (8) holds at all the vertices of

Ω[2] then f(θ) is positive over Ω. After θ2
i is set as a new

indeterminate ζi ∈
[

0, δ2
i

]

, (8) becomes affine with respect to

new indeterminates ζi (i = 1, · · · , k). Therefore, if (8) holds

at all the vertices of Ω[2], i.e. the vertices of the existence

region of ζ = [ζ1 · · · ζk]T , then (8) holds for all θ ∈ Ω.

After multiplying θ̆T and its transpose to (8) from the left

and the right respectively leads to θ̆T f̂ θ̆ − ε ≥ 0; that is,

f(θ) is identified to be positive over Ω. This completes the

proof.

Remark 5: As pointed out in the proof of Theorem 1, the

proposed quadratically parameter-dependent condition (8) is

equivalently converted to a parametrically affine LMI.

B. Connection to Lemma 3

In this subsection, we show that the condition of Theo-

rem 1 is a necessary condition for that of Lemma 3. That is,

we claim the following.

Theorem 2: If there exist a positive number ε, k matrices

N̂i ∈ Qπi , k2 matrices N̄ji
∈ Qπi , and k vectors ĥi such

that (6) and (7) hold, then there always exist k matrices

M̂i ∈ Qπi , k2 matrices M̄ij
∈ Qπi , and k vectors l̂i such

that (8) holds for all the vertices of Ω[2] with the same ε.

Proof: From the assumption, suppose that there exist a

positive number ε, k skew-symmetric matrices N̂i, k2 skew-

symmetric matrices N̄ji
, and k vectors ĥi such that (6) and

(7) hold.

As δ2
j − θ2

j ≥ 0 (j = 1, · · · , k) hold for all the vertices of

Ω[2] and (7) holds, the following inequalities hold for all the

vertices of Ω[2].

(

δ2
j − θ2

j

)

(

〈

ehT
j

〉

+

〈

k
∑

i=1

Ψ
[0]
i N̄ji

Ψ
[∞]
i

T

〉)

≥ 0 (10)

After summing up (6) and all (10), the following inequality

holds for all the vertices of Ω[2].

f̂ +

〈

∑k

i=1 Ψ
[0]
i N̂iΨ

[∞]
i

T
〉

−

[

ε 0

00

]

−
∑k

j=1

〈

(

ĝj −
(

δ2
j − θ2

j

)

e
)

ĥT
j

〉

+
∑k

j=1

(

(

δ2
j − θ2

j

)

〈

∑k

i=1 Ψ
[0]
i N̄ji

Ψ
[∞]
i

T
〉)

≥ 0

(11)

Considering that e is defined as e[1,j−1] ⊗ ej ⊗ e[j+1,k], the

fourth term can be expressed as follows:
〈

(

ĝj −
(

δ2
j − θ2

j

)

e
)

ĥT
j

〉

=

〈






e1,[j−1] ⊗







θ2
j

0
−1

0mj−2,1






⊗ e[j+1,k]






ĥT

j

〉

.

Thus, the following inequality holds for all the vertices of

Ω[2].

f̂ +

〈

∑k

i=1 Ψ
[0]
i N̂iΨ

[∞]
i

T
〉

−

[

ε 0

00

]

−
∑k

j=1

〈






e1,[j−1] ⊗







θ2
j

0
−1

0mj−2,1






⊗ e[j+1,k]






ĥT

j

〉

+
∑k

j=1

(

(

δ2
j − θ2

j

)

〈

∑k

i=1 Ψ
[0]
i N̄ji

Ψ
[∞]
i

T
〉)

≥ 0

(12)

The condition (12) is the same as (8) after setting ĥj , N̂i,

and N̄ji
as l̂j , M̂i, and M̄ij

respectively. Thus, if inequalities

(12) holds, then the condition of Theorem 1 always holds.

This completes the proof.

Theorem 2 shows that if the condition of Lemma 3,

which is a necessary and sufficient condition for f(θ) −
2
∑k

i=1 gi(θ)hi(θ) and hi(θ) be SOS polynomials, then the

condition of Theorem 1 always holds. In other words, if the

expressions for f(θ) and gi(θ) are respectively given as in

(1) and θ̆T ĝi, and the formulation for SOS decomposition is

set as in Remark 4, then PDSV approach (i.e. Theorem 1)

is no more conservative than SOS approach (i.e. Lemma 3).

From Theorem 2, we obtain the following interpretation

for combining gi(θ) and the associated SOS polynomials

hi(θ) in SOS approach: Combining products of these poly-

nomials in SOS approach corresponds to adding parameter-

dependent terms in SV framework. Although this is neither

new contribution to SOS approach nor to SV approach, it

has not been clarified before; that is, Theorem 2 clarifies the

relationship of those two approaches.

C. Necessity of Theorem 1

Finally, we give the last contribution of this paper. That

is, we claim the following.

Theorem 3: If the polynomial f(θ) in (1) is positive over

Ω, then for sufficiently large mi (i = 1, · · · , k) there exist

a positive number ε, k skew-symmetric matrices M̂i ∈ Qπi ,

k2 skew-symmetric matrices M̄ij
∈ Qπi and k vectors l̂i

such that (8) holds for all the vertices of Ω[2].
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To prove this theorem, we recall a lemma which describes

a necessary condition for Problem 1.

Lemma 4 (Theorem 2 in [10]): Suppose that the follow-

ing constraint qualification holds true: There exist some

r ∈ R and some SOS polynomials φi(θ) (i = 0, 1, · · · , k)
such that

r2 −

k
∑

i=1

θ2
i = φ0(θ) +

k
∑

i=1

φi(θ)gi(θ). (13)

Under this hypothesis, if the polynomial f(θ) is positive

over Ω, then there exist ε > 0 and SOS polynomials

s0(θ), s1(θ), · · · , sk(θ) such that

f(θ) − 2

k
∑

i=1

gi(θ)si(θ) = s0(θ) + ε. (14)

Remark 6: Lemma 4 shows only its necessity for Prob-

lem 1. However, the described condition is also a sufficient

condition for the problem, because SOS polynomials are

non-negative for all θ.

Remark 7: Constraint qualification condition (13) always

holds for gi(θ) in (2). In particular, let φi(θ) (i =
0, 1, · · · , k) be set all 1. Then inequality (13) holds with

r =

√

1 +
∑k

i=1 δ2
i .

We are ready to give the proof of Theorem 3.

Proof: [Proof of Theorem 3] Suppose that f(θ) is

positive over Ω. Then, from Lemma 4, Lemma 3, and

Remark 4, for sufficiently large mi (i = 1, · · · , k), there

exist a positive number ε, k skew-symmetric matrices N̂i,

k2 skew-symmetric matrices N̄ji
, and k vectors ĥi ∈ Rσ

such that (6) and (7) hold. From Theorem 2, for the same

mi (i = 1, · · · , k) and the same ε, there always exist k
skew-symmetric matrices M̂i, k2 skew-symmetric matrices

M̄ij
and k vectors l̂i such that (8) holds for all the vertices

of Ω[2]. This completes the proof.

Theorem 3 shows that Theorem 1 is a sufficient con-

dition which becomes a necessary and sufficient condition

for Problem 1 when monomials in θ̆ are sufficiently high-

order, which consequently means the increase of the sizes of

PDSVs, i.e. the sizes of M̂i, M̄ij
and l̂i.

IV. NUMERICAL EXAMPLE

Let us consider the following Motzkin form which is

borrowed from [33].

f(θ) = θ2
1θ

4
2 + θ4

1θ
2
2 + 1 − 3θ2

1θ
2
2 . (15)

This polynomial function is confirmed to be non-negative;

that is, the global minimum 0 is obtained at (θ2
1 , θ

2
2) = (1, 1);

however, it is not SOS. For this polynomial, we apply

Lemma 3 and Theorem 1 with various mi and various

indeterminate region (θ1, θ2) ∈ [−δ, δ]
2

setting ε = 10−9.

The assured lower bounds of f(θ) are given in Tables I, II,

and III.

Table I shows that both methods, i.e. Lemma3 and Theo-

rem 1, almost give the exact analysis regardless of mi. On

the other hand, Tables II and III indicate that setting small mi

TABLE I

ASSURED LOWER BOUNDS OF f(θ) IN (15) WITH LEMMA 3 AND

THEOREM 1 SETTING δ = 1

mi (i = 1, 2) Lemma 3 Theorem 1
2 −0.026 0.000
3 −0.024 0.000
4 0.000 0.000
5 0.000 0.000

TABLE II

ASSURED LOWER BOUNDS OF f(θ) IN (15) WITH LEMMA 3 AND

THEOREM 1 SETTING δ = 5

mi (i = 1, 2) Lemma 3 Theorem 1
2 −13.486 −2.864
3 −12.491 −2.292
4 −0.140 −0.072
5 −0.004 0.000

TABLE III

ASSURED LOWER BOUNDS OF f(θ) IN (15) WITH LEMMA 3 AND

THEOREM 1 SETTING δ = 10

mi (i = 1, 2) Lemma 3 Theorem 1
2 −55.661 −13.386
3 −47.381 −9.846
4 −1.383 −0.463
5 −0.016 −0.005

does not give the exact analysis for large hyper-rectangles.

In addition, Tables II and III show that Theorem 1 gives

more precise analysis than Lemma 3, which indicates that

Theorem 2 holds; that is, even when Lemma 3 does not

hold Theorem 1 may hold.

V. CONCLUSIONS

On the positivity check of polynomials in which the

indeterminate region is given as a hyper-rectangle, a new

tractable sufficient condition is proposed via Parameter-

Dependent Slack Variable (PDSV) approach. In our method,

the parameter-dependency of PDSVs is structurally re-

stricted, which leads to that our derived condition has only

constant and quadratically parameter-dependent terms. This

parameter-dependency equivalently converts the derived con-

dition to a parametrically affine LMI condition, which can

be easily checked using some software for SDP problems

without introducing any conservatism. It is also proved that

the derived condition always holds if the condition via

SOS approach holds. In addition, since the SOS approach

with sufficiently high-order monomials is a necessary and

sufficient condition for the addressed problem, our derived

condition is proved to be a sufficient condition which be-

comes a necessary and sufficient condition for the addressed

problem with increase of the sizes of PDSVs.
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