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Abstract— This paper deals with singular value decomposi-
tion (SVD) for a class of linear time-varying systems. The class
considered here describes switched linear systems with periodic
switching. Based on an appropriate input-output description,
the calculation method of singular values and singular vectors
is derived. The SVD enables us to characterize the dominant
input–output signals using singular vectors, which form orthog-
onal systems in input and output spaces. Then SVD is applied
to switched linear systems to improve the transient response.
A numerical example is provided to demonstrate the proposed
method.

I. INTRODUCTION

For linear dynamical systems, singular value decomposi-
tion (SVD) plays an important role in analysis and control.
Various studies of the subject have been made to date. For
example, model reduction methods for finite-dimensional
linear systems have been developed [1](Chaps. 7–8) and
the finite-dimensional approximation problem of a class of
infinite-dimensional systems has been considered in [2]. In
[3], a compensation signal design method for improving the
transient response of linear systems has been derived based
on the SVD for linear dynamical systems. For constrained
systems, the compensation signal design problem has been
reported in [4]. Model predictive control for constrained
continuous-time linear systems has also been developed in
[5].

In this paper, we first consider the SVD of a Hankel-
like operator describing the input-output relation of a class
of linear time-varying systems and derive a method of
calculating singular values and singular vectors. The class of
systems we consider here represents switched linear systems
with periodic switching. The SVD provides orthogonal input
and output sequences that enable us to approximate the
original infinite-dimensional input and output spaces using
a finite number of singular vectors. Then, we specifically
examine a switched linear system and consider the com-
pensation signal design problem using the newly established
SVD for switched linear systems to improve the transient
response. The compensation signal design we consider in
this paper is based on a feedforward method and the resulting
compensation input over the entire time interval of interest
is computed off-line using the desired and uncompensated
responses.

The paper is organized as follows. In section II, the SVD
of the Hankel-like operator for a linear time-varying system
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is considered and the calculation method of singular values
and singular vectors is derived. In section III, the obtained
SVD is applied to a switched linear system with a periodic
switching law and the compensation law for improving the
transient response is considered. A numerical example is
given in section IV to illustrate the fundamental properties
of the proposed method.

II. SINGULAR VALUE DECOMPOSITION FOR A
LINEAR TIME-VARYING SYSTEM

Consider a class of linear time-varying systems defined
over a finite horizon [0, h]:

Σ :
{

ẋ(t) = A(t)x(t) + B(t)v(t), x(0) = 0
z(t) = E(t)x(t) (1)

(A(t), B(t), E(t)) :=





(A1, B1, E1) 0 ≤ t < t1
(A2, B2, E2) t1 ≤ t < t2

...
...

(AN , BN , EN ) tN−1 ≤ t ≤ tN

0 < t1 < t2 < · · · < tN = h

where x(t) ∈ Rnx , v(t) ∈ Rnv , z(t) ∈ Rnz denote the
state, input, and output, respectively. This system represents
a time-dependent switched linear system. Switched linear
systems with the periodic switching law can be described
by this particular form (additional details are presented in
section III). In this section, starting with introduction of
appropriate generalized input and output spaces, the singular
value decomposition for this system will be derived and used
for the transient improvement of switched linear systems.

First, define Hilbert spaces V := L2(0, h;Rnv ) and Z :=
Rnx × L2(0, h;Rnz ) with the inner products

〈f1, f2〉V :=
∫ h

0

fT
1 (β)f2(β)dβ, f1, f2 ∈ V, (2)

〈g1, g2〉Z := g0T

1 g0
2 +

∫ h

0

g1T

1 (β)g1
2(β)dβ,

g1 =
[
g0
1

g1
1

]
, g2 =

[
g0
2

g1
2

]
∈ Z (3)

and denote the input and output in V,Z as

v ∈ V, ẑ :=
[
z0

z1

]
∈ Z, (4)

z0 := Fx(h), F ∈ Rnx×nx , (5)

z1(t) := z(t), 0 ≤ t ≤ tN = h (6)
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where F is an appropriate weighting matrix for the terminal
state. The relation between v and ẑ is written by a linear
operator Γ ∈ L(V,Z):

ẑ = Γv, v ∈ V, ẑ ∈ Z, (7)

Γv :=
[
(Γv)0

(Γv)1

]
,

(Γv)0 =F

N−1∑
s=1

Φ(N,s)(h)
∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ F

∫ h

tN−1

eAN (h−τ)BNv(τ)dτ, (8)

(Γv)1[tk,tk+1]
(t)

=Ek+1

k∑
s=1

Φ(k+1,s)(t)
∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ Ek+1

∫ t

tk

eAk+1(t−τ)Bk+1v(τ)dτ, (9)

tk ≤ t ≤ tk+1, k = 0, . . . , N − 1,

Φ(`,m)(t) :=eA`(t−t`−1)eA`−1(t`−1−t`−2) · · · eAm+1(tm+1−tm),
(10)

`,m ∈ Z+ : ` > m ≥ 0,

t`−1 ≤ t ≤ t`.

For the operator Γ, we consider the following singular value
problem:

Γf = σg, Γ∗g = σf, (11)
σ ∈ R, f ∈ V, g ∈ Z, (f 6= 0, g 6= 0).

The singular vectors f ∈ V and g ∈ Z represent the
input and output signals. The pairs (f, g) corresponding
to the larger singular values σ characterize the dominant
input–output behavior of system Σ. The following theorem
provides a calculation method of the singular values σ and
the explicit characterization of the singular vectors f and g
which satisfy the relation (11).

Theorem 1: The singular values are given by the roots of
the following transcendental equation:

det {M(σ)} = 0, (12)

M(σ) :=
[− 1

σ FTF I
]
eJN (σ)d̄N eJN−1(σ)d̄N−1 · · · eJ1(σ)d̄1

[
0
I

]
,

Jm(σ) :=
[

Am
1
σ BmBT

m

− 1
σ ET

mEm −AT
m

]
,

d̄m := tm − tm−1, m = 1, 2, . . . , N.

Let σi be a singular value. Then, the corresponding singular
vectors fi ∈ V and gi ∈ Z are given as follows:

fi[tk−1,tk](β) =
1
σi

[
0 BT

k

]
eJk(σi)(β−tk−1)eJk−1(σi)d̄k−1

· · · eJ1(σi)d̄1

[
0
I

]
qi, (13)

k = 1, 2, . . . , N,

g0
i =

1
σi

[
F 0

]
eJN (σi)d̄N eJN−1(σi)d̄N−1 · · · eJ1(σi)d̄1

[
0
I

]
qi,

(14)

g1
i [tk−1,tk](β) =

1
σi

[
Ek 0

]
eJk(σi)(β−tk−1)eJk−1(σi)d̄k−1

· · · eJ1(σi)d̄1

[
0
I

]
qi, (15)

k = 1, 2, . . . , N,

qi 6= 0 : M(σi)qi = 0. (16)
Proof: For the operator Γ , the adjoint Γ∗ ∈ L(Z,V)

is calculated as follows (see the Appendix for details):

(Γ∗ẑ)[tk−1,tk](τ)

=





BT
k eAk

T(tk−τ)ΦT
(N,k)(h)FTẑ0

+
N−1∑

s=k

∫ ts+1

ts

BT
k eAk

T(tk−τ)ΦT
(s+1,k)(β)ET

k ẑ1(β)dβ

+
∫ tk

τ

BT
k eAk

T(β−τ)ET
k ẑ1(β)dβ

tk−1 ≤ τ ≤ tk, k = 1, 2, . . . , N − 1

BT
NeAN

T(h−τ)FTẑ0 +
∫ tN

τ

BT
NeAN

T(β−τ)ET
N ẑ1(β)dβ

tN−1 ≤ τ ≤ tN , k = N
(17)

ẑ =
[
ẑ0

ẑ1

]
∈ Z.

By introducing the auxiliary variables

p1(t) :=
∫ t

0

eA1(t−τ)B1v(τ)dτ, 0 ≤ t ≤ t1, (18)

pk(t) := eAk(t−tk−1)pk−1(tk−1) +
∫ t

tk−1

eAk(t−τ)Bkv(τ)dτ,

tk−1 ≤ t ≤ tk, k = 2, 3, . . . , N, (19)

qN (t) := eAT
N (tN−t)FTẑ0 +

∫ tN

t

eAT
N (β−t)ET

N ẑ1(β)dβ,

(20)

qk(t) := eAT
k (tk−t)qk+1(tk) +

∫ tk

t

eAT
k (β−t)ET

k ẑ1(β)dβ,

(21)
tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N − 1

into (8), (9) and (17), the relation (11) is rewritten as the
following set of equations

ṗk(t) = Akpk(t) + Bkv(t), (22)

σẑ1(β) = Ekpk(β), (23)
tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N,

σẑ0 = FpN (tN ), (24)
p1(0) = 0, (25)

q̇k(t) = −AT
k qk(t)− ET

k ẑ1(t), (26)
tk−1 ≤ t ≤ tk, k = 1, 2, . . . , N,

σv(t) = BT
k qk(t), (27)

qN (tN ) = FTẑ0. (28)
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By eliminating v and ẑ1 from the differential equations
(22) and (26) using (23) and (27), (22) and (26) yield the
following differential equation

[
ṗk(t)
q̇k(t)

]
=

[
Ak

1
σ BkBT

k

− 1
σ ET

k Ek −AT
k

] [
pk(t)
qk(t)

]
. (29)

The solution to this differential equation on [tk−1, tk] is given
by

[
pk(tk)
qk(tk)

]
= eJk(σ)(tk−tk−1)

[
pk−1(tk−1)
qk−1(tk−1)

]
. (30)

From equations (24) and (28), the boundary
condition qN (tN ) = 1

σ FTFpN (tN ), which implies

[− 1
σ FTF, I]

[
pN (h)
qN (h)

]
= 0, is obtained. Then, we have

[− 1
σ FTF I

] [
pN (h)
qN (h)

]
(31)

=
[− 1

σ FTF I
]
eJN (σ)d̄N

[
pN−1(tN−1)
qN−1(tN−1)

]

= · · ·
=

[− 1
σ FTF I

]
eJN (σ)d̄N eJN−1(σ)d̄N−1 · · · eJ1(σ)d̄1

[
0
I

]
q1(0)

= M(σ)q1(0)
= 0. (32)

Because it is shown that q1(0) 6= 0 iff f 6= 0, g 6= 0, the
matrix M(σ) in (32) must be singular for the singular values
σ. Therefore, the singular values are given by the roots of
the equation (12). The singular vectors corresponding to the
singular values are constructed by expressing v and z0, z1

using the auxiliary variables pk and qk.

Remark 2: The singular vectors {fi}, {gi} form orthog-
onal sequences in spaces V and Z . The singular vectors
fi corresponding to the large singular values describe the
input signals over [0, h] that have a large effect on the
input–output dynamics of the linear time-varying system (1)
because output ẑ is given as σi · gi, which indicates that gi

is magnified by σi when fi is applied to the system.
Remark 3: Once the singular values are calculated from

the determinant equation (12), the computation of the sin-
gular vectors (13)–(15) is easy as they have the form of
the autonomous response of switched linear systems. The
singular values are calculated by using general methods such
as bisection algorithm. Although we will only employ larger
singular values and corresponding singular vectors for the
design of compensation signal, the computation of smaller
singular values tend to demanding as the transcendental
equation (12) involves the exponential matrix of the Hamil-
tonian matrix Jm(σ).
Based on the SVD for switched linear systems with periodic
switching obtained in this section, we derive a feedforward
compensation signal design problem of the switched linear
systems.

In the following, we normalize the singular vectors as
‖fi‖V = 1, ‖gi‖Z = 1 and denote singular values by σ1 ≥

σ2 ≥ σ3 ≥ · · · in decreasing order and the corresponding
singular vectors by fi and gi (i = 1, 2, . . . ).

III. TRANSIENT IMPROVEMENT OF A SWITCHED
LINEAR SYSTEM

A switched system consists of several subsystems and
a switching signal that determines the transition of the
dynamics among the subsystems. Various studies related to
stabilizing switching law, system structures (controllability,
observability) and optimal control have been investigated
[6], [7], [8], [9], [10], [11]. In the optimal control of the
switched systems, if one pursues optimality exclusively, then
the switching frequency might become very high or the
switching law might require infinitely many switchings on
finite interval [10], [11], which is not desirable from a prac-
tical viewpoint. Instead of designing the switching function
to achieve good performance, we consider the feedforward
compensation signal design problem.

In this section, based on the SVD for the class of linear
time-varying systems developed in the previous section, we
will derive a method for improving the transient response of
a switched linear system with a periodic switching law. The
compensation signal is computed off-line beforehand based
on uncompensated and desired transient responses over the
finite time interval of interest.

First, we consider a switched linear system

Σs :
{

ẋ(t) = As(t)x(t) + Bs(t)u(t)
z(t) = Es(t)x(t) (33)

where x(t), u(t), and z(t) respectively denote the state, input,
and output. Subscript s(t) ∈ S signifies the switching signal,
where S is an index set. When we apply

u(t) = Ks(t)x(t) + v(t) (34)

to Σs, the resulting system can be described as follows.

Σ̃s :
{

ẋ(t) = Ãs(t)x(t) + Bs(t)v(t)
z(t) = Es(t)x(t)

(35)

Ãs(t) := As(t) + Bs(t)Ks(t) (36)

In (34), v(t) denotes the compensation signal that we will
design to improve the transient response. If feedback gain
matrices Ki and coefficients ωi exist such that the matrix

A0 =
∑

i∈S
wiÃi (ωi ≥ 0,

∑

i∈S
ωi = 1) (37)

is Hurwitz, then the system can be stabilized via periodic
switching signals as follows [6], [7]. Let Ki and wi be one
pair satisfying (37). Then, for a small T > 0, the periodic
switching function

s(t) =





1, t ∈ [kT, (k + ω1)T )
2, t ∈ [(k + ω1)T, (k + ω1 + ω2)T )
...

...
m, t ∈ [(k + 1− ωm)T, (k + 1)T )

(38)

k = 0, 1, . . .
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stabilizes the system exponentially because matrix Ad :=
eωmAmT · · · eω1A1T = eA0T+f(T )T 2

(f is an analytic and
bounded matrix-valued function) can be stable and x((k +
1)T ) = Adx(kT ) holds (refer to [6] for details). Conse-
quently, a system with the periodic switching signal can be
represented by the form of the linear time-varying system
(1).

For the system stabilized by the periodic switching func-
tion, we consider the transient improvement by the compen-
sation input v(t), (0 ≤ t ≤ h) in the sense that the resulting
system response approaches a certain prescribed response.
Let

ŷd =
[
xd(h)
yd[0,h]

]
∈ Z

be a pair of a desired terminal state and output and let

ŷ =
[
x(h)
y[0,h]

]
∈ Z

be the nominal response (without compensation input v).
Here two responses are assumed to have the condition
yd[0,h](0) = y[0,h](0) as the initial condition is not com-
pensable. Define the error ê := ŷd − ŷ (∈ Z). The de-
sired response ŷd can be chosen from the response of a
certain reference model that has a good transient property.
We design compensation input v(t) such that the resulting
system response closely approximates the desired response
ŷd. We construct the compensation input v(t) by the linear
combination of Ns dominant singular vectors fi ∈ V , which
represent the input signals over [0, h] in V . Although the SVD
is defined for the system (1) with zero initial condition, it
is applicable since the singular values and singular vectors
are used to generate the error signal between the desired
and uncompensated responses (the error at initial time:
yd[0,h](0) − y[0,h](0) = 0). Because Ns singular vectors
g1, g2, . . . , gNs form the orthonormal system in Z , the closest
element of span{g1, g2, . . . , gNs} to ê is given as

ê′ :=
Ns∑

i=1

〈ê, gi〉Z · gi. (39)

Consequently, by applying the compensation input

v[0,h] = −
Ns∑

i=1

1
σi
〈ê, gi〉Z · fi (40)

the error is minimized in the input consisting of the Ns

singular vectors fi because the input (40) yields the error
signal with the opposite sign in the output. The number
Ns is a design parameter for approximating the error ê and
the method for choosing a suitable value of Ns beforehand
has not been established. It is noteworthy that although the
error ê decreases monotonically as we increase Ns, the
compensation signal might become larger.

Remark 4: For standard linear time-invariant systems, the
SVD-based compensation method using the orthogonal ex-
pansion technique has already been examined in [3]. Herein,
we have derived a compensation method for switched linear

0 1 2 3 4 5
-8

-6

-4

-2

0

2

time [s]

x
1
,
x 2

Fig. 1. State response (solid) and response of average system (dashed)

TABLE I
SINGULAR VALUES OF Γ ∈ L(V,Z)

σ1 1.8353 σ9 0.2695
σ2 1.7834 σ10 0.2563
σ3 1.3738 σ11 0.2401
σ4 0.6928 σ12 0.2291
σ5 0.5808 σ13 0.1909

σ6 0.5062
.
.
.

.

.

.

σ7 0.4395
σ8 0.4187

systems using the newly derived SVD for linear time-varying
systems.

IV. NUMERICAL EXAMPLE

Here we provide a simple numerical example to illustrate
the fundamental properties of the proposed SVD-based com-
pensation method.

First, consider a pre-compensated switched linear system.
{

ẋ(t) = Ãs(t)x(t) + Bs(t)v(t)
z(t) = x(t)

(41)

S = {1, 2}, Ã1 =
[−3 2

1 2

]
, Ã2 =

[
1 −1
−3 −5

]

B1 =
[
1.5
1

]
, B2 =

[
1
2

]
, (E1 = E2 = I) (42)

Both subsystems are unstable, and have the eigenvalues
(−3.37, 2.37) and (−5.46, 1.46). We first design the sta-
bilizing periodic switching law according to the method
described in section III. For this system, we choose the
coefficients w1 = 0.5, w2 = 0.5 in (37). Then, the matrix
A0 = w1Ã1 + w2Ã2 becomes Hurwitz. Therefore, it can be
stabilized by periodic switching. When we choose T = 1,
the stable matrix Ad = e0.5·A2·1 · e0.5·A1·1 is obtained
(eigenvalues: 0.135 ± 0.2527i), and the periodic switching
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f
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f
2

f
3
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9

Fig. 2. Normalized singular vectors fi ∈ L2(0, h;R)

law

s(t) =
{

1, t ∈ [kT, (k + 0.5) · 1)
2, t ∈ [(k + 0.5) · 1, (k + 1) · 1)

k = 0, 1, 2, . . . (43)

exponentially stabilizes the system. Fig. 1 shows the state re-
sponse (x1, x2) for the initial condition x(0) = [2,−3]T with
the periodic switching law (solid line). The response of the
average system (ẋ(t) = A0x(t)) is also shown as a dashed
line. Although the response converges to zero, the behavior is
not smooth at switching instants and exhibits sharp changes.
We will design compensation signal v, which improves this
response in the sense that the resulting response of the system
comes to resemble that of the average system. Although we
use the response of the average system here, not only the
response of the average system but also any other response
can be used. It should be noted that the response comes to
resemble that of the average system as T in (43) decreases.
However, in such a case, much more frequent switching
between subsystems A1 and A2 is required.

To design the compensation signal, we first compute the
singular values and singular vectors. For parameters h = 4
(compensation period) and N = 8, the singular values are
computed from Theorem 1; they are presented in Table I (the
matrix F in (5) is chosen by the solution to the Lyapunov
equation FTF = P : AT

0 P + PA0 + I = 0). Fig. 2
and Fig. 3 depict the normalized singular vectors fi ∈ V
and g1

i ∈ L2(0, h;R2)(i = 1, 2, 3, 9, 10). They are obtained
by first computing the singular vectors based on (13)–(15)
and then multiplying them by the value of either 1/‖fi‖V
or 1/‖gi‖Z . The singular vectors corresponding to smaller
singular values (σ9, σ10) tend to exhibit the oscillating shape.
As we addressed in Remark 2, when the singular vector f1

corresponding to the largest singular value is applied to the
system (41) (v(t) = f1(t)), the output response z = x is
given by σ1 · g1

1(t) = 1.8353 · g1
1(t), which implies that

the system generates magnified signal of g1
1(t). Also, note

that the singular value σi represents the value of the norm

0 1 2 3 4
-1

0

1

2

time

a
m
p
l
i
t
u
d
e

0 1 2 3 4
-2

0

2

time

a
m
p
l
i
t
u
d
e g

9

g
10g

2

g
3

g
10 g

1

g
2g

9

g
3 g

1

Fig. 3. Singular vectors g1
i ∈ L2(0, h;R2)(‖gi‖Z = 1), upper:x1,

lower:x2

0 1 2 3 4 5
-4

-2

0

2

4

6

8

10

time

v N
s
=7

N
s
=13

Fig. 4. Compensation signal v

of the output gi corresponding to the unit energy input
v = fi. In contrast, when the normalized singular vector
f10 corresponding to smaller singular value σ10 is applied
to the system, σ10 · g1

10(t) = 0.2563 · g1
10(t) is generated

in the output. Therefore, if we employ the singular vectors
corresponding to larger singular values, the compensation
signal that has a dominant effect on the input–output re-
lation is obtained. Using 7(= Ns) dominant singular values
(σ1, σ2, · · · , σ7), we design compensation signal v according
to the method addressed in section III. Fig. 4 shows the
compensation signal. It is observed that the amplitude around
the initial time is larger to improve the large deviation of
the original response. Fig. 5 shows the state response with
compensation. It is observed that the response approaches
that of the average system.

The responses for Ns = 13 are also shown in Fig. 4
and Fig. 5. Although the compensation signal for Ns = 13
exhibits similar behavior near the initial time, the amplitude
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0
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time [s]

x
1
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N
s
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N
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=13

N
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=13

N
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Fig. 5. State response with compensation

is larger than that of the compensation signal for Ns = 7
after t = 0.5 [s]. Even if we use more singular values,
the amplitude would become larger and eliminate only small
deviations.

V. CONCLUSION

In this paper, we have considered the SVD of the Hankel-
like operator representing the input-output relation of a class
of linear time-varying systems. The class of the systems
describes switched linear systems with periodic switching.
We have derived a computation method for singular values
and singular vectors of the operator. Based on this SVD, the
compensation signal design for switched linear systems with
a periodic switching law is discussed. A numerical example
was presented to illustrate the fundamental properties of the
proposed method.

As described here, we have considered the design problem
for pre-compensated systems, it would be important to design
the switching signal and the compensation signal simultane-
ously to achieve good performance without requiring exces-
sive frequent mode transition between subsystems. Also, it is
necessary to evaluate the relationship between approximation
error and the number of employed singular values and vectors
Ns. These are the directions of future research.
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[9] X. Xu and P.J. Antsaklis: Optimal control of switched systems

based on parameterization of the switching instants, IEEE Trans. on
Automatic Control, Vol.49, No.1, pp.2–16, 2004.

[10] S.C. Bengea and R.A. DeCarlo: Optimal control of switching systems,
Automatica, Vol.41, No.1, pp.11–27, 2005.

[11] T. Das and R. Mukherjee: Optimally switched linear systems, Auto-
matica, Vol.44, No.5, pp.1437–1441, 2008.

APPENDIX

Derivation of the adjoint Γ∗ ∈ L(Z,V) in (17):
First, we compute the following inner product:

〈ẑ, Γv〉Z = 〈
[
ẑ0

ẑ1

]
,

[
(Γv)0

(Γv)1

]
〉Z

= ẑ0T(Γv)0 +
∫ h

0

ẑ1T(β)(Γv)1(β)dβ. (44)

The first and second terms in (44) are calculated as shown
below.

(i) first term

ẑ0T(Γv)0

= ẑ0TF

N−1∑
s=1

Φ(N,s)(h)
∫ ts

ts−1

eAs(ts−τ)Bsv(τ)dτ

+ ẑ0TF

∫ h

tN−1

eAN (h−τ)BNv(τ)dτ

=
N−1∑

k=1

∫ tk

tk−1

(
BT

k eAT
k (tk−τ)ΦT

(N,k)(h)FTẑ0
)T

v(τ)dτ

+
∫ tN

tN−1

(
BT

NeAT
N (h−τ)FTẑ0

)T

v(τ)dτ (45)

(ii) second term
∫ h

0

ẑ1T(β)(Γv)1(β)dβ

=
N−1∑

k=1

k∑
s=1

∫ tk+1

tk

∫ ts

ts−1

ẑ1T(β)EkΦ(k+1,s)(β)eAs(ts−τ)

×Bsv(τ)dτdβ

+
N∑

k=1

∫ tk

tk−1

∫ β

tk−1

ẑ1T(β)EkeAk(β−τ)Bkv(τ)dτdβ

=
N−1∑

k=1

∫ tk

tk−1

N−1∑

s=k

∫ ts+1

ts

ẑ1T(β)EkΦ(s+1,k)(β)eAk(tk−τ)

×Bkdβv(τ)dτ

+
N∑

k=1

∫ tk

tk−1

∫ tk

τ

ẑ1T(β)EkeAk(β−τ)Bkdβv(τ)dτ (46)

For the transformation presented above, we used the reversal
of the order of integration and change of the order of
summation. Consequently, by definition (2) of the inner
product in V , the adjoint Γ∗ ∈ L(Z,V), which satisfies
〈ẑ, Γv〉Z = 〈Γ∗ẑ, v〉V , is given by (17).
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