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Abstract— This paper establishes the equivalence among
several stability criteria, and presents a simplified stability
criterion for singular time-delay systems. Furthermore, by using
a delay decomposition method, a new stability criterion which
is much less conservative than the existing ones is obtained. A
numerical example is given to illustrate the effectiveness and
less conservatism of the new proposed stability criterion.

I. INTRODUCTION

Over the past decades, much attention has been focused
on the stability analysis and controller synthesis for singular
linear time-delay systems due to the fact that the singular
system model is a natural presentation of dynamic systems
and it can describe a large class of systems than regular ones,
such as large-scale systems, power systems and constrained
control systems. Just like state-space time-delay systems,
the results on stability analysis and stabilization for singular
time-delay systems can be classied into two categories, that
is, delay-independent criteria ([1],[2]) and delay- dependent
ones ([3],[4]). Generally, the delay-dependent case is less
conservative than delay-independent ones, especially when
the delay is comparatively small.

Recently, there has been a growing interest in the study
of stability analysis for singular systems with time-delay. By
using various methods, many results have been reported in
the literature (for example, [4], [5], [6], [7]). In this note,
we will prove that the stability result proposed in [4] is
equivalent to the ones in [5], [6], [7], and a simplified version
of Theorem 1 in [4] will be derived. Furthermore, by using
a delay composition method, a less conservative result will
be presented.

Consider the following continuous-time singular system
with a time-varying delay in the state [4]:

(Σ) : Eẋ(t) = Ax(t)+Aτ x(t− τ), t > 0 (1)
x(t) = φ(t) t ∈ [−τ, 0], (2)

where x(t) ∈ Rn is the state, φ(t) ∈ Cn,τ is a compatible
vector valued initial function. The matrix E ∈ Rn×n may be
singular and rankE = p≤ n. A, Aτ are constant matrices with
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appropriate dimensions. τ is an unknown but constant delay
satisfying

0≤ τ ≤ τm. (3)

Without loss of generality, the matrices E, A and Aτ are
assumed to have the forms:

E =
[

Ip 0
0 0

]
, A =

[
A11 A12
A21 A22

]
, Aτ =

[
Aτ11 Aτ12
Aτ21 Aτ22

]
.

(4)

For system (Σ), [4] provided a stability criterion as follows.

Lemma 1. [4] The singular time-delay system (Σ) is regular,
impulse free and asymptotically stable for any constant delay
τ satisfying 0≤ τ ≤ τm, if there exist matrices

P =
[

P11 P12
0 P22

]
, P11 > 0, Q > 0, Z =

[
Z11 Z12
∗ Z22

]
> 0,

Y =
[

Y11 0
Y21 0

]
, W =

[
W11 0
W21 0

]
, Y1 =

[
Y11
Y21

]
,

W1 =
[

W11
W21

]
,

with appropriate dimensions and P11 ∈ Rp×p, Z11 ∈
Rp×p, Y11 ∈ Rp×p, W11 ∈ Rp×p satisfying the following LMI:

Φ < 0, (5)

where

Φ =




Φ1 PAτ −Y +W T + τmAT ZAτ −τmY1
∗ −Q−W −W T + τmAT

τ ZAτ −τmW1
∗ ∗ −τmZ11


 ,

Φ1 = PA+AT PT +Y +Y T +Q+ τmAT ZA.

For convenience of comparison, the stability criteria in
[5], [6], [7] are listed as the following lemmas.

Lemma 2. [5] Consider the descriptor system (Σ), for a given
scalar τm > 0, if there exist matrices P̃1 > 0, P̃2, P̃3, Q̃ >
0, R̃ > 0, T̃i and S̃i of appropriate dimensions (i = 1, 2, 3)
such that

Γ < 0, (6)

where

Γ =




Γ11 Γ12 Γ13 τmT̃1
∗ Γ22 Γ23 τmT̃2
∗ ∗ Γ33 τmT̃3
∗ ∗ ∗ −τmR̃


 ,
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Γ11 = Q̃+ T̃1E +ET T̃ T
1 − S̃1A−AT S̃T

1 ,

Γ12 =−T̃1E +ET T̃ T
2 − S̃1Aτ −AT S̃T

2 ,

Γ13 = P̃+ S̃1 +ET T̃ T
3 −AT S̃T

3 ,

Γ22 =−Q̃− T̃2E−ET T̃ T
2 − S̃2Aτ −AT

τ S̃T
2 ,

Γ23 = S̃2−ET T̃ T
3 −AT

τ S̃T
3 ,

Γ33 = τmR̃+ S̃3 + S̃T
3 ,

P =
[

P̃1 P̃2
0 P̃3

]
,

then system (Σ) is E–exponentially stable.

Lemma 3. [6] Given a scalar τm > 0. Then, for any delay
0≤ τ ≤ τm, the singular delay system (Σ) is regular, impulse
free and stable if there exist matrices Q = QT > 0, Z = ZT >
0, P, Y and W , such that the following LMIs hold:

ET P = PT E ≥ 0, (7)
Ω < 0, (8)

where

Ω =




Ω11 Ω12 τmY T τmAT Z
∗ Γ22 τmW T τmAT

τ Z
∗ ∗ −τmZ 0
∗ ∗ ∗ −τmZ


 ,

Ω11 = PT A+AT P+Q−Y T E−ETY,

Ω12 = PT Aτ +Y T E−ETW,

Ω22 = W T E +ETW −Q.

Lemma 4. [7] Given a scalar τm > 0. Then for any delay 0 <
τ ≤ τm, the singular delay system (Σ) is regular, impulse free
and stable if there exist matrices Q = QT > 0, Z = ZT > 0,
and matrices P1, P2, P3, X11, X12, X13, X22, X23, X33, Y1, Y2
and T1, such that

ET P1 = PT
1 E ≥ 0, (9)

Π < 0, (10)
X ≥ 0, (11)

where

Π =




Π11 Π12 −Y1E +PT
2 Aτ +ET T T

1 + τmX13
∗ Π22 −Y2E +PT

3 Aτ + τmX23
∗ ∗ −Q−T1E−ET T T

1 + τmX33


 ,

Π11 = PT
2 A+AT P2 +Y1E +ETY T

1 + τmX11 +Q,

Π12 = PT
1 −PT

2 +AT P3 +ETY T
2 + τmX12,

Π22 =−P3−PT
3 + τmX22 + τmZ,

X =




X11 X12 X13 Y1
∗ X22 X23 Y2
∗ ∗ X33 T1
∗ ∗ ∗ Z


 .

II. THE EQUIVALENCE AMONG SEVERAL STABILITY
CRITERIA

In this section, the equivalence among the existing stability
criteria given in [4], [5], [6], [7] will be established.

Now, we prove the equivalence among the stability
conditions in Lemmas 1-4, and a new stability criterion
which contains fewer decision variables is also derived.

Theorem 1. The following statements are equivalent:
i) inequality (5) is feasible.
ii) the following inequality is feasible:

Ψ < 0, (12)

where

Ψ =
[

Ψ1 PAτ + τmAT ZAτ + τ−1
m HT Z11H

∗ −Q+ τmAT
τ ZAτ − τ−1

m HT Z11H

]
,

Ψ1 = PA+(PA)T +Q+ τmAT ZA− τ−1
m HT Z11H,

H =
[

Ip 0
]
.

iii) inequality (6) is feasible.
iv) inequality (8) with (7) is feasible.
v) inequalities (10) and (11) with (9) are feasible.

Proof: i) ⇔ ii):
Noticing that Y = Y1H and W = W1H, pre- and post-

multiplying




I 0 τ−1
m HT

0 I −τ−1
m HT

0 0 I




and its transpose on both sides of Φ in (5), and from the
Schur complement, it follows that Φ < 0 in Lemma 1 is
equivalent to

Ψ+
[ −τmY1−HT Z11
−τmW1 +HT Z11

]
(τmZ11)−1

[ −τmY1−HT Z11
−τmW1 +HT Z11

]T

< 0. (13)

So, Ψ < 0 holds if Φ < 0 holds.
Conversely, if Ψ < 0 holds, by letting

Y1 =−τ−1
m HT Z11, W1 = τ−1

m HT Z11,

it yields that Φ < 0 also holds.
Thus, Ψ < 0 is equivalent to Φ < 0.
ii) ⇔ iii):
Pre- and post-multiplying




I 0 0 −τ−1
m ET

0 I 0 τ−1
m ET

0 0 I 0
0 0 0 I




and its transpose on both sides of Γ in (6), it yields that
[

Ξ T̃
∗ −τmR̃

]
< 0 (14)
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where

Ξ =




Ξ11 Ξ12 P̃+ S̃1−AT S̃T
3

∗ Ξ22 S̃2−AT
τ S̃T

3
∗ ∗ τmR̃+ S̃3 + S̃T

3


 ,

Ξ11 = Q̃− S̃1A− (S̃1A)T − τ−1
m ET R̃E,

Ξ12 =−S̃1Aτ − (S̃2A)T + τ−1
m ET R̃E,

Ξ22 =−Q̃− S̃2Aτ − (S̃2Aτ)T − τ−1
m ET R̃E,

T̃ =




τmT̃1 +ET R̃
τmT̃2−ET R̃

τmT̃3


 .

Similar to the proof of i) ⇔ ii), it is clear that Γ < 0 is
feasible if and only if Ξ < 0 is feasible.

Note that

Ξ = Ξ̄+ S̃A +A T S̃T , (15)

where

Ξ̄ =




Q̃− τ−1
m ET R̃E τ−1

m ET R̃E P̃
∗ −Q̃− τ−1

m ET R̃E 0
∗ ∗ τmR̃


 ,

S̃ =
[

S̃T
1 S̃T

2 S̃T
3

]T
,

A =
[ −A −Aτ I

]
,

from the elimination lemma ([9], p. 22), it is known that
Ξ < 0 is equivalent to

Ξ̃ := N T
A Ξ̄NA < 0, (16)

where

NA =




I 0
0 I
A Aτ


 .

After some manipulation, one can get

Ξ̃ =
[

Ξ̃11 P̃Aτ + τ−1
m ET R̃E + τmAT R̃AT

τ
∗ −Q̃− τ−1

m ET R̃E + τmAT
τ R̃AT

τ

]
,

where

Ξ̃11 = P̃A+AT P̃T + Q̃− τ−1
m ET R̃E + τmAT R̃A.

By letting P = P̃, Q = Q̃ and Z = R̃, it is easy to know
that Ψ in (12) is the same as Ξ̃, so Ψ < 0 if and only if
Ξ̃ < 0.

Thus, from the above analysis, one can get that Ψ < 0 if
and only if Γ < 0.

ii) ⇔ iv): Similar to the proof of ( i) ⇔ ii) ), the
equivalence between ii) and iv) can be easily obtained, and
omitted here.

ii) ⇔ v): Similar to the proofs of ( i) ⇔ ii) ) and Theorem
2 in [10], the equivalence between ii) and v) can also be
derived, and omitted here.

This completes the proof.

Remark 1. By using a method given in [11] for eliminating
redundant variables, Theorem 1 establishes the equivalence
among several stability criteria reported in [4], [5], [6], [7].
Compared with Lemma 1 of [4], ii) of Theorem 1 involves
less decision variables. Hence, from a mathematical point of
view, ii) of Theorem 1 is more “powerful”.

III. AN IMPROVED STABILITY CRITERION

In this section, an improved stability criterion will be
proposed by using a delay decomposition method.

Theorem 2. The singular time-delay system (Σ) is regular,
impulse free and asymptotically stable for a given positive
integer N and any constant delay τ satisfying 0≤ τ ≤ τm, if
there exist matrices

P =
[

P11 P12
0 P22

]
, P11 > 0, Qi > 0, Zi > 0 (i = 1,2, · · · ,N),

(17)

with appropriate dimensions and P11 ∈ Rp×p satisfying the
following LMI:

Θ < 0, (18)

where

Θ =




Θ1,1 Θ1,2 0 · · · 0 PAτ + τm
N AT Z̃Aτ

∗ Θ2,2 Θ2,3 · · · 0 0
∗ ∗ Θ3,3 · · · 0 0
...

...
...

. . .
...

...
∗ ∗ ∗ · · · ΘN,N

N
τm

ET ZNE
∗ ∗ ∗ · · · ∗ ΘN+1,N+1




,

Θ1,1 = PA+AT PT +Q1 +
τm

N
AT Z̃A− N

τm
ET Z1E,

Θ1,2 =
N
τm

ET Z1E,

Θ2,3 =
N
τm

ET Z2E,

Θi,i =−Qi−1 +Qi− N
τm

ET (Zi−1 +Zi)E (i = 2, 3, · · · , N),

ΘN+1,N+1 =−QN − N
τm

ET ZNE +
τm

N
AT

τ Z̃Aτ ,

Z̃ =
N

∑
i=1

Zi.

Proof: From (18), it follows that

PA+AT PT +Q1− N
τm

ET Z1E < 0 (19)

holds, which implies that

P22A22 +AT
22PT

22 < 0. (20)

So, A22 is nonsingular. Pre- and post-multiplying[
I I · · · I I

]
and its transpose on the both

sides of Θ in (18), it yields that

P(A+Aτ)+(A+Aτ)T PT − N
τm

N

∑
i=1

ET ZiE < 0, (21)

which implies that A22 +Aτ22 is also nonsingular. Thus, the
pairs (E, A) and (E, A+Aτ) are regular and impulse free.
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Construct the Lyapunov-Krasovskii functional for system
(Σ) as

V (xt) =xT (t)PEx(t)+
N

∑
i=1

(∫ t−τi−1

t−τi

xT (s)Qix(s)ds

+
∫ −τi−1

−τi

∫ t

t+θ
ẋT (s)ET ZiEẋ(s)dsdθ

)
, (22)

where τi = i
N τ (i = 0, 1, 2, · · · , N).

Taking the time derivative of V (xt) along with the solution
of (Σ) yields

V̇ (xt) =2xT (t)PEẋ(t)+
N

∑
i=1

(
xT (t− τi−1)Qix(t− τi−1)

− xT (t− τi)Qix(t− τi)+
τ
N

ẋT (t)ET ZiEẋ(t)

−
∫ t−τi−1

t−τi

ẋT (s)ET ZiEẋ(s)ds
)

≤2xT (t)P[Ax(t)+Aτ x(t− τ)]

+
N

∑
i=1

(
xT (t− τi−1)Qix(t− τi−1)− xT (t− τi)Qix(t− τi)

)

+
N

∑
i=1

(τm

N
[Ax(t)+Aτ x(t− τ)]T Zi[Ax(t)+Aτ x(t− τ)]

)

− N
τm

N

∑
i=1

(
[x(t− τi−1)− x(t− τi)]T ET ZiE

× [x(t− τi−1)− x(t− τi)]
)

=ξ T (t)Θξ (t), (23)

where

ξ (t) = [xT (t) xT (t− τ1) · · · xT (t− τN−1) xT (t− τ)].

Therefore, by (18) it is easy to see that V̇ (xt) < 0.

This completes the proof.

The following theorem shows the relationship between
Theorem 2 and ii) of Theorem 1.

Theorem 3. Inequality (18) is feasible if inequality (12) is
feasible.

Proof: If inequality (12) is feasible, then there exists a
scalar ε > 0 such that

Ψ̃ < 0, (24)

where

Ψ̃ =




Ψ̃1 0 0 0 · · ·
∗ −εI 0 0 · · ·
∗ ∗ −εI 0 · · ·
...

...
...

. . .
...

∗ ∗ ∗ · · · −εI
∗ ∗ ∗ · · · ∗

PAτ + τmAT ZAτ + τ−1
m HT Z11H

0
0
...
0

−Q+ τmAT
τ ZAτ − τ−1

m HT Z11H




,

Ψ̃1 =PA+(PA)T +Q+(N−1)εI + τmAT ZA− τ−1
m HT Z11H,

H =
[

Ip 0
]
.

Letting Zi = Z (i = 1, 2, · · · , N), QN = Q, QN−1 = Q+
ε I, · · · , Q1 = Q +(N− 1)εI, and denoting ∆ = Θ− Ψ̃, it
yields that

∆ =




−N−1
τm

ET ZE N
τm

ET ZE 0
∗ − 2N

τm
ET ZE N

τm
ET ZE

∗ ∗ − 2N
τm

ET ZE
...

...
...

∗ ∗ ∗
∗ ∗ ∗
· · · 0 − 1

τm
ET ZE

· · · 0 0
· · · 0 0
. . .

...
...

· · · − 2N
τm

ET ZE N
τm

ET ZE
· · · ∗ −N−1

τm
ET ZE




. (25)

Next, we prove that ∆≤ 0 holds.
When N = 1, it is obvious that ∆ = 0, so Θ < 0 is also

feasible.
If N = 2, then ∆ becomes to

Λ :=



− 1

τm
ET ZE 2

τm
ET ZE − 1

τm
ET ZE

∗ − 4
τm

ET ZE 2
τm

ET ZE
∗ ∗ − 1

τm
ET ZE


 . (26)

Pre- and post-multiplying




I I I
0 I 0
0 1

2 I I


 and its transpose

on the both sides of Λ, it gets

Λ̃ :=




0 0 0
∗ − 4

τm
ET ZE 0

∗ ∗ 0


 . (27)

It is obvious that Λ̃≤ 0, which implies that ∆≤ 0 holds.
For the case of N > 2, the proof is similar to that for N = 2,

and omitted here.
The result is established.
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TABLE I
COMPARISONS OF DELAY-DEPENDENT STABILITY CONDITIONS OF

EXAMPLE 1

Methods Maximum τm allowed Number of variables
Theorem 1 [7] 1.1547 53
Theorem 1 [5] 1.1547 33

Theorem 3.5 [8] 1.1547 24
Theorem 1 [6] 1.1547 17
Theorem 1 [4] 1.1547 13

ii) of Theorem 1 1.1547 9
Theorem 2 N = 2 1.1954 15
Theorem 2 N = 3 1.2025 21
Theorem 2 N = 4 1.2044 27
Theorem 2 N = 5 1.2052 33

Remark 2. From Theorem 3, it is easy to see that Theorem
2 is less conservative than ii) of Theorem 1. As N increasing,
the conservatism of Theorem 2 decreases. An example in the
next section will verify this fact.

IV. EXAMPLE

Example 1. [4] Consider a singular delay system which is
in the form of (1) with

E =
[

1 0
0 0

]
, A =

[
0.5 0
−1 −1

]
, Aτ =

[ −1 0
0 0

]
.

Table 1 lists the comparison of the calculating results
obtained by the stability criteria in [4], [5], [6], [7], [8] and
this note.

It is worth pointing out that the maximum τm obtained
by Theorem 3.5 in [8] should be 1.1547, and not 1.1612 as
given in [4].

Certainly, the maximum τm obtained by Theorem 1 in [4]
should be 1.1547, and not 1.2011 as listed in [4].

From Table 1, it is clear that Theorem 1 in [4] may not
be less conservative than Theorem 3.5 in [8]. Fortunately,
Example 2 in [6] showed that the calculating results obtained
by Theorem 1 in [6] may be less conservative than the ones
obtained by Theorem 3.5 in [8], and no theoretical proof had
been provided in [6].

Summarily, ii) of Theorem 1 in this note contains the
fewest variables and Theorem 2 in this note is less conser-
vative than those in [4], [5], [6], [7].

V. CONCLUSION

This note presents some comments and further results
concerning delay-dependent stability analysis for singular
systems with state delay. A technique for eliminating re-
dundant variables is developed. By making use of a delay
decomposition method, a result which is much less conserva-
tive than previous relevant ones is obtained, which has been
shown by a numerical example. As a future work, we will
extend the delay decomposition method to the systems with
time-varying delays. In addition, it should be noticed that
some difficulties for solving the resulting LMIs with large
dimensions will be encountered as N increases. So, how to
overcome this shortage is also an important task.
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