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Abstract— The problem of absolute stability for Lur’e singu-
lar systems with time-varying delay is presented. Two cases of
time-varying delays - one being continuous-uniformly bounded
and the other being differentiable-uniformly bounded with the
derivative of the delay bounded by a constant are considered.
Based on a new integral inequality, which avoids employing
both model transformation and bounding technique for cross
terms, some delay-dependent absolute stability criteria are ob-
tained and formulated in the form of linear matrix inequalities.
Numerical examples are also given to show the effectiveness of
the obtained results.

I. INTRODUCTION

Time-delays are frequently encountered in various sys-
tems, such as nuclear reactors, chemical engineering systems,
biological systems and population dynamics models [1]–
[3]. Recently, many efforts have been made to obtain less
conservative delay-dependent criteria, the important index
of measuring the conservatism of the criteria derived is
the upper bound of delays which are titled as maximum
allowable delay bound in the following.

Since the introduction of absolute stability by Lur’e [4],
the problem of absolute stability for Lur’e control systems
has been a topic of recurring interest over the past decades
[5]–[14]. It should be pointed out that the existing results
can be classified into two categories: delay-independent and
delay-dependent cases. When the time-delay is small, delay-
independent results are often overly conservative, especially,
they are not applicable to closed-loop systems which are
open-loop unstable and are stabilized using delayed inputs.
In order to derive some delay-dependent absolute stability
criteria, one usually employs model transformation to trans-
form the original system to a distributed system and then
uses both bounding technique for cross terms [10] or uses
the slack variable method [14], [15].

On the other hand, singular systems have been extensively
studied in the past years due to the fact that singular systems
better described physical systems than state-space ones.
Depending on the area application, these models are also
called descriptor systems, semi-state systems, differential-
algebraic systems or generalized state-space systems [16],
[17]. Therefore, the study of absolute stability problem
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for Lur’e singular system with time-varying delay is of
theoretical and practical importance.

It should be pointed out that when the absolute stability
problem for singular systems is investigated, the regularity
and absence of impulses (for continuous systems) and causal-
ity (for discrete systems) are required to be considered simul-
taneously [18]–[20]. Hence, the absolute stability problem
for Lur’e singular time-delay systems is much more compli-
cated than that for state-space ones. Under the admissibility
and strict positive real (SPR) assumption, Lee and Chen
considered the absolute stability of Lur’e-type discrete-time
descriptor systems [21]. Based on the concept of generalized
absolute stability, Yang et.al studied the generalised absolute
stability problem for Lur’e type descriptor systems [22].
However, they all have not considered the time-delay. Lu
et. al has studied the delay-dependent robust H∞ control for
uncertain Lur’e singular system [23]. Model transformation
is employed to derive some sufficient conditions [23], but the
delay-dependent criterion is relevant to the derivative of the
delay (ḋ(t)), which could not obtain the maximum allowable
delay bound.

To the best of the authors’ knowledge, the absolute sta-
bility problem for Lur’e singular systems with time-varying
delay has not been fully investigated, which motivates this
paper. The robust absolute stability analysis for Lur’e sin-
gular systems with parameter uncertainties and time-varying
delay is discussed in this paper. Since model transforma-
tion and bounding techniques for cross terms appearing in
the derivative of corresponding Lyapunov functional may
introduce additional conservativeness [24], neither model
transformation nor bounding technique for cross terms is
applied in analyzing the considered systems which may yield
a less conservative absolute stability condition. By employing
an integral inequality [12], some delay-independent and
delay-dependent stability conditions in terms of linear matrix
inequalities are obtained. Numerical examples illustrate the
effectiveness of the obtained results.

II. PROBLEM FORMULATION
Consider the following singular system:





Eẋ(t) =Ax(t) + Adx(t− d(t)) + Dω(t),
z(t) =Mx(t) + Nx(t− d(t)),
ω(t) =− ϕ(t, z(t)),
x(θ) =φ(θ), ∀θ ∈ [−dM , 0],

(1)

where x(t) ∈ Rn , ω(t) ∈ Rm and z(t) ∈ Rm are the state
vector, input vector and output vector of the system, respec-
tively. φ(·) is a continuous vector valued initial function. E,
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A, Ad, D, M and N are known matrices of appropriate
dimensions, where E may be singular and we assume that
rankE = r ≤ n. ϕ(t, z(t)) : [0,∞) × Rm → Rm

is a memoryless, possibly time-varying, nonlinear vector
valued function which is piecewise continuous in t, globally
Lipchitz in z(t), ϕ(t, 0) = 0, and satisfies the following
sector condition for ∀t ≥ 0,∀z(t) ∈ Rm:

[ϕ(t, z(t))−K1z(t)]T [ϕ(t, z(t))−K2z(t)] ≤ 0. (2)

where K1 and K2 are constant real matrices of appropriate
dimensions and K = K1 − K2 is a symmetric positive
definite matrix. It is customary that such a nonlinear function
ϕ(t, z(t)) is said to belong to a sector [K1, K2] [25]. The
time-delay d(t) is a time-varying delay satisfying 0 ≤ d(t) ≤
dM < ∞,∀t ≥ 0.

Definition 1: [16]–[18]
1) The pair (E, A) is said to be regular if det(sE − A) is
not identically zero.
2) The pair (E, A) is said to be impulse-free if deg(det(sE−
A)) = rank E.

Definition 2: [18], [23]
1) The Lur’e singular system (1) is said to be regular and
impulse-free if the pair (E, A) is regular and impulse-free.
2) The Lur’e singular system (1) is said to be globally
uniformly asymptotically stable for any nonlinear function
ϕ(t, z(t)) satisfying (2) if for any ε > 0, there exists a scalar
δ(ε) > 0 such that for any compatible initial conditions
φ(t) satisfying sup

−d(t)≤t≤0

‖φ(t)‖≤δ(ε), the solution x(t) of

the system (1) satisfies ‖x(t)‖ ≤ ε for t ≥ 0. Furthermore,
lim

t→∞
x(t) = 0.

Definition 3: The Lur’e singular system (1) is said to be
absolutely stable in the sector [K1, K2] if the system is
regular, impulse-free and globally uniformly asymptotically
stable for any nonlinear function ϕ(t, z(t)) satisfying (2).

In this paper, the objective is to obtain some criteria to
check the absolute stability of the Lur’e singular system
described by (1) and (2). Throughout this paper, we will
deal with the following two cases of the time-varying delay
d(t)

Case 1: d(t) is continuous function satisfying

0 ≤ d(t) ≤ dM < ∞, ∀t ≥ 0 (3)

Case 2: d(t) is a differentiable function satisfying

0 ≤ d(t) ≤ dM < ∞, ḋ(t) ≤ dτ < ∞ ∀t ≥ 0 (4)

where dM and dτ are constant.
We conclude this section by introducing the following

lemmas that will be used in the proof of the main results.
Lemma 1: [26] Consider the function ϕ : R+ → R, if ϕ̇

is bounded on [0,∞), that is, there exists a scalar α > 0 such
that | ϕ̇(t) |≤ α for all t ∈ [0,∞), then ϕ(t) is uniformly
continuous on [0,∞).

Lemma 2: (Barbalat’s Lemma) [26] Consider the func-
tion ϕ : R+ → R, if ϕ is uniformly continuous and∫∞
0

ϕ(s)ds < ∞, then lim
t→∞

ϕ(t) = 0.

Lemma 3: (S-procedure) [27] Let Fi = FT
i ∈ Rn×n, i =

0, 1, 2, · · · , p, Then the following statement is true

ξT F0ξ > 0, for all ξ 6= 0 satisfying ξT Fiξ ≥ 0,

if there exist real scalars εi ≥ 0 (i = 0, 1, 2, · · · , p) such that

F0 −
p∑

i=1

εiFi > 0.

For p = 1, these two statements are equivalent.
Lemma 4: [12] For any constant matrix X ∈

Rn×n, X = XT ≥ 0, scalar 0 ≤ d(t) ≤ dM , and vector
function ẋ : [−dM , 0] → Rn such that the following
integration is well defined, then

−dM

∫ t

t−d(t)

ẋT (s)Xẋ(s)ds ≤ [
xT (t) xT (t− d(t))

]

[ −X X
X −X

] [
x(t)

x(t− d(t))

]
.

(5)

III. MAIN RESULTS

First, we give some criteria of absolute stability for the
nonlinear singular system (1).

A. Absolute stability Analysis

We first consider the case when the nonlinear function
ϕ(t, z(t)) belongs to a sector [0, K], that is, ϕ(t, z(t))
satisfies

ϕ(t, z(t))T [ϕ(t, z(t))−Kz(t)] ≤ 0. (6)

For Case 1, the following theorem presents a solution to
the stability analysis problem of the singular system (1) with
the nonlinear function (6).

Theorem 1: Under Case 1, the singular system (1) with
the nonlinear function satisfying (6) is absolutely stable, if
there exist a scalar ε > 0, real matrices P > 0, W > 0 and
matrix S with appropriate dimensions such that




(1, 1) (1, 2) (1, 3) dMAT W
∗ −ET WE −εNT KT dMAT

d W
∗ ∗ −2εI dMDT W
∗ ∗ ∗ −W


 < 0 (7)

where

(1, 1) = AT (PE + RST ) + (ET P + SRT )A− ET WE

(1, 2) = (ET P + SRT )Ad + ET WE

(1, 3) = (ET P + SRT )D − εMT KT

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

Proof: We first show the nonlinear singular system (1)
is regular and impulse-free.

Since rankE = r ≤ n, there must exist two invertible
matrices G and H ∈ Rn×n such that

Ē = GEH =
[

Ir 0
0 0

]
(8)
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Then, R can be parameterized as R = GT

[
0
Φ̄

]
, where

Φ̄ ∈ R(n−r)×(n−r) is any nonsingular matrix.
Similar to (8), we define

Ā = GAH =
[

Ā11 Ā12

Ā21 Ā22

]

P̄ = G−T PG−1 =
[

P̄11 P̄12

P̄21 P̄22

]

W̄ = G−T WG−1 =
[

W̄11 W̄12

W̄21 W̄22

]

S̄ = HT S =
[

S̄11

S̄21

]
, R̄ = G−T R =

[
0
Φ̄

]

Since (1, 1) < 0, we can formulate the following inequal-
ity easily,

Ψ = AT (PE + RST ) + (ET P + SRT )A− ET WE < 0.

Pre- and post-multiplying Ψ < 0 by HT and H , respectively,
yields

Ψ̄ =HT ΨH

=
[

Ψ̄11 Ψ̄12

∗ ĀT
22Φ̄S̄T

21 + S̄21Φ̄T Ā22

]
< 0

(9)

Since Ψ̄11 and Ψ̄12 are irrelevant to the results of the fol-
lowing discussion, the real expression of these two variables
are omitted here. From (9), it is easy to see that

ĀT
22Φ̄S̄T

21 + S̄21Φ̄T Ā22 < 0 (10)

and thus Ā22 is nonsingular. Otherwise, supposing Ā22 is
singular, there must exist a non-zero vector ζ ∈ Rn−r,
which ensures Ā22ζ = 0. And then we can conclude that
ζT (ĀT

22Φ̄S̄T
21 + S̄21Φ̄T Ā22)ζ = 0, and this contradicts (10).

So Ā22 is nonsingular, which implies that det(sE − A) is
not identically zero and deg(det(sE − A)) = r =rank E.
Then, the pair of (E, A) is regular and impulse-free, which
implies that the system (1) is regular and impulse-free.

In the following, we will prove that the system (1) is also
globally uniformly asymptotically stable.

Choose a Lyapunov-Krasovskii function candidate as

V (t, xt) = xT (t)ET PEx(t)

+
∫ 0

−dM

∫ t

t+θ

ẋT (s)(dMET WE)ẋ(s)dsdθ,
(11)

where P > 0 and W > 0. Taking the derivation of V (t, xt)
with respect to t along the trajectory of (1) yields

V̇ (t, xt) =xT (t)(AT PE + ET PA)x(t)

+ 2xT (t)ET PAdx(t− d(t))

+ 2xT (t)ET PDω(t) + d2
M ẋT (t)ET WEẋ(t)

−
∫ t

t−dM

ẋT (s)(dMET WE)ẋ(s)ds

Noting ET R = 0, we can deduce

0 = 2ẋT (t)ET RST x(t), (12)

where S is any matrix with appropriate dimensions.
According to (1), the following holds

d2
M ẋT (t)ET WEẋ(t) = ξT (t)




AT

AT
d

DT


 d2

MW

× [
A Ad D

]
ξ(t)

where ξT (t) =
[

xT (t) xT (t− d(t)) ωT (t)
]
. Then ac-

cording to Lemma 4 and combining with (12), we have

V̇ (t, xt) ≤ ξT (t)Ωξ(t)

where

Ω =




Ω11 Ω12 Ω13

∗ Ω22 Ω23

∗ ∗ Ω33




with

Ω11 =AT (PE + RST ) + (ET P + SRT )A− ET WE

+ AT (d2
MW )A

Ω12 =(ET P + SRT )Ad + ET WE + AT (d2
MW )Ad

Ω13 =(ET P + SRT )D + AT (d2
MW )D

Ω22 =− ET WE + AT
d (d2

MW )Ad

Ω23 =AT
d (d2

MW )D

Ω33 =DT (d2
MW )D.

A sufficient condition for absolute stability of the nonlin-
ear singular system (1) is that there exist a scalar ε ≥ 0, real
matrices P > 0, W > 0 and matrix S such that

V̇ (t, xt) ≤ ξT (t)Ωξ(t) < 0 (13)

for all ξ(t) 6= 0 satisfying (6). From (1) and (6), we have

ωT (t)ω(t) + ωT (t)K(Mx(t) + Nx(t− d(t))) ≤ 0. (14)

Then according to Lemma 3, one can see that (13) is
implied by the existence of a scalar ε ≥ 0 such that

ξT (t)Ωξ(t)− 2εωT (t)ω(t)

− 2εωT (t)K(Mx(t) + Nx(t− d(t))) < 0,
(15)

for all ξ(t) 6= 0. Rewrite (15) as

ξT (t)Ξξ(t) < 0, (16)

where

Ξ =




Ω11 Ω12 Ω13 − εMT KT

∗ Ω22 Ω23 − εNT KT

∗ ∗ Ω33 − 2εI




Using Schur complement, (7) implies Ξ < 0, and then
V̇ (t, xt) < 0 holds.

Now, let x̄(t) =
[
x̄1(t)
x̄2(t)

]
= H−1x(t), where x̄1(t) ∈

Rr, x̄2(t) ∈ Rn−r, the singular system (1) can be written as:

Ē ˙̄x(t) = Āx̄(t) + Ādx̄(t− d(t)) + Dω(t) (17)
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Then we have

λ1‖x̄1(t)‖2 − V (x̄(0)) ≤ x̄T
1 (t)P̄11x̄1(t)− V (x̄(0))

≤ −λ2

∫ t

0

‖x̄1(s)‖2ds < 0
(18)

where λ1 = λmin(P̄11) > 0, λ2 = −λmax(HT ΞH) > 0.
Taking into account (18), we can deduce that

λ1‖x̄1(t)‖2 + λ2

∫ t

0

‖x̄1(s)‖2ds ≤ V (x̄(0))

Therefore

0 < ‖x̄1(t)‖2 ≤ 1
λ1

V (x̄(0)),

0 <

∫ t

0

‖x̄1(s)‖2ds ≤ 1
λ2

V (x̄(0)).

Thus, ‖x̄1(t)‖ and
∫ t

0
‖x̄1(s)‖ds are bounded. Similarly, we

have that ‖ ˙̄x1(t)‖ is bounded. By Lemma 1, we obtain
‖ ˙̄x1(t)‖2 is uniformly continuous. Noting that

∫ t

0
‖x̄1(s)‖2ds

is bounded, and using Lemma 2, we have

lim
t→∞

x̄1(t) = 0.

Using the same method in [18], we also have lim
t→∞

x̄2(t) = 0.
Then lim

t→∞
x(t) = 0 holds. According to Definition 2, the sin-

gular delay system (1) is globally uniformly asymptotically
stable for any nonlinear function ϕ(t, z(t)) satisfying (6). As
a whole, in view of Definition 3, the singular system (1) with
the nonlinear function satisfying (6) is absolutely stable. This
completes the proof.

Remark 1: If E = I , it follows from ET R = 0 that R =
0. Therefore, it is easy to show that Theorem 1 reduces to
Proposition 1 in [12].

For Case 2, since d(t) is a differentiable function, by
making use of this additional information, we can choose
a Lyapunov-Krasovskii functional candidate as

Ṽ (t, xt) = V (t, xt) +
∫ t

t−d(t)

xT (s)Qx(s)ds (19)

where V (t, xt) is defined in (11). Then, similar to the proof
of Theorem 1, we can obtain the following result.

Theorem 2: Under Case 2, the singular system (1) with
the nonlinear function satisfying (6) is absolutely stable, if
there exist a scalar ε > 0, real matrices P > 0, Q > 0,
W > 0 and matrix S with appropriate dimensions such that




(1, 1) (1, 2) (1, 3) dMAT W
∗ (2, 2) −εNT KT dMAT

d W
∗ ∗ −2εI dMDT W
∗ ∗ ∗ −W


 < 0 (20)

where

(1, 1) =AT (PE + RST ) + (ET P + SRT )A

− ET WE + Q

(1, 2) =(ET P + SRT )Ad + ET WE

(1, 3) =(ET P + SRT )D − εMT KT

(2, 2) =− (1− dτ )Q− ET WE

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

Remark 2: Clearly, Theorem 1 and Theorem 2 provide
delay-dependent sufficient conditions for Case 1 and Case
2, respectively, which can guarantee the absolute stability of
the Lur’e singular system (1) with a nonlinear connection
function satisfying (6). Choosing Theorem 1 or Theorem 2
will depend on the situation concerning the information of
delay d(t). If d(t) is only a continuous function, but not
a differentiable function for all t ≥ 0, we can only use
Theorem 1. If d(t) is a differentiable, both Theorem 1 and
Theorem 2 can be employed. For this situation, in the case
of dτ < 1, Theorem 2 supplies a less conservative result than
Theorem 1, which is proved in Proposition 3 of [12].

For the nonlinearity ϕ(t, z(t)) satisfying the more general
sector condition (2), we can conclude that the absolute
stability of system (1) in the sector [K1, K2] is equivalent
to the absolute stability of the following system:





Eẋ(t) =(A−DK1M)x(t) + (Ad −DK1N)x(t− d(t))
+ Dω̃(t),

z(t) =Mx(t) + Nx(t− d(t)),
ω̃(t) =− ϕ̃(t, z(t)),

(21)
in the sector [0, K2 − K1], that is, ϕ̃(t, z(t)) satisfies for
∀t ≥ 0,∀z(t) ∈ Rm,

ϕ̃(t, z(t))T [ϕ̃(t, z(t))− (K2 −K1)z(t)] ≤ 0. (22)

According to Theorem 1, we have the following result.
Theorem 3: Under Case 1, the singular system (1) with

the nonlinear function satisfying (2) is absolutely stable, if
there exist a scalar ε > 0, real matrices P > 0, W > 0 and
matrix S with appropriate dimensions such that




(1, 1) (1, 2) (1, 3) (1, 4)
∗ −ET WE (2, 3) (2, 4)
∗ ∗ −2εI dMDT W
∗ ∗ ∗ −W


 < 0 (23)

where

(1, 1) = (A−DK1M)T (PE + RST )

+ (ET P + SRT )(A−DK1M)− ET WE

(1, 2) = (ET P + SRT )(Ad −DK1N) + ET WE

(1, 3) = (ET P + SRT )D − εMT (K2 −K1)T

(1, 4) = dM (A−DK1M)T W

(2, 3) = −εNT (K2 −K1)T

(2, 4) = dM (Ad −DK1N)T W

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

Theorem 4: Under Case 2, the singular system (1) with
the nonlinear function satisfying (2) is absolutely stable, if
there exist a scalar ε > 0, real matrices P > 0, Q > 0,
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W > 0 and matrix S with appropriate dimensions such that


(1, 1) (1, 2) (1, 3) (1, 4)
∗ (2, 2) (2, 3) (2, 4)
∗ ∗ −2εI dMDT W
∗ ∗ ∗ −W


 < 0 (24)

where
(1, 1) =(A−DK1M)T (PE + RST )

+ (ET P + SRT )(A−DK1M)− ET WE + Q

(1, 2) =(ET P + SRT )(Ad −DK1N) + ET WE

(1, 3) =(ET P + SRT )D − εMT (K2 −K1)T

(1, 4) =dM (A−DK1M)T W

(2, 2) =− (1− dτ )Q− ET WE

(2, 3) =− εNT (K2 −K1)T

(2, 4) =dM (Ad −DK1N)T W

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

B. Robust Absolute Stability

If there exist norm-bounded uncertainties in system’s
matrices A and B, system becomes




Eẋ(t) =(A + LF (t)Ea)x(t)
+ (Ad + LF (t)Ed)x(t− d(t)) + Dω̃(t),

z(t) =Mx(t) + Nx(t− d(t)),
ω̃(t) =− ϕ̃(t, z(t)),

(25)

where L,Ea, Ed are known real constant matrices of appro-
priate dimensions, and F (t) is an unknown matrix function
satisfying FT (t)F (t) ≤ I .

Applying the routine method in [28], we can obtain a more
general result.

Theorem 5: Under Case 1, the uncertain singular system
(25) with the nonlinear function satisfying (2) is absolutely
stable, if there exist a scalars ε > 0, µ > 0, real matrices
P > 0, W > 0 and matrix S with appropriate dimensions
such that


(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) µET
a

∗ (2, 2) (2, 3) (2, 4) 0 µET
b

∗ ∗ −2εI (3, 4) 0 0
∗ ∗ ∗ −W dMWT L 0
∗ ∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ ∗ −µI




< 0

(26)
where

(1, 1) = (A−DK1M)T (PE + RST )

+ (ET P + SRT )(A−DK1M)− ET WE

(1, 2) = (ET P + SRT )(Ad −DK1N) + ET WE

(1, 3) = (ET P + SRT )D − εMT (K2 −K1)T

(1, 4) = dM (A−DK1M)T W

(1, 5) = (ET P + SRT )L, (2, 2) = −ET WE

(2, 3) = −εNT (K2 −K1)T

(2, 4) = dM (Ad −DK1N)T W, (3, 4) = dMDT W

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

Theorem 6: Under Case 2, the uncertain singular system
(25) with the nonlinear function satisfying (2) is absolutely
stable, if there exist a scalars ε > 0, µ > 0, real matrices
P > 0, Q > 0, W > 0 and matrix S with appropriate
dimensions such that




(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) µET
a

∗ (2, 2) (2, 3) (2, 4) 0 µET
b

∗ ∗ −2εI dMDT W 0 0
∗ ∗ ∗ −W (4, 5) 0
∗ ∗ ∗ ∗ −µI 0
∗ ∗ ∗ ∗ ∗ −µI




< 0

(27)
where

(1, 1) =(A−DK1M)T (PE + RST )

+ (ET P + SRT )(A−DK1M) + Q− ET WE

(1, 2) =(ET P + SRT )(Ad −DK1N) + ET WE

(1, 3) =(ET P + SRT )D − εMT (K2 −K1)T

(1, 4) =dM (A−DK1M)T W

(1, 5) =(ET P + SRT )L

(2, 2) =− (1− dτ )Q− ET WE

(2, 3) =− εNT (K2 −K1)T

(2, 4) =dM (Ad −DK1N)T W, (4, 5) = dMWT L

and R ∈ Rn×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

IV. NUMERICAL EXAMPLE

The following numerical examples are presented to illus-
trate the usefulness of the proposed theoretical results.

Example 1: (Absolute Stability) Consider the singular
system described by (21) and (22) with

E =
[
1 0
0 0

]
, A =

[−0.5 0
0 −1

]
, Ad =

[−1.1 1
0 0.5

]

D =
[

0.2
0.1

]
,M =

[
0.6 0.8

]
, N =

[
0.1 0.1

]
,

K1 = 0.1,K2 = 0.5

In this example, we choose R =
[

0 1
]T

. For Case 1,
using Theorem 3 yields the maximum allowable delay bound
as dM = 0.5123. For Case 2, applying Theorem 4, Table 1
lists the maximum allowable delay bound dM for absolute
stability. From this table, one can see that when dτ < 1, the
results obtained using Case 2 is less conservative than those
using Case 1, which further verifies Remark 2.

Example 2 (Robust Absolute Stability) Consider the sin-
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TABLE I: Maximum allowed delay bound dM for different dτ

dτ 0 0.3 0.6 0.7 1
dM 1.7036 1.4647 1.2091 1.0906 0.5123

TABLE II: Maximum allowable delay bound dM for different uncertainties
λ 0.15 0.5 1 1.5

dM 0.6402 0.5675 0.4743 0.3931

gular system described by (25) and (22) with

E =
[

1 0
0 0

]
, A =

[ −2 0
0.5 1

]
, Ad =

[ −1.1 1
0 0.5

]
,

D =
[

0.2 0
0 0.1

]
,M =

[
0.4 0
0 0.5

]
,

N =
[

0.2 0
0 0.1

]
,K1 =

[
0.1 0
0 0.2

]
, Ea = 0.1I

K2 =
[

0.2 0
0 0.5

]
, L =

[
λ 0
0 λ

]
(λ > 0), Eb = 0.1I

In this example, we choose R =
[

0 1
]T

. Table II gives
the maximum allowable delay dmax for various parameter λ
when dτ = 0.5 according to Theorem 6.

V. CONCLUSION

The problem of absolute stability for Lur’e singular
systems with time-varying delay has been presented. Full
consideration two cases of time-varying delays - one be-
ing continuous-uniformly bounded and the other being
differentiable-uniformly bounded with the derivative of the
delay bounded by a constant. By employing a new integral
inequality, which avoids employing both model transforma-
tion and bounding technique for cross terms, some new linear
matrix inequalities(LMIs) based delay-dependent absolute
stability criteria are obtained. Numerical examples has also
been given to illustrate the effectiveness of the obtained
results.
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