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Abstract— This paper demonstrates a novel optimization-
based approach to estimating fault states in a DC power
system. The model includes faults changing the circuit topology
along with sensor faults. Our approach can be considered as
a relaxation of the mixed estimation problem. We develop
a linear model of the circuit and pose a convex problem
for estimating the faults and other hidden states. A sparse
fault vector solution is computed by using l1 regularization.
The solution is computed reliably and efficiently, and gives
accurate diagnostics on the faults. We demonstrate a real-time
implementation of the approach for an instrumented electrical
power system testbed at NASA. Accurate estimates of multiple
faults are computed in milliseconds on a PC. The approach
performs well despite unmodeled transients and other modeling
uncertainties present in the system.

I. PROBLEM

We consider a DC (direct current) electric circuit with

sources, loads, and switching elements. Voltage and current

measurements are available at certain circuit locations. The

problem is to estimate, from the measurements, the fault

states of the circuit. The faults are defined as the deviations

from the nominal state. The source voltages or loads can

differ from their nominal values; voltage and current sensors

can be faulty; assumed open/closed states of relays and

breakers might differ from their actual states; short-circuit

and open-circuit faults are possible, including shorts to the

ground. We assume that several faults might be present si-

multaneously, however, it is known that most of the potential

faults are not present.

Let y ∈ ℜNm be a vector of observations (measurements).

The fault states are described by a vector f ∈ ℜNf . The

problem is: given the observations y, estimate faults f . The

states of the circuit (e.g., voltages and currents) are described

by a vector x ∈ ℜNs and have to be estimated along with f .

Section III below describes a circuit model of the form

0 = Ax + Bf + ξ, (1)

y = Cx + Df + η, (2)

where matrices A, B, C, D have appropriate dimensions.

The process noise vector ξ ∈ ℜNs describes the modeling

error; the measurement noise η ∈ ℜNm describes the obser-

vation error. State equation (1) and observation equation (2)

are similar to linear state space model commonly used in

estimation, except the model (1), (2) is static.
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We estimate the faults f and the states x by solving a

quadratic programming (QP) problem of the form

minimize
1

2
‖Ax + Bf‖2

Q +
1

2
‖Cx + Df − y‖2

R + λT |f |, (3)

where ‖z‖2
Q = zT Qz; Q, R are positive definite matrices;

|f | is the component-wise absolute value; λ is a vector with

positive components. The last term provides a weighted l1
penalty for the unknown components of vector f .

Optimization-based estimation of electrical power systems

is well established area, e.g., see [1], [19] for an overview,

more discussion is in Section II. The novelty of the formula-

tion (3) is that the faults f are introduced in a structured way

separately from the states x. Quadratic penalty is used for

mismatches ξ, η in model (1), (2), which are usually small; an

l1 penalty is used for the fault vector f , which is usually large

and sparse. We demonstrate that such formulation allows

for efficient and accurate estimation of the faults. Work on

relaxed mixed estimation related to the proposed approach

is discussed in [29], [30].

Problem (3) can be interpreted as Bayesian Maximum

A posteriori Probability (MAP) estimation of x and f
given y. The MAP formulation assumes Gaussian noises

ξ ∼ N(0, Q−1) and η ∼ N(0, R−1) in (1), (2) yileding

the quadratic terms in (3). A Laplacian prior distribution

assumed for the fault vector f yields the l1 term. No prior

is assumed for the state x.

The main benefit of using l1 regularization in (3) is that

for properly selected weights λ the solution vector f is

sparse. See [6], [9], [27], [28] for the recent work and

further references on sparse solutions using l1 regularization.

Another advantage of QP formulation (3) is the ease of

including additional linear constraints. Section V includes

positivity constraints for some voltages and currents. QP

problem (3) can be solved in milliseconds for hundreds of

states, using modern interior-point methods, see [5].

Today electric utilities use EMS (Energy Management

Systems) to monitor, control, and optimize the transmission

and generation facilities. Optimization-based estimation is

presently used for power systems monitoring, see [19], [1].

On-line QP optimization is also used in Model Predictive

Control systems broadly employed in industry, see [24].

II. MOTIVATION

There is a large body of prior work in diagnostics of

electric power systems. Much work is focused on specific

electric power system units and elements, such as electric

machines, motors, generators, inverters, batteries, solar cells,

relays, and other. Work on diagnostics of power distribution
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systems is primarily focused on AC (alternating current)

systems, e.g., [8].

A few papers consider large vehicle electric systems: inte-

grated diagnostics of international space station is discussed

in [11]; diagnostics of marine vehicle power system in [16];

integrated diagnostics and prognostics of aircraft electric

system in [12]. In most of this work, AI-type computational

reasoning is used.

Our formulation is related to the approaches in

optimization-based estimation of power system state that

were first introduced in 1969, see [4], [2] and the books

[1], [19] for an overview. The state vector is determined

by least squares fit of the nonlinear equations relating the

state variables (bus voltage magnitudes and phase angles)

and the measurements (voltage and current magnitudes). The

problems are generally nonconvex and an efficient solution

with global convergence is difficult to achieve.

Some of the power system estimation work explicitly

considers outliers in the measurements data (an equivalent of

the sensor fault) and unknown states of the circuit breakers

(might be caused by a fault). Using l1 model fit error

instead of the quadratic error for countering and detecting

bad measurement data is discussed in [10], [14], also see

[2], [4]. The papers [25], [13], [7] look into the problem of

determining network topology errors. In [25], [13], mixed

integer problems for determining topology are formulated.

The cited papers pursue nonconvex optimization problems.

Using GPS for time synchronization made possible accu-

rate phase measurements and harmonic state estimation of

power systems, e.g., see [17]. Harmonic models are linear,

which makes them close to the models in this paper. An

approach using l1 penalty in harmonic source estimation is

discussed in [15].

This paper considers a DC power system with linear

constitutive equations (1), (2). We show how the fault pa-

rameters can be chosen to preserve the linearity, including

the topology changing faults. Convex optimization problem

(3) can be solved using standard QP software. Our approach

can be extended to fault estimation in harmonic power system

analysis, where the equations are linear.

We implement the approach for the ADAPT EPS testbed.

This testbed was developed and is maintained at NASA

ARC as an experimental platform for research in integrated

systems health management, diagnostics, and prognostics.

More detail on ADAPT can be found in [23]. Earlier work

in ADAPT diagnostics was based on AI-type reasoning and

other heuristics, see [3], [18]. The proposed optimization-

based estimation approach works very well for ADAPT.

Multiple faults are diagosed correctly in milliseconds.

III. MODEL

This section formulates a linear model of the form (1), (2)

for a DC circuit.

A. State equations

We formulate the Sparse Tableau Analysis (STA) equa-

tions of the nodal DC circuit in a standard way, e.g., see

[22]. STA models are the core of most standard small-signal

linear analysis of electric circuits. This section extends the

STA to include a linear model of the faults. We consider

several types of faults. Some of them or all of them might

be present and need to be considered.

The circuit has NN nodes; each node has a voltage ek with

respect to the ground. The circuit contains NB branches,

each has current jl and voltage drop vl. The signs of the

currents and the voltage drops are relative to the directions

of respective branches (graph edges). The incidence matrix

G ∈ ℜNN ,NB has entries gkl = 1 if the branch l leaves

the node k, gkl = −1 if it enters node k, and gkl = 0
otherwise. The STA equations comprise Kirchhoff’s Current

Law (KCL), Kirchhoff’s Voltage Law (KVL), and Branch

Constitutive Equations (BCE), which are discussed below.

The KCL equations for the currents j ∈ ℜNB are

SBGj = 0, (4)

where SB ∈ ℜNI ,NN is a selection matrix that un-selects the

boundary nodes of the circuit where KCL does not hold.

The KVL relates voltage drops v ∈ ℜNB to the node

voltages e ∈ ℜNN

GT e = v (5)

Finally, the BCE relate the voltage drop and the current.

−KIj + KV v = fG, (6)

where KV and KI are diagonal matrices. A diagonal entry of

KV could be conductance; in that case the respective entry

of KI is unity. Alternatively, a diagonal entry of KI could

be a branch resistance; in that case the respective entry of

KV is unity. The components of the fault vector fG describe

the faults in the branches.

We consider three types of faults. First, a fault of switching

element k, which is thought open but might be actually

closed, is expressed in the form (6) as

−jk = fG,k, (7)

where the fault parameter fG,k is a current through the

switching element. The current should be zero if the switch-

ing element is open.

The fault of a switching element k, which is thought closed

can be expressed in the form (6) as

vk = fG,k, (8)

where the fault parameter fG,k is a voltage drop at switching

element. The voltage drop should be zero if the switching

element is closed.

Finally, consider the fault of the DC load. We assume that

the load resistance is known. The fault makes load current

in branch k to differ from what is given by BCE model (6)

gkvk − jk = fG,k, (9)

where gk is the branch conductance and fG,k is a load current

deviation from the model, which is indicative of the fault.
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B. Observation equations

The STA equations need to be complemented by obser-

vation equations. We model sensor faults through additive

offsets caused by these faults.

We assume that the observations include the currents

jmeas ∈ ℜMI measured by current sensors and voltages

emeas ∈ ℜMV measured by voltage sensors. The respective

observation equations have the form

emeas = SV e + fV , (10)

jmeas = SIj + fI , (11)

where fV and fI are fault offsets, SV and SI are selection

matrices (only some nodes and branches are instrumented).

The known voltage sources esrce ∈ ℜMS and grounded

nodes egrnd ∈ ℜMG (we assume that egrd = 0) are counted

among the observations. Though no on-line voltage sensing

might be available for the source voltages, there might be

an off-line knowledge of these. The respective observation

equations have the form.

esrce = SSe + fS , (12)

egrnd = SGe, (13)

where fS is the fault offset, SS and SG are selection

matrices. We do not consider ground voltage faults though

it would be easy to add these to the model.

The voltage offset fV , the current offset fI , and the

source (battery voltage) offset fS are unknown vectors of

appropriate dimensions.

C. STA model with faults

To integrate the STA equations, introduce a state vector

x ∈ ℜ2NB+NN and a matrix A ∈ ℜ2NB+Nin,2NB+NN as

x =





j
v
e



 , A =





SBG 0 0
0 I −GT

KI KV 0



 , (14)

Let f be a vector of all fault parameters.

f =
[

fT
G fT

V fT
I fT

S

]T
∈ ℜNF , (15)

where NF = NB + MV + MI + MS . Introduce the

observation vector y ∈ ℜMy , where My = MI + MV +
MS + MG, and the observation matrix C ∈ ℜMy,2NB+NN ,

The combined observations can be expressed as

y =









jmeas

emeas

esrce

egrnd









, C =









SI 0 0
0 0 SV

0 0 SS

0 0 SG









(16)

Consider matrix B ∈ ℜ2NB+Nin,NF describing the fault

impact on the states x and matrix D ∈ ℜNy,NF describing

the impact of the sensor faults on the observation vector y

B =





0 0 0 0
0 0 0 0

BG 0 0 0



,D =





0 BI 0 0
0 0 BV 0
0 0 0 BS



 (17)

The faults enter equations linearly. After pulling together

state equations (4), (5), (6) and observation equations (10),

(11), (12), and (6) and adding noises ξ and η we obtain the

linear model of the form (1), (2). In this model x, y, A, and

C are given by (14), (16); the faults are defined by (15) and

the fault-related matrices B, D in (1), (2) have the form (17).

For zero noises ξ = 0, η = 0 the STA equations (1), (2)

make a system of total My + 2NB + Nin equations in the

2NB + NN unknown components of vector x. In a special

case of My = NN −Nin (where NN −Nin is the number of

the edge nodes), the system is square and a unique solution

can be found. This paper considers the redundant observation

case of My ≥ NN − Nin.

IV. VERIFICATION

This section presents an application to ADAPT. We de-

scribe a model of the testbed, then discuss simulation results.

A. Modeling

The ADAPT circuit is shown in Figure 1, see [23]. The

battery voltages V1 and V2 are assumed to be known. There

are six branch resistances (loads) that are assumed to be

known as well: these include two internal resistances of the

batteries RB1, RB2; two DC load resistances RDC1, RDC2;

and two equivalent resistances RAC1, RAC2, of the AC load

branches (including the AC/DC inverters). The resistances

of the circuit breakers and relays are assumed to be zero in

the closed state and infinity in the open state. The circuit

parameters were identified from experimental data.

Fig. 1. Data tags for the ADAPT cicuit

The six current sensors in the circuit yield components of

the current measurement vector jmeas (11). There ten voltage

sensors yield components of the voltage measurement vector

emeas in (10).

The branch constitutive equations (6) are defined by the

states of the switching elements (six relays and six circuit

breakers). These open/closed states are collected from the

embedded switching element sensors in ADAPT.

B. Simulation

The incidence matrix of the circuit was defined in accor-

dance with Figure 1. The source voltages and resistances

used in the simulation are summarized in Table I.
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V1 V2 RB1 RB2 RAC1 RDC1 RAC2 RDC2

25.84 24.83 0.1 0.1 6 10 4 20
TABLE I

ADAPT SIMULATION PARAMETERS

ESH141A, ESH144A ESH160A, ESH241A, ESH244A, ESH260A

open closed
TABLE II

BASIC RELAY CONFIGURATION IN THE SIMULATION

The simulations used the STA model (1), (2), (14), (16),

(15), (17) with zero noises ξ and η. In simulation, current and

voltage measurements were ignored by assuming MI = 0,

MV = 0, and eliminating the vectors jmeas, emeas, from

(11), (10). The resulting system of equations has 2NB +
NN = 54 states x and 2NB + Nin + MS + MG = 54
equations, where NB = 18, NN = 18, Nin = 12, MS = 2,

and MG = 4. The MS source voltages and MG ground

voltages (6 at all) define NN−Nin = 6 boundary conditions.

For given switching element states, the resulting square

system was solved to determine the state vector x.

The switching element states define the BCE matrices

KI and KV in (6), (14). The basic switching element

configuration in the simulation is shown in Table II. All

breakers are assumed closed. The relays are configured to

connect Battery 2 to all DC and AC loads; Battery 1 is

disconnected from the loads.

The simulation input is the fault state f , which we

generated as a sparse random vector. The switching element

faults were applied by inverting the respective open/closed

states before calculating the BCE matrices KI , KV , and the

STA matrix A (14) in accordance with (7), (8).

The load faults were applied by modifying the respective

load resistances in BCE (6). The resistances shown in Table I

were modified by a given percentage in the range from -

50% (-100% corresponds to a short circuit) to +50%. The

source faults were applied by modifying esrc in (16). The

source voltages shown in Table I were modified by a given

percentage in the range from -50% (-100% corresponds to

zero battery voltage) to zero (no change in the voltage).

The current and voltage sensor measurements at the simu-

lation output were modified by adding offsets proportional to

the respective fault magnitudes. The fault offsets for current

sensors were distributed in the range from -1A to 1A. The

fault offsets for the voltage sensors were distributed in the

range from -12V to 12V.

In the simulations, all parametric faults were constrained

to be at least 20% of the respective maximum magnitude.

This avoids small faults that are below the noise level.

C. Diagnostics of simulated data

The diagnostics algorithm uses model (1), (2). The main

differences with the simulation model are as follows.

• The diagnostics model includes faults. The fault model

is described by (15), (17).

• In the diagnostics model, the switching elements are

assumed to be in the nominal state. If a fault is present,

the actual state differs from the nominal.

• Observations (2), (16) in the diagnostic model are the

currents and the voltages distorted by noise η.

• The observation and process noises ξ and η in the

diagnostic model (1), (2) are described through the

inverse covariance matrices R and Q.

The dimension of fault vector f (15) is NF = NB +
MV + MI + MS = 38. The fault estimates were computed

by solving QP problem (3) and then thresholding the absolute

values of the fault vector f .

The problem (3) is transformed into a standard form of a

QP problem with 130 decision variables. The solution using

Mosek, see [20], takes about 20 msec on a 2 Ghz Wintel

laptop computer. This is suitable for real-time implementa-

tion and much faster than 0.5 sec sampling time for ADAPT

data collection.

In the simulation experiments, a series of fault patterns

were seeded (input into the simulation) to generate the sensor

data. The estimation algorithms are then applied and the

diagnosis of the fault state is compared to the seeded faults.

In great majority of the simulation runs, the estimation

algorithms diagnose the seeded faults exactly. We will focus

on the cases when the diagnosis was inexact.

The first series of tests was to seed all faults, one fault

at a time. There were 5 imperfect diagnoses encountered

among the 38 total cases, one case for each fault component.

While imperfect, these diagnoses were not, strictly speaking,

incorrect. The imperfect diagnoses are discussed in Table III.

In the second series of tests two faults were seeded at a

time. About 200 two-fault cases were randomly generated out

of the entire set of the 38 ·37/2 = 703 double fault cases. In

a majority of cases, a perfect diagnosis was achieved. Each

time one of the five faults from Table III was encountered,

the diagnosis was imperfect as described in the table. In

addition to that, combinations of two faults introduce new

ways for the diagnostic algorithm to be in error that are

listed in Table IV. While imperfect, most of these diagnoses

are not incorrect.

1) Circuit breaker of a disconnected battery fails open. The currents
do not change, but disconnected voltage sensor now floats. This is
misdiagnosed for voltage sensor fault.

2) Load circuit breaker fails open. This is misdiagnosed for an offset of
the load current sensor, which would yield the same measurements.
The faulty part of the circuit is pointed out correctly.

3) Same as 2, but for a different load branch.
4) Fail closed relay is diagnosed correctly. In addition to that, two more

spurious faults are reported. The observed change in the current
balance could be attributed to each of the three reported faults.

5) Battery output voltage is offset. The fault is detected correctly, but
there is a false positive. The battery circuit breaker is misdiagnosed
failing open. No current flows through the CB and it failing open
cannot be excluded based on the data observed. See # 1 for more
explanation.

TABLE III

SINGLE FAULT DIAGNOSTICS ERRORS
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1) A failed circuit breaker or relay are diagnosed correctly. A second
fault in the circuit part unpowered by the first fault remains unde-
tected.

2) A fail closed relay creates a parallel connection of the two batteries.
This fault is diagnosed correctly. A second relay failure is misdi-
agnosed because the parallel connection of the batteries makes the
currents through them very sensitive to the (close) battery voltages
and (small) internal resistances.

3) Resistances of the two DC loads are offset, but only one of the
two faults is recongnized. The second fault is below the threshold.
Decreasing the l1 regularization penalty would allow detecting the
second fault but lead to false positives in other cases.

TABLE IV

TWO-FAULT DIAGNOSTICS ERRORS

In summary, the proposed approach works quite well in

simulation. In majority of the cases the diagnosis is perfect.

In great majority of all cases, the problematic circuit branch

is diagnosed correctly. The remaining imperfect diagnoses

make for less than 5% of all cases and are caused by high

or low problem sensitivities to some of the fault parameters.

The ADAPT circuit includes DC/AC inverters and AC

loads. The inverter together with the AC load circuit can

be modeled through an equivalent DC resistance. Such

linearized model of inverter can be obtained by fitting experi-

mental data on inverter draw current and supply voltage. The

suitability of such a simplified inverter model is confirmed

by the experimental results.

V. VALIDATION

The ADAPT testbed is an instrumented EPS with two

sets of computer controls. The data from the first set are

called “Observer” data and are used for testing diagnostic

algorithms. These data were used in this work. The second,

independent set of controls, known as “Antagonist” is em-

ployed in creating fault conditions for the Observer. These

controlled fault conditions are known and used as a reference

when evaluating diagnostic method performance. More detail

on ADAPT can be found in [23].

Once verified in the simulation, the algorithms were inte-

grated with ADAPT and validated in experiments.

One data set used for the algorithm testing is displayed

in Figure 2. The data was collected at 2 Hz rate (0.5 sec

interval). In the experiment, all loads are initially unpowered.

Then relays EY244A and EY260A close to connect Battery

2 and to power AC Load 2. After a transient, the DC/AC

Inverter 2 powers the AC load nominally. After several sec-

onds, circuit breaker ISH262 fails (opens). This disconnects

the load. The faulty circuit breaker sensor continues to show

that it is closed. The described scenario is complemented

by a voltage sensor fault (offset ramp). Figure 2 shows 9

plots of selected observed signals, those with a transient and

those later found faulty. The remaining 27 channels out of

the 36 monitored show constant values, e.g., battery voltages

or circuit breaker states (all closed) and are not plotted.

Though the data contains transients, the diagnostic al-

gorithm assume a steady state model at each step. The

steady-state model used for diagnosis neglects the transients.
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Fig. 2. Observed experimental data
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Fig. 3. Estimated fault states for the experimental data

Despite that, the algorithms are able to detect and diagnose

the seeded faults. The results are illustrated in Figure 3,

which shows the fault estimates corresponding to the signals

in Figure 2. The diagnosis is perfect with two exceptions.

First, the inverter warm-up transient is diagnosed as a fault.

Second, it misses the sensor fault in the circuit branch that

becomes unpowered.

The inverter model assumes a steady-state condition. How-

ever, at the start of the inverter transient at 27.5 seconds, the

inverter takes approximately 6 seconds before power appears

at the output. Then, it takes an additional 14 seconds before

all the loads are turned on and the equivalent resistance
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Time: Event Description

t=24: Control action Relays EY244A and EY260A are closed to
power the load

t=27.5: Start of INV2
transient

INV2 Input CD ISH262 is suspected open;
INV2 Load is suspected to be off-nominal

t=34: Sensor fault oc-
curs

E242 voltage offset starts ramping down from
zero

t=46.5: Sensor fault de-
tected

E242 voltage offset is detected during the
inverter transient

t=47.5: Nominal regime Inverter reaches a steady state

t=59.5: Circuit breaker
fault occurs

Circuit breaker ISH262 opens and cuts off
the branch with the DC/AC inverter load and
E242 voltage sensor

t=60: Circuit breaker
fault detected, sensor
offset detected

Circuit breaker ISH262 failure is detected;
E242 voltage offset fault in the cut-off branch
stops being detected

t=65.5: Relay fault de-
tected, sensor fault un-
detected, false detection
of a second relay fault

The large offset of voltage measurement E242
is now interpreted as a voltage across relay
EY244A in the disabled branch indicating
that the relay failed open.

TABLE V

TIMELINE OF EVENTS IN EXPERIMENTAL DATA AND FAULT ESTIMATION

reaches the full RAC2 value that is used in the model.

The lower right plot shows an estimate of the fault

current (deviation from the nominal current) for the DC/AC

Inverter 2 with the AC load. Switching of the relays and

inverter excites very large current transients. These causes

false positives for current sensor faults. The middle plots in

Figure 3 show three false positive occurrences for one sensor

and two for another, one time-sample duration each. The

timeline of the events and the diagnostic estimation results

with a commentary are detailed in Table V.

VI. CONCLUSIONS

The proposed diagnostics approach works very well for

the DC power system applications exemplified by ADAPT.

The diagnosis is accurate when this can be expected. The

algorithm has a few well-defined parameters that need to

be set up and takes milliseconds to compute results. The

approach has been demonstrated to work well with exper-

imental data despite ignoring the transients and modeling

a complex circuit of DC/AC inverter with a load by a

single DC resistor. The approach is clearly suitable for on-

line implementation in practical monitoring applications for

electric power systems.
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