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Abstract— In networked control systems (NCS), the spiky
nature of the random delays makes us wonder about the
benefits we can expect if the “spikiness”, or what we call
“delay dynamics” are considered in the NCS controller design.
It turns out that the “spikiness” of the network induced random
delays can be better characterized by the so-called α-stable
processes, or processes with fractional lower-order statistics
(FLOS) which are linked to fractional calculus. Using a real
world networked control system platform called the CSOIS
Smart Wheel, the effect of modeling the network delay dynam-
ics using non-Gaussian distributions, and compensating for such
a delay in closed-loop systems using a FO-PI (fractional order
proportional and integral) controller has been experimentally
studied. The cases studied include the case when the delay
compensated is exactly the same as the actual delay. Other
scenarios are the ones when the nature of the estimated delay
is similar to the actual delay, but the magnitude is slightly
smaller. The effect of phase shifting between the estimated
and the original delay is also considered. Finally the order
of the fractional order proportional integral controller which
gives least ITAE, ISE for a particular distribution of the
delay is presented. The conclusion is strikingly stimulating:
in NCS, when the random delay is spiky, we should consider
to model the delay dynamics using α-stable distributions and
using fractional order controller whose best fractional order has
shown to be related to the FLOS parameter α as evidenced by
our extensive experimental results on a real NCS platform.

Index Terms— Fractional order control, fractional calculus,
fractional lower-order statistics, α-stable processes, spiky, delay
dynamics, networked control systems, hardware-in-the-loop
simulation.

I. INTRODUCTION

A networked control system (NCS) is a system in which

the control loops are closed over the network [1]. The

feedback and control signals flow between the system com-

ponents in the form of packets of information over the

network. Network control systems are cost effective, hence

their research has received impetus in the recent past [2],

[3], [4]. The goal of networked control systems is similar to

other kinds of control systems, i.e. to achieve stability, and

provide good closed loop performance. Rise time, overshoot

and various other design criteria may be used to optimize

the system [1], [5].

Our previous work [6] showed the application of a jitter-

robust fractional order proportional integral (FO-PI) con-

troller based on the tuning rules in [7]. Here we propose to

compensate network delays in a setup similar to [6], where

the network delays are modeled by α-stable distributions.

This work also shows that with the presence of spiky random

network delays with different distributions, there is no single

order for the controller which guarantees best performance.

The remainder of this paper is organized as follows.

Section II provides basic information about α-stable distri-

butions, their parameter estimation and the application as

used in this work. Section III talks about the architecture

of the CSOIS Smart Wheel system. Section IV very briefly

discusses the system identification process for the plant. It

also covers the basics about the hardware operation and

entire flow of the hardware-in-the-loop simulation. Section

V goes into great detail about the implementation of the

simulation model for this particular work. Information about

tuning rules developed in [7], the generation of the appro-

priate distributions simulating the delay and the methods

used to estimate the delay are included in this section. In

section VI various plots from real-time hardware-in-the-loop

experimentation have been provided. This section further

discusses the results obtained, and their possible causes.

Sections VII and VIII conclude the paper with our inferences

from the experimental activity and also some ideas for future

work in this direction.

II. STABLE DISTRIBUTION AND ITS PARAMETER

ESTIMATION

A. Overview of α-stable distributions.

Definition 2.1: A random variable X is said to have an

α-stable distribution iff its characteristic function has the

following form:

ϕ(υ) = exp
{

jδϕ − γ |υ |α [1 + jβ sign(υ)ω(υ ,α)]
}

(1)

where

ω(υ ,α) =

{

tan απ
2

f or α 6= 1
2
π log |υ | f or α = 1

(2)

sign(υ) =











1 f or υ > 0

0 f or υ = 0

−1 f or υ < 0

(3)

and

0 < α ≤ 2, −1 ≤ β ≤ 1, γ > 0, −∞ < δ < ∞ (4)
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Therefore, an α-stable distribution can be completely de-

termined by four parameters: 1. The characteristic exponent

α . It is a parameter which specifies the thickness of the

tail (or shape) of the probability density function. In other

words, α changes the level of spikiness in the distribution,

the larger the value of α , the less likely it is to observe

any random variable distant from its central location. 2. The

skewness index β . Positive values for β make the distribution

skewed towards the right hand tail and negative values make

it skewed towards the tail on the left hand side. 3. The

variable γ is called the scale parameter and it expresses the

dispersion of the distribution. 4. The variable δ is called the

location parameter and it is an expression of the mean or

median of the entire distribution. Details about α - stable

distributions and their parameters can be found in [8], [9],

[10].

B. Application to network delay modeling

α-stable distributions obey two major properties. 1. The

stability property, which states that the sum of weighted

independent α-stable random variables is still stable with the

same characteristic exponent α . 2. The generalized central

limit theorem, which states that the sum of a number of

independent and identically distributed (i.i.d) random vari-

ables can only be a stable distribution. The generalized

central limit theorem defines the randomness as a result of

cumulative effects and these effects are distributed with a

heavy-tailed probability density. The same effects as above
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Fig. 1. Network delay samples

cause the randomness of the time variant network delay.

It implies that the distribution of such stochastic processes

follow the stable model. Figure 1 shows a series of network

delay samples measured from the internet. The observed

spikes in the figure imply a heavy-tailed distribution. α-

stable distributions are different from Gaussian distributions.

Only moments of order less than the characteristic exponent

α exist in a α-stable distribution. Hence the variance of a

stable (non-Gaussian) distribution is infinite unless α = 2,

in which case the stable distribution is a Gaussian. This is
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Fig. 2. Infinite variance of network delay

called the Fractional Lower Order Moment property. The

run-time variance of the random network delay shown in

Fig. 1 is calculated and plotted in Fig. 2. It is obvious that

rather than converging to a finite value, the variance keeps

increasing with time, which means the model of the random

network delay distribution should have Fractional Lower

Order Moment statistics. Therefore, the α-stable distribution

is chosen to be a statistical model of time variant network

delay.

Also [9] shows that α-stable distributions can be used

to model network traffic. However, as stated above we

observed that spikes are found in the network delay too.

Thus we decided to use α-stable distributions to model

random network delays which have a spiky nature. [11]

provides insight into the process of simulating stable random

variables. The method used by us for estimation/generation

of the α-stable distributions which simulate the delay in

the networked control system are done by the method of

maximum likelihood estimation. This technique is very well

documented in [12]. The author of [12], has a computer

program named ‘stable.exe’ [13] which we have used to

generate the stable-distributions simulating network delay.

III. ARCHITECTURE OF THE SMART WHEEL

The Smart Wheel shown in Fig. 3 is a self contained

robotic wheel. It is equipped with a steering axis, drive axis

and a z-axis, which are capable of independent actuation

[14]. The system contains appropriate power and drive

circuitry for the motors and encoders for the feedback. It

has a microcontroller which sends commands to the motors

and actuators and collects data from the encoders. This

microcontroller is connected to a serial server, thus enabling

the Smart Wheel to be controlled from anywhere over the

network.

IV. SYSTEM OVERVIEW

In order to be able to control the Smart Wheel, system

identification is absolutely necessary. The system identifica-

tion is also done through a hardware-in-the-loop simulation.
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Fig. 3. Stand-alone Smart Wheel on a mobile rig

The entire details of the system identification process can be

found in [6]. The first order plus time delay model of the

Smart Wheel is obtained as:

P(s) =
K

Ts+ 1
e−Ls =

0.1484

0.045s+ 1
e−0.592s (5)

The flowchart shown in Fig. 4 describes the details of the

hardware-in-the-loop system. The details provided hereunder

are similar to those in [6]. From the flowchart, it is observed

that the first step is to connect the Smart Wheel’s port and

obtain access to it. The connection process is done at the

start of the simulation. A count is maintained & connection

is performed only on the first ever operation. In the event

of timeout or no receipt of connection code, the simulation

shuts down. When connected, data is read in from the buffer

on the Smart Wheel.

Size of the data available is limited by the size of the

buffer, longer data produces greater computational delay and

noise when differentiated to get velocity, hence a proper

data length selection is very important. The Smart Wheel

reports data in a particular format, hence data is parsed to

get the value of steering angle (θ ) and time(t) from it.

The ‘s-function’ block properly sizes the θ and t vectors

so they are the same length and are synchronized. The

Fig. 4. Flowchart describing the working of the NCS

current velocity and the error between the setpoint and the

velocity is obtained next. If the error is zero then the ‘s-

function’ block issues a REMOT E REQ command, ASCII

character 92, which sends a stop command and the wheel

stops spinning. For non-zero error, the controller produces

some output. The steering motor rotates in one direction

when it receives ASCII values 70 to 90 (70 - Stopped, 90

Maximum Speed). It rotates in the opposite direction when it

receives ASCII values 70 to 50 (70 - Stopped, 50 Maximum

Speed). The control input lies in the range of 0−20 for either

direction of rotation.

As seen in Fig. 5, a saturation block is placed in the

loop which modulates the controller output to acceptable

values. This necessitates the use of an anti-windup feedback

block to the integrator to prevent integrator saturation. The

correct values are fed into the ‘s-function’ block which

communicates with the Smart Wheel and sends appropriate

commands. In each cycle, the ‘s-function’ block reads data,

parses data, calculates error, takes an input from the con-

troller and sends appropriate commands to the Smart Wheel.

The plotting of the data is done at the end of the simulation
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once the computer has disconnected from the Smart Wheel.

V. EXPERIMENTAL SETUP AND SIMULATION

Fig. 5. The hardware-in-the-loop setup

From Fig. 5, it is seen that the closed loop system

consists of the fractional order proportional integral (FO-PI)

controller followed by the anti-windup blocks and the Smart

Wheel ‘s-function’ block. However the major difference

between the system presented in [6] and Fig. 5 is that, this

model has a Smith’s predictor embedded in it. In [6], the

delay block used data obtained by pinging certain universities

over the network. However here, we consider the effects of

delays in the system which have non-Gaussian distributions.

The data supplied to the variable transport delay block is

therefore strictly non-Gaussian in nature, thus it simulates

the randomly occurring spikes in the delay time over the

network. It must be noted that since the Smart Wheel is on

a dedicated network and also the computer used to control

the Smart Wheel is not very far away from it, hence, the

real network delay between the two is insignificant and

hence additional delay has been added to simulate network

conditions.

The FO-PI controller used in this system uses tuning rules

developed in [7]. The rules can be stated as:

Ko
p =

0.2T

L
+ 0.16

Ko
i =

0.25

T L
+

0.19833

L
+ 0.09 (6)

αo = τ −0.04L+ 1.2399

τ =
L

L+ T

In the set of equations (6) the superscript o signifies that

the proportional and integral gains and the fractional order

α obtained for the controller are optimal. Which is to say

that they provide optimal performance for the Smart Wheel

system when modeled and used as in [6].

However, the main purpose of this paper is to experi-

mentally study and find out what fractional order α would

give the least ITAE or ISE when the gains provided by (6)
are used, and the distribution of the network delay is non-

Gaussian (or spiky) assuming that such a network delay can

be estimated with reasonable accuracy. Simulations and real

time hardware-in-the-loop experiments have thus been been

conducted for various different scenarios.

Firstly, a set of random vectors is generated to simulate

the network delay. These random vectors are so generated

that they do not have a Gaussian distribution and their

parameter αnoise ∈ [1.1,1.2, ....1.8], values greater than 1.8

are exempted since beyond this the distribution tends towards

a Gaussian and the magnitude and the frequency of spikes in

the generated delay vector decreases. The next step is to use

a proper estimate of the delay. Assuming that such estimation

is possible, the following three scenarios are considered:

1. The delay is estimated with full accuracy so that the esti-

mated delay fed to the Smith’s predictors variable transport

delay compensation block in Fig. 5 is the same as the original

delay.

2. The delay is estimated accurately in nature but there is

some discrepancy in the magnitude. This case is simulated

by multiplying the original delay by a gain of 0.9 and using

that as the estimate.

3. The delay is estimated with marginal error in both nature

and magnitude. This case is simulated by passing the original

network delay through a filter given by 0.95
0.15s+1

, and using

the output as the estimate. In this case the estimated delay

is shifted in phase by a small amount with respect to the

original delay, and also is slightly lesser in magnitude as

compared to it.

Figure 6 shows how the estimated delay looks when

estimated by passing it through the filter. The phase shift

and difference in magnitude is clearly visible from it. It is

important to take care that no negative values result in the

compensated delay seen by the closed loop system, because

that would make the system non-causal. Also for the sake of

clarity Fig. 6 shows only a small part of the original delay

vector.
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Fig. 6. Delay estimation by passing it through a filter
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The experiment thus consists of running the hardware-in-

the-loop simulation for different values of the delay having

non-Gaussian distributions with αnoise ∈ [1.1,1.2, ....1.8], for

each value of αnoise three different estimates are used for

the delay as described above. And further for each different

combination of αnoise and the delay estimate, the experiment

is run for fractional orders of the controller ranging from

αcontroller ∈ [0.1,0.2...,1.95]. For further comparison the opti-

mal PID and FO-PI controllers designed in [6] are tested with

a square wave reference and with delays having Gaussian,

and non-Gaussian distributions present in the loop.

VI. EXPERIMENTAL RESULTS

When the estimated network delay used is the same as

the original delay, the αcontroller which gives the minimum

values for ISE and ITAE do not differ too much for different

values of αnoise. From Fig. 7 and Fig. 8 it can be seen that

the values for αcontroller which give a minimum value for ISE

are widely different from those which give a minimum ITAE

for different αnoise when a gain of 0.9 is used to estimate the

noise. However from Fig. 9 and Fig. 10 it can be seen that

the values for αcontroller which give a minimum value for

ISE and ITAE are not greatly different (as compared to the

previous case) for different αnoise when the noise is estimated

using a filter.

Figure 11 shows that the optimal FO-PI controller per-

forms better than the optimal PID controller in the presence

of non-Gaussian network delays. The FO-PI controller has a

much faster response and a comparable overshoot. In some

parts the overshoot is lesser than the optimal PID controller.

From Fig. 12 it is seen that the optimal PID controller does

a better job than the FO-PI controller in the presence of

Gaussian network delays as the FO-PI controller has a much

higher overshoot. Figure 13 compares the performance of

the FO-PI controller for different delays, it is amply clear

that there is a lot to be gained using it in the presence

of non-Gaussian delays. It must be noted that αnoise = 1.2

has been selected as a representative case for carrying out

the experiments with non-gaussian delays, and αcontroller is

selected as in [6] since it was desired to test the performance

of such a controller in the presence of varying delays.

VII. CONCLUSION

From the above discussion, it can be concluded that, no

single value of the order αcontroller will guarantee that the

ITAE or ISE achieved by the controller is minimum with

the presence of varying non-Gaussian, alpha-stable, random

spiky network delays. Moreover, for a certain αnoise there is

optimal αcontroller which gives best performance.

It is also clear that an optimal FO-PI controller performs

much better than an optimal PID controller in the presence

of non-Gaussian delays.

VIII. FUTURE SCOPE

Definite future directions of work include finding a math-

ematical relation between the characteristic exponent αnoise
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Fig. 7. αnoise vs αcontroller for gain = 0.9
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Fig. 8. αnoise vs αcontroller for gain = 0.9
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Fig. 9. αnoise vs αcontroller with filter

and the order αcontroller which gives optimal controller perfor-

mance. The application of “fractional order - (proportional
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Fig. 10. αnoise vs αcontroller with filter

Fig. 11. Controller performance with non-Gaussian delays

Fig. 12. Controller performance with Gaussian delays

integral)” FO-(PI) controllers of the type {Kp(1 +
Ki

s
)}α to

Fig. 13. FO-PI controller comparison for different delays

such systems affected by time variant delay compensated

by estimated delays having non-Gaussian distributions shall

provide some interesting results.

REFERENCES

[1] O. Beldiman, Networked Control Systems. Ph.D. Dissertation, Dept.
Electrical and Computer. Eng., Duke Univ, 2001.

[2] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems Magazine, pp. 84–99, Febru-
ary 2001.

[3] F. L. Lian, J. Moyne, and D. Tilbury, “Anaysis and moelling of
networked control systems: MIMO case with multiple time delays,”
Proceedings of American Control Conference, June 2001.

[4] Y. Tipsuwan and M. Y. Chow, “Control methodologies in networked
control systems,” Control Engineering Practice 11, 2003.

[5] B. Ramaswamy, Y. Q. Chen, and K. L. Moore, “Omni-
directional robotic wheel - a mobile real-time control
systems laboratory,” International Journal of Engineering

Education (SmartWheel web: http://www.neng.usu.edu/

ece/csois/people/smartwheel/), vol. 24, no. 1, Jan 2008.
[6] V. Bhambhani, Y. Han, S. Mukhopadhyay, Y. Luo., and Y. Q. Chen,

“Random delay effect minimization on a hardware-in-the-loop net-
worked control system using optimal fractional order PI controllers,”
Third IFAC Workshop on Fractional Differentiation and its Applica-

tions, FDA, Ankara, Turkey, November 2008.
[7] V. Bhambhani, Y. Q. Chen, and D. Xue, “Optimal fractional order

proportional integral controller for varying time-delay systems,” 17th

IFAC World Congress., July 2008.
[8] X. Ge, G. Zhu, and Y. Zhu, “On the testing for alpha-stable distri-

butions of network traffic,” Computer Communications, vol. 27, p.
447457, November 2004.

[9] A. Karasaridis and D. Hatzinakos, “Network heavy traffic modeling
using α-stable self-similar processes,” IEEE Transactions on Commu-

nications, vol. 49, no. 7, pp. 1203–1214, July 2001.
[10] M. Shao and C. L. Nikias, “Signal processing with fractional lower

order moments: Stable processes and their applications,” Proceedings

of the IEEE, vol. 81, no. 7, pp. 986–1010, July 1993.
[11] J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A method

for simulating stable random variabless,” Journal of the American

Statistical Association, vol. 71, no. 354, pp. 340–344, June 1976.
[12] J. P. Nolan, “Maximum likelihood estimation and diagnostics for stable

distributionss.”
[13] “John Nolan’s Stable Distribution Page.” [Online]. Available:

http://academic2.american.edu/ jpnolan/stable/stable.html
[14] N. Flann and K. Moore, “A six-wheeled omnidirectional autonomous

mobile robot,” IEEE Control Systems Magazine, 2000.

1423


