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Abstract— In this note we present a powerful new approach
to the analysis of a class of linear, degenerate gradient flow
systems that frequently arise in adaptive control and system
identification. This paper has three main contributions: 1)
a stability theorem utilizing a non-integral variant of the
persistence of excitation (PE) conditions on the input signal;
2) upper and lower bounds (also using the non-integral PE
conditions) which are shown to be superior to those derived in
a classical paper on degenerate flow; and 3) construction of a
one-term asymptotic approximation that is shown to perform
remarkably well when compared to the numerically integrated
solution. At the heart of our results is an extension of the WKB
method which we name the Iterative Tracking Diagonalization
(ITD) procedure. It yields a condition sufficient to ensure
exponential stability of the origin. The WKB method utilizes
an asymptotic expansion which relies on the existence of a
time scale hierarchy. If the time scale separation parameter
is sufficiently small, a few iteration steps suffice to derive an
accurate estimate for the time constants of exponential stability
of the norm of the parameter error vector. An important feature
of our stability theorem, bounds and approximations, is that
they all involve an analytical treatment of time dependences.

I. INTRODUCTION

In this note, we examine the stability properties of the

degenerate flow

ż(t) = A(t)z(t) (1)

subject to an initial condition z(0) = z0 and to a slow-

variation condition, on A(t), and other conditions. For every

t ≥ 0, A(t) is a positive semi-definite, rank-one matrix of

the specific form A(t) = −µx(t)xT (t). We shall assume that

x(t) is infinitely differentiable: x(t) ∈ C
∞(R+, Rn). This

type of degenerate system arises in adaptive control, system

identification, noise cancellation, communications, and other

areas. Some classical results can be found in references

[11], [1], [8], [3]. A more recent treatment can be found

in references [4], [2], [9], [7].

A known sufficient condition for exponential stability of

this system is stated as follows [11]. Let x(t) satisfy the

following 2 conditions:

Assumption 1: There exist (real) numbers T > 0 and α >

0 such that 1
T

∫ t+T

t
|dT x(τ)|2dτ ≥ α‖d‖2 for all t ≥ 0 and

all constant vectors d ∈ R
n×1

Assumption 2: There exists a positive number L such that
1
T

∫ t+T

t
‖x(τ)‖2dτ ≤ L2 holds for all t ≥ 0, where T is the

same as in Assumption 1.
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Then, the origin z = 0 is globally exponentially stable

under the dynamics (1), as proven in reference [11]. The

first assumption on the input vector, x(t), is known in

the literature as Persistence of Excitation (‘PE’). Loosely

speaking this condition states that the input vector is not

orthogonal to any one particular direction for too long. The

second assumption is a boundedness condition; both play

important roles in the derivation of the stability bounds. It

is to be understood that for an input vector to be PE, there

must exist at least one pair (α, T ) such that the persistence

of excitation condition holds for all t ≥ 0.

The WKB method is a systematic asymptotic approxi-

mation scheme long used in Quantum Mechanics, optics,

and other branches of applied mathematics. The asymptotic

WKB expansion is in a parameter quantifying a ratio of

temporal or spatial scales. Here, we introduce a closely

related matrix version of the WKB approach termed ‘Iterative

Tracking Diagonalization’ (ITD), and apply it to the dynamic

system (1). Specializing to the dimension n = 2 and a

particular PE input vector signal, and upon replacing the

PE conditions by criteria not involving integrals (and far

easier to verify), we are able to prove exponential stability.

We also greatly improve upon the bounds (both upper and

lower) derived in reference [11]. The non integral version of

the PE conditions, which we call the WKB-PE conditions,

incorporates a time-scale separation parameter (ǫ ≥ 0).

We demonstrate that for low enough values of ǫ, a small

number of ITD iteration steps – when combined with a low-

order Matrix WKB approximant using our formalism from

reference [6] – suffice to yield an excellent closed form

analytical approximation to the general solution of (1).

The remainder of this note is organized as follows. In

Section II, the WKB approximation and its history are

briefly discussed, the time-scale separation (ǫ), and various

elements of notation are introduced. In Section III, our ITD

procedure along with the relevant linear algebra machinery

is introduced; we then specialize to the case n = 2 for

which two ITD iterations are explicitly worked out, and

our main stability theorem is stated. This theorem is then

applied to prove exponential stability for small enough ǫ

values. We also summarize the upper and lower analytical

bounds for the parameter error vector, z(t), that may be

derived from the main theorem. In Section IV, we further

specialize to a particular n = 2 input signal which is PE.

For this example, we combine numerical simulations with

analytical derivations, (including those of earlier sections) to

derive: (1) an excellent WKB approximation to z(t); (2) our

own (WKB-PE-conditions based) upper and lower bounds
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on the components of z(t) and on its norm ‖z(t)‖; (3)

optimized upper and lower bounds (on ‖z(t)‖ alone) based

upon the formulas of reference [11]. Section V summarizes

our conclusions.

II. BACKGROUND AND NOTATION

The WKB method1 (named after the three physicists G.

Wentzel,, H. A. Kramers and L. Brillouin) is a systematic

asymptotic approximation method that was first formally

developed in the context of quantum mechanics [10], [5].

Earlier versions of WKB can be traced to Liouville, Airy,

Rayleigh, and other nineteenth century mathematical physi-

cists. In optics and continuum mechanics it is known as

the eikonal approximation, and is useful in bridging the

gap between the geometrical (ray) and wave descriptions. In

Quantum Mechanics the WKB approximation (also known as

the adiabatic or semiclassical approximation) plays a similar

role, with the ray approximation to the Schroedinger equation

being Newton’s equations of classical mechanics. In WKB,

one expands all quantities in a formal power series in a

parameter (ǫ ≥ 0) that quantifies a ratio of two scales of

time and/or space. When ǫ << 1, the first few terms in the

expansion often suffice to yield an adequate approximation.

Although, the power series is an asymptotic one 2 taking

into account more terms will improve the accuracy for small

enough ǫ. The physics application of WKB cited above may

involve an ODE in space or time or a PDE in both. The

time-scale separation parameter is typically the ratio of a

wave oscillation period to some larger time-scale. The spatial

scale-separation ratio is usually the ratio of a wave length to

a typical spatial dimension of the structure through which

the wave propagates. Here we are concerned with modeling

the time evolution of a finite number of degrees of freedom;

such dynamics are encoded in systems of coupled ODE’s (in

our case, (1)). A hierarchy of time scales can arise in control

theory when, for instance, the characteristic frequencies of

physical vibrations, oscillations, etc, are much larger than

learning rates, velocities of desired trajectories, etc.

The original WKB method was applicable only to scalar

ODEs or PDEs. In this note we have formulated a program

which systematically extends the scalar WKB method to

the case of a general system of coupled, time-dependent

linear ODEs. We formally introduce the time-scale separation

parameter, ǫ, by means of the following ‘time-stretching’

transformation, t → ǫt =: τ . Equation (2) now becomes

z′(t) ≡ ż = A(ǫt)z(t) ≡ −µx(ǫt)xT (ǫt)z(t). We also

define zτ := d
dτ

z = 1
ǫ
ż, and similarly for τ derivatives

of other quantities. In general, a dot or a prime superscript

shall denote differentiation with respect to t. The advantage

of this transformation is that the WKB-expansion order of

any quantity can now be easily ascertained by counting ǫ

powers. Thus, for instance: x, A, xτ are all O(ǫ0) as ǫ tends

to zero; ẋ = ǫxτ , and Ȧ = ǫAτ are O(ǫ); (xT ẋ)2 and ẍ are

1non-quantum physicists and applied mathematicians often use the
acronym WKBJ, with the ‘J’ referring to Sir Harold Jeffreys.

2An asymptotic series is not guaranteed to have a non-zero radius of
convergence.

O(ǫ2). We always have the option of setting ǫ to unity which

would bring us back to the form of equation (2). However,

unless the elements of the matrix, Ȧ(ǫt) are in some sense

small relative to some of the eigenvalues of A ‘most of

the time’, none of our extended-WKB techniques (whether

Matrix WKB or ITD) will furnish good approximations to

the dynamics. However, we emphasize that even if neither

Aτ nor ǫ are very small in any sense, the ITD formalism

introduced in Section III below may still be used, in some

cases, to prove stability theorems and establish rigorous

bounds. We note that the system (1), investigated in this

note, has the special feature that for n > 1, all but one

of the eigenvalues of the matrix A(τ) vanish for all times,

and thus cannot be larger in magnitude than any element of

Ȧ. As we shall see below this is not an obstruction to the

applicability to the extended-WKB methods, provided that

the single non-vanishing eigenvalue of A(τ) (which equals

−µ ‖x‖2
) is O(ǫ0).

III. ITERATIVE TRACKING DIAGONALIZATION (ITD)

AND MAIN STABILITY RESULTS

Our ITD procedure consists of stages. The 0th stage refers

to the original system given in (1). At each subsequent stage,

we perform a transformation (detailed below) on the system.

We will denote this by the tilde symbol. That is, z̃, Ã, etc.

refer to the system at the first stage of the ITD. The symbols,

˜̃z,
˜̃
A, etc. refer to the system at the second stage of the ITD.

The eigenvalues of the matrix A appear in (1) are given

by (we assume that µ > 0)

λ(j) =

{
−µ‖x‖2 if j = 1
0 if j ∈ [2, n]

(2)

We impose the following convention on the eigenvalues of

the time-varying system matrix for ITD stages one and higher

(for Ã,
˜̃
A, etc.)

Definition 1: Eigenvalue Ordering Rule: Let λ(j) be the

jth eigenvalue of the system matrix at ITD stage one or

higher. Then, we order the eigenvalues such that λ(n) <

λ(n−1) < · · · < λ(1).

Note that we cannot use the above definition (nor is it

necessary) on the eigenvalues at the 0th level of the ITD.

Given this ordering of eigenvalues, we now have an

ordered set of corresponding eigenvectors. Denote by v(j)

the (right) eigenvector corresponding to λ(j). Note that each

eigenvector can be multiplied by an arbitrary scalar function,

φ(j)(t) ∈ C
∞(R+, R).

Definition 2: Eigenvector scaling rule (only for iterates,

Ã and higher): Let φ(j) be chosen such that there exists

an ǫ1, independent of time, such that for all ǫ ∈ [0, ǫ1), the

dominant component of v(j) is the component i = j and this

component is unity: v
(j)
i = 1.

For the matrix A itself, the eigenvector corresponding to

the non-zero eigenvalue is always in the direction of x. Take,

v(1) = x
‖x‖ , and normalize the remaining v(j) for j ∈ [2, n] to

have unit norms. Define the similarity transformation matrix:

R := [v(1) v(2) . . . v(n)] ∈ C
n×n. Since A is real and

symmetric, R is real and orthogonal. However, the higher
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iterates Ã,
˜̃
A, . . ., are not necessarily real nor symmetric,

and thus the iterates R̃,
˜̃
R, . . ., are not necessarily real or

orthogonal.

Iterative Tracking Diagonalization (ITD) Procedure

We introduce a similarity transformation by the change of

variables: z =: Rz̃. Substituting into (1) we have

˙̃z = Ãz̃ (3)

where Ã = R−1AR−R−1Ṙ. We also define: B = −R−1Ṙ.

By the product differentiation rule and eigenvector orthonor-

mality, we note the following:

v(j)T

v̇(k) =

{
−v̇(j)v(k) if k �= j

0 if k = j

From A = −µxxT (equation (1)), and using the above

eigenvalue and eigenvector ordering and scaling rules, we

compute Ã to be

Ã =




−µ‖x‖2 v(2)T

v̇(1) · · · v(n)T

v̇(1)

−v(2)T

v̇(1)
0

.

.

.

. . . v(n)T

v̇(n−1)

−v(n)T

v̇(1) −v(n)T

v̇(n−1)
0




(4)

At this point, we can execute a second ITD iteration by

diagonalizing Ã and computing λ̃(j) and ṽ(j) for j = 1 . . . n.

Then we define: R̃ = [ṽ(1) . . . ṽ(n)], ˜̃
A = R̃−1ÃR̃ − R̃−1 ˙̃

R,

B̃ = −R̃−1 ˙̃
R. We now specialize to the case n = 2.

A. The Case n = 2

We now consider x ∈ R
2×1. We proceed with the ITD

procedure. As before, define the (orthogonal) matrix

R = [n y]

where n = x
‖x‖ , and y is orthogonal to n with, ‖y‖ = 1.

Then, (4) becomes:

Ã =

[
−µ‖x‖2 β

−β 0

]
(5)

β := yT ṅ (6)

Note that, B is equal to −R−1Ṙ =

[
0 β

−β 0

]
and ‖B‖ =

O(ǫ), since β = O(ǫ). The eigenvalues of the matrix are:

λ̃(j) =
−µ‖x‖2

2
±

√
µ2‖x‖4 − 4(yT ṅ)2

2

Notice that −µ ‖x‖2
+

√
µ2 ‖x‖4 − 4β2 = O(ǫ2).

This follows from by applying the binomial expan-

sion to the square root term. Additionally, −µ ‖x‖2 −√
µ2 ‖x‖4 − 4β2 = O(1). Hence, we take

λ̃(1) =
−µ‖x‖2

2
−

√
µ2‖x‖4 − 4(yT ṅ)2

2
= O(1) (7)

and

λ̃(2) =
−µ‖x‖2

2
+

√
µ2‖x‖4 − 4(yT ṅ)2

2
= O(ǫ2) (8)

Next, we determine the corresponding eigenvectors. We have

ṽ(1) = φ̃(1)




1(
−µ‖x‖2

2 −
√

µ2‖x‖4−4(β)2

2

)
1
β




ṽ(2) = φ̃(2)




1(
−µ‖x‖2

2 +

√
µ2‖x‖4−4(β)2

2

)
1
β


 (9)

where φ̃(j), are scaling factors.

The second component of ṽ(1) is of O(ǫ), and hence no

rescaling is necessary. That is, we take φ̃(1) = 1. Note, how-

ever, the division by β in the second component of ṽ(1) is not

numerically robust for small ǫ. Hence, multiplying the second

component by γ
γ

, where γ := µ ‖x‖2
+

√
µ2 ‖x‖4 − 4β2, we

get

ṽ(1) =

[
1
2β
γ

]
(10)

The second component of ṽ(2) is of O(ǫ−1), and hence

by the eigenvector scaling rule, we scale ṽ(2) by φ̃(2) = 2β
γ

to get:

ṽ(1) =

[ 2β
γ

1

]
(11)

Thus, we have

R̃ =

[
1 2β

γ
2β
γ

1

]
(12)

and

R̃−1 =
γ2

γ2 − 4β2

[
1 − 2β

γ

− 2β
γ

1

]
(13)

Additionally, we have

˙̃
R =


 0

(
2β
γ

)′

(
2β
γ

)′

0




recall (Section II) that a prime denotes differentiation with

respect to the time variable, t. We have:

−B̃ = R̃−1 ˙̃
R =

2γ2

γ2 − 4β2

(
β

γ

)′
[
− 2β

γ
1

1 − 2β
γ

]

It is easily verified that

∥∥∥B̃
∥∥∥ = O(ǫ2). We next iterate the

ITD procedure by transforming z̃ =: R̃˜̃z. This yields

˙̃̃
z = ˜̃

A˜̃z (14)

where
˜̃
A = R̃−1

(
ÃR̃ − ˙̃

R
)

.

By direct calculation, we find

˜̃
A =

γ

4β2 − γ2
·


µ ‖x‖2 − 4

β2

γ
− 4

β
γ

(
β
γ

)′
2

(
β
γ

)′

2

(
β
γ

)′
4

β2

γ

(
1 − µ

‖x‖2

γ

)
− 4

β
γ

(
β
γ

)′



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We next compute the eigenvalues of
˜̃
A. We find that

˜̃
λ(j) = S ·

[
d + a

2
± 1

2

√
(d + a)2 + 4(b2 − 4ad)

]

where

a = µ ‖x‖2 − 4β2

γ
− 4β

γ

(
β
γ

)′

b = c = 2
(

β
γ

)′

d = 4β2

γ

(
1 − µ

‖x‖2

γ

)
− 4β

γ

(
β
γ

)′

S =
γ

4β2 − γ2

Note that d + a = µ ‖x‖2
(
1 − 4β2

γ2

)
− 8β

γ

(
β
γ

)′

= O(1).

Additionally, d + a > 0 for small enough ǫ. Hence, we take

˜̃
λ(1) = S ·

[
d + a

2
+

1

2

√
(d + a)2 + 4(b2 − 4ad)

]
= O(1)

˜̃
λ(2) = S ·

[
d + a

2
− 1

2

√
(d + a)2 + 4(b2 − 4ad)

]
= O(ǫ2)

As before, the above follows from the binomial expansion

of the square root. Next, we determine the corresponding

eigenvectors,

˜̃v(1) =
˜̃
φ(1)

[
1

1
2b

(
d − a +

√
(d − a)2 + 4b2

)
]

Since d − a = 8β2

γ
− µ ‖x‖2

(
1 + 4β2

γ2

)
< 0. Hence,

we have d − a +
√

(d − a)2 + 4b2 = O(ǫ4). Thus, the

second component of ˜̃v(1) is of order O(ǫ2). The dominant

component is O(1), and a constant. Hence, we do not need to

rescale, that is,
˜̃
φ(1) = 1. However, for numerical robustness,

we would like to eliminate the division by b. Defining
˜̃γ := d − a −

√
(d − a)2 + 4b2 = O(1), we multiply the

second component by
˜̃γ
˜̃γ

to get:

˜̃v(1) =

[
1

− 2b
˜̃γ

]

The second eigenvector is given by:

˜̃v(2) =
˜̃
φ(2)

[
1
˜̃γ
2b

]

In this case, the dominant component is O(ǫ−2) and not a

constant. Hence, we rescale by choosing
˜̃
φ(2) = 2b

˜̃γ
to get:

˜̃v(2) =

[
2b
˜̃γ

1

]

Thus,

˜̃
R =

[
1 2b

˜̃γ

− 2b
˜̃γ

1

]

and

˜̃
R−1 =

˜̃γ2

˜̃γ2 + 4b2

[
1 − 2b

˜̃γ
2b
˜̃γ

1

]

We now can compute
˜̃
B = − ˜̃

R−1
˙̃̃
R and check its ǫ order.

We find

˜̃
B = −2

˜̃γ2

˜̃γ2 + 4b2

(
b

˜̃γ

)′
[

2b
˜̃γ

1

−1 2b
˜̃γ

]

Hence,

∥∥∥ ˜̃
B(t)

∥∥∥ = O(ǫ3).

Theorem 1: Consider the linear time-varying system given

in (1). Let λ(j) and v(j) denote the jth eigenvalue and eigen-

vector of A(t), respectively. Let R := [v(1) v(2) . . . v(n)] ∈
C

n×n be the invertible similarity transformation matrix, and

B(t) := −R−1Ṙ(t). Suppose that

Re(λ(j)(t)) < −c1ǫ
m (15)

and

‖B(t)‖ < c2ǫ
m+1 (16)

hold for all t ∈ [0,∞), and j ∈ [1, n] for some integer m > 0
and some time independent constants c1(ǫ), c2(ǫ) with cj(ǫ)
continuous in some neighborhood of ǫ = 0 and c1(0) > 0,

c2(0) > 0. Then, there exists an ǫ1 > 0 such that for all

ǫ ∈ (0, ǫ1), and for all initial conditions z(0) ∈ R
n,

‖z(t; ǫ)‖ < ‖z(0; ǫ)‖e−
c1

2
t (17)

Due to page limitations, we do not present the full proof.

ITD WKB Bounds Using the ITD-WKB procedure, we

may also derive bounds on the components of z(t). We

only summarize the results. Apply the ITD procedure twice,

z(t) = RR̃˜̃z(t). Defining ρij := [RR̃]ij , we have,

z1(t) = ρ11
˜̃z1 + ρ12

˜̃z2

z2(t) = ρ21
˜̃z1 + ρ22

˜̃z2 (18)

Our strategy is to bound each of the components ˜̃zj(t) for

j = 1, 2:
˜̃z−j (t) ≤ ˜̃zj(t) ≤ ˜̃z+

j (t) (19)

and then use (18) to bound the components zj(t), paying

attention to the signs of the ρij components. It can be shown

that the component ˜̃z±k (t) evolve as follows:

[
˜̃z−1 (t)
˜̃z−2 (t)

]
= M−(t)

[
˜̃z1(0)
˜̃z2(0)

]

[
˜̃z+
1 (t)

˜̃z+
2 (t)

]
= M+(t)

[
˜̃z1(0)
˜̃z2(0)

]
(20)

where each of M+(0) and M−(0) is the two by two identity

matrix. In turn, M+(t) is evolved via the linear matrix

differential equation:

d

dt
M+(t) =

[
−˜̃c

(1)+
1 + ˜̃c2ǫ

3 ˜̃c2ǫ
3

˜̃c2ǫ
3 −˜̃c

(2)+
1 ǫ2 + ˜̃c2ǫ

3

]
M+(t)

(21)

where ˜̃cj are constants. M−(t) is written in terms of its

components

M−(t) :=

[
σ1(t) σ2(t)
σ3(t) σ4(t)

]
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where the two columns are time-evolved in accordance with

the following two vector ODE’s:

d

dt

[
σ1

σ2

]
=

[
−˜̃c

(1)−
1 − ˜̃c2ǫ

3 ˜̃c2ǫ
3

−˜̃c2ǫ
3 −˜̃c

(2)+
1 ǫ2 + ˜̃c2ǫ

3

] [
σ1

σ2

]

,

d

dt

[
σ3

σ4

]
=

[
−˜̃c

(1)+
1 + ˜̃c2ǫ

3 −˜̃c2ǫ
3

˜̃c2ǫ
3 −˜̃c

(2)−
1 ǫ2 − ˜̃c2ǫ

3

] [
σ3

σ4

]
(22)

with initial conditions σ1(0) = σ4(0) = 1, and σ2(0) =
σ3(0) = 0. The equations (18-22) can be used to derive

upper and lower bounds for the individual components zj(t)
or for their (individual or combined) norms.

IV. THE ITD-WKB APPROXIMATION AND SIMULATIONS

In this section, we present a specific example for which

we illustrate the power of the ITD method. In the next

subsection, we will illustrate the WKB approximation of

the system at each level of the ITD. We will observe an

increasing level of accuracy in the WKB approximation at

each successive stage in the ITD. At the final stage, we

will show that a low order Matrix-WKB of ˜̃z can then be

transformed to yield an excellent approximation of z(t). We

term this approximation as the ITD-WKB approximation,

and denote the approximation as zITD-WKB. To summarize our

approach, we

1) Apply the ITD transformation twice

2) Perform a WKB approximation

3) Invert the ITD transformation twice

In the last subsection, we will compare our bounds with

those obtained using the theorems of [11]. There, Sondhi and

Mitra derive two different upper bounds and one lower bound

valid for all learning rates, µ. The bounding techniques they

use critically depend on the PE and boundedness assump-

tions. In this section we specialize to a particular n = 2: the

input vector signal is chosen to be

x(t) =

[
sin(ǫt)

ā cos(ǫt)

]
(23)

A. ITD-WKB Approximations

In this subsection, we utilize table I in [6] to construct an

N = 1 term approximation3 for z, z̃, and ˜̃z. We will denote

the approximant to each ITD iteration as zWKB, z̃WKB, and ˜̃zWKB,

respectively. That is, zWKB, z̃WKB, and ˜̃zWKB are the one term

WKB approximations to the solution of equations (1), (3),

and (14), respectively. Application of table I of [6] requires

a time-stretching transformation of system (1). By applying

the stretching transformation, we can read off the N orders

as explicit powers of ǫ. Setting τ = ǫt in (1), we have

ż = ǫzτ = −µx(τ)xT (τ)z(τ) (24)

In the following development, we will apply the stretching

transformation at each level in the ITD, and then apply the

Matrix WKB method to construct an approximant. Due to

3The index N of the Matrix WKB expansion is defined in [6].

page limitations, we do not detail the required steps in the

construction of the WKB approximation at each level of the

ITD. The parameters of the system were taken as ǫ = 0.1,

ā = 2 and µ = 1.

Fig. 1. illustrates the increasing accuracy of the WKB

approximation at each stage of the ITD iteration. As can been

seen in Fig. 1., ˜̃zWKB is essentially indistinguishable from ˜̃z.

Since z = RR̃˜̃z, we consider the ITD-WKB approximation,

zITD-WKB := RR̃˜̃zWKB , and compare this to the true solution, z

in (1). This comparison is depicted in Fig. 1. Clearly, zITD-WKB

is an excellent approximation of z.
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First Component: e = 0.1 a = 2 m = 1

zà zà
WKB

z

z
WKB

zàà zàà
WKB

Fig. 1. Comparision of the first component of z at each stage of the ITD.
We plot z1, z̃1, ˜̃z1, z1WKB

, z̃1WKB
, ˜̃z1WKB

. The numerical solution is in
solid while the corresponding WKB approximation is plotted in dotted. We
observe that at each stage of the ITD, the WKB approximation becomes
more accurate.

B. Comparison of Bounds

In this section, we compare the upper and lower bounds

derived using our ITD-WKB bounds equations (section III

above), with the upper and lower bounds derived by Sondhi

and Mitra [11]. The bounds in [11] are derived via classical

persistence of excitation assumptions. To make a fair compar-

ison to Sondhi and Mitra’s bounds, we choose the bounding

parameters to optimize their bounds while keeping fixed and

equal all other common parameters. Due to page limitation

we are not able to show the details. They derive [11] two

upper and one lower bounds valid for all learning rates

and initial conditions. They also derive an additional lower

bound, however, that is valid locally, and for a restricted

range of learning rates. Since our results hold globally, we

restrict the comparison to the three bounds that hold globally.

We now compare the bounds of Sondhi and Mitra with the

ITD-WKB bounds given in Section III. This is shown in Fig.

2. We do not show upper bound one of Sondhi and Mitra

as this was found to be more conservative than upper bound

two. The ITD-WKB-PE bounds are indicated in dotted lines.

They were computed by taking the norm of the individual

component bounds described in Section III. Bounds on the
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Fig. 2. Comparison of the ITD-WKB bounds with the bounds of Sondhi
and Mitra for parameters ǫ = 0.1, ā = 1.25, and µ = 1. Note that
our bounds involve two time constants, which enables them to bound the
numerical more tightly.
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Fig. 3. ITD-WKB upper and lower bounds on the first component of z
for parameters ǫ = 0.1, ā = 1.25, and µ = 1. Note that bounding the
individual components is not possible using the methods given in [11], and
thus illustrates the power of the ITD-WKB technique.

individual components of z is illustrated in Fig. 3. and Fig.

4. Bounding the individual components is not possible using

the methods given in [11], and thus illustrate the power of

the ITD-WKB technique.

V. CONCLUSION

In this note, we presented a powerful new technique

applicable to linear, degenerate gradient flow. This technique

required the combination of our Iterative Tracking Diago-

nalization (ITD) and WKB matrix method. The combined

technique, which we name ITD-WKB, yielded excellent

upper and lower bounds on the solution norm that captured

the-two-time scale behavior of the system. Additionally, we

were able to establish good upper and lower bounds on the
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Fig. 4. ITD-WKB upper and lower bounds on the second component of
z for parameters ǫ = 0.1, ā = 1.25, and µ = 1. Note that bounding the
individual components is not possible using the methods given in [11], and
thus illustrates the power of the ITD-WKB technique.

individual components. We illustrated the procedure with a

specific example, and found the ITD-WKB bounds to be far

superior to the classical results given in Sondhi and Mitra

[11].
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