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Abstract— This paper presents an approach to design opti-
mal vibration reduction input shapers for systems with non-
zero initial conditions. The problem is first formulated as an
optimal control problem and the optimal solution is shown
to be bang-bang. Once the structure of the optimal shaper is
known, a parametric problem formulation is presented for the
computation of the switching times. For digital implementation,
discrete time approximate solutions are derived by solving a
quasi convex Linear Program. Simulation results are shown
for closed-form implementation of these filters on flexible
structures. The digital solutions are experimentally verified on
a portable bridge crane.

I. INTRODUCTION

Vibration reduction of flexible structures has long been

the subject of active research [1]–[6]. The control is re-

quired to cause a finite rigid-body motion with low residual

vibrations of the flexible modes [3]. The design problem

has been approached in primarily two ways. In the first

approach, an optimal shaped control profile is designed for

the rest-to-rest motion of the entire flexible system. Here the

shaped command is obtained by formulating a constrained

optimal control problem that is solved for each reference

move [7]. The cost criteria include time [3], robustness [5],

fuel cost [8], power [9], deflection [10], move vibrations [11],

jerk [9], higher mode excitations [12], etc. The optimal

solution is obtained by Pontryagin’s minimum principle [13]

and Euler-Lagrange necessary conditions [14].

In this approach, the problem needs to be re-solved for

every change in reference move. An alternate approach is the

idea of using vibration reduction filters [15]–[18] where the

filter is designed beforehand for canceling the flexible mode

dynamics. This approach is illustrated in Fig.1 where a step

reference is modified using a three impulse filter. Optimal

profiles of such filters are obtained by formulating a con-

strained time-optimal control problem where only the flexible

mode dynamics are considered [7]. Any kind of robustness

and over-excitation constraints can be formulated as terminal

state inequality constraints [12], [19]. The optimal solution

for the filter design problem with terminal state inequality

constraints is derived as bang-bang [7], [12].

Since the structure of the optimal solution is known,

analytical expressions can be derived for representing vibra-

tion energy [20], robustness and excitations of the flexible

modes [3], [16], [17]. The control parameters can be com-

puted by formulating a nonlinear parametric optimization

problem [18].

These filters can be implemented either as pure convo-

lution, or by closed-form methods [6], [21]–[25]. In the

convolution based input-shaping technique, the reference

command is computed for pure rigid-body and is later

convolved with a single filter. In the closed-form method,

the input is modified for each on-off switch in the rigid-

body command using different filters designed for different

transitions [6], [21]–[24], [26]. The rigid-body switch times

are required to be corrected in order to satisfy the rest-to-

rest motion conditions [6]. The correction term is defined

as Preloading [22], and is a quadratic function of the filter

parameters and the reference input [22].

The designs reported in the literature considered zero

initial conditions where the switched control is designed

for rest-to-rest motion. As a result, when the solutions are

applied to systems where the states have finite non-zero ini-

tial conditions, the residual vibrations will not be cancelled.

The non-zero initial conditions can result from a disturbance

or error in implementation of previous commands where

the next reference command appears before the states have

settled to zero velocities. Also, in the closed-form imple-

mentation of shaping filters, any error in filter parameters

can cause residual vibrations at the start of subsequent

transitions. As a result, there is a need for transition filters

that cancel vibrations in the presence of non-zero initial

states. Since the states can be estimated by a state estimator

or measured by sensors, the initial values may be available

to the designer.

An approach is presented for including non-zero initial

conditions in the design of vibration reduction optimal con-

Fig. 1: Three impulse vibration reduction filter based on switching control.
The impulse amplitudes and switching times are selected to cancel the
flexible poles while maintaining the actuator limitations and unit DC gain.
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trol. The proposed approach provides the optimal solution of

a shaping filter, and a shaped command. The design problem

is formulated as a constrained time-optimal problem whose

solution is a bang-bang function. A discrete-time formulation

is also presented for implementation on digital controllers.

A scheme is presented for computing the filter parameters

using a parametric nonlinear optimization formulation. Sim-

ulation results are presented where such filters are used to

cancel residual vibrations in the closed-form implementation.

Experimental results from a portable bridge crane verify the

effectiveness of the discrete-time formulation.

II. PROBLEM FORMULATION

We consider the dynamics of flexible modes represented

by {ω, ζ} which can be modeled as [3]

ẋ(t) =

[
0 1

−ω2 −2ζω

]

︸ ︷︷ ︸
A

x(t) +

[
0
1

]

︸ ︷︷ ︸
b

u(t) , (1)

where −1 ≤ u(t) ≤ 1. A non-zero initial condition is

considered such that x(0) = [x1(0), x2(0)]. Vibration

cancellation requires the states at final time T to be x(T ) =
[1/ω2, 0]. The design of an optimal shaping filter for non-

zero initial states can be formulated as the contrained time-

optimal control problem

minimize T

subject to ẋ(t) = Ax(t) + bu(t)

x(0) = [x1(0), x2(0)] , x(T ) = [1/ω2, 0]

− 1 ≤ u(t) ≤ 1 .
(2)

Since the states are known at the initial and final times, the

optimal control can be shown to be bang-bang from Pon-

tryagin’s minimum principle [13]. The optimal control can

be computed from Euler-Lagrange necessary conditions [14].

Additional robustness constraints like zero vibration and

derivative (ZVD) [16], [17], specified insensitivity (SI) [17],

[27], or reduced higher-mode excitations [12], [28] can

be included as terminal state inequality constraints. The

optimal solution of such constrained time-optimal control

problems with terminal state inequality constraints can also

be shown to have a bang-bang form [12]. The solution u(t)
provides the time-optimal input-shaping filter that cancels the

vibrations in the presence of non-zero initial conditions.

An approximate solution can be derived from the discrete

time formulation of (2) as follows

minimize N

subject to x̂(k + 1) = Âx̂(k) + b̂û(k)

x(0) = [x1(0), x2(0)] , x(T ) = [1/ω2, 0]

− 1 ≤ û(k) ≤ 1 , k = 1, . . . , N ,
(3)

which is a quasi-convex problem where each iteration is a

convex Linear Program (LP) [29]. Here {x̂, Â, b̂} represents

the discrete time state dynamics. Optimization routines like

MOSEK [30], CVX [31], and Matlab [32] can be used

to solve this problem. The solution provides a shaping

filter designed for non-zero initial conditions that can be

implemented on digital controllers.

III. PARAMETRIC FORMULATION

Since the optimal solution of (2) is bang-bang, the struc-

ture of the resulting optimal shaping filter can be written

as [5], [17]

U(s) =
I0 + I1e

−t1s + . . . + Ipe
−tps

s
, (4)

where

I =
[

1 −2 2 . . . 2
]

. (5)

The switching times t can be computed using a parametric

optimization problem [18] formulated next. From (1), the

states corresponding to the mode {ω, ζ} are given in the

Laplace domain as [33]

x1(s) =
sU(s) + sx2(0) + (s2 + 2ζωs)x1(0)

s(s2 + 2ζωs + ω2)

x2(s) =
sU(s) + sx2(0) − ω2x1(0)

(s2 + 2ζωs + ω2)
.

(6)

For vibration cancellation, the roots of the shaper (4) should

be placed such that the numerator of (6) cancels the poles of

the flexible modes located at −ζω ± jω
√

1 − ζ2 [3], [15],

[16]. In other words

sU(s) + sx2(0) + (s2 + 2ζωs)x1(0)
∣∣
s=−ζω±jω

√
1−ζ2

= 0

sU(s) + sx2(0) − ω2x1(0)
∣∣
s=−ζω±jω

√
1−ζ2

= 0 ,

(7)

which simplifies to

sU(s) + sx2(0) − ω2x1(0)
∣∣
s=−ζω±jω

√
1−ζ2

= 0 . (8)

For the shaping filter defined in (4), the pole-zero cancella-

tion condition (8) becomes

C(ω, ζ) − C0(ω, ζ, x1(0), x2(0)) = 0

S(ω, ζ) − S0(ω, ζ, x1(0), x2(0)) = 0 ,
(9)

where

C(ω, ζ) = I0 +

p∑

k=1

Ik etkζω cos(ωdtk)

S(ω, ζ) =

p∑

k=1

Ik etkζω sin(ωdtk) ,

(10)

and

C0(ω, ζ, x1(0), x2(0)) = ω2x1(0) + ζωx2(0)

S0(ω, ζ, x1(0), x2(0)) = ωdx2(0) ,
(11)

where ωd = ω
√

1 − ζ2.

The conditions (9) can also be obtained from the time re-

sponse of the LTI system with transfer function (6) subjected

to the control (4). The amplitude V (ω, ζ, x1(0), x2(0)) of the

residual vibrations [16] at time t = tp can be derived as

V =
e−ζωtp

ωd

√
(C − C0)

2
+ (S − S0)

2
. (12)
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The conditions (9) therefore ensure zero residual vibrations.

Another criterion of evaluating the performance of vi-

bration cancellation filters is the residual vibration sen-

sitivity S that is defined as the ratio of the amplitudes

of residual vibrations for the shaped to unshaped com-

mand [27]. From (4) and (12), the vibration sensitivity

function S(ω, ζ, x1(0), x2(0)) is written as

S =

√
(C − C0)

2
+ (S − S0)

2

√
(I0 − C0)

2
+ (S0)

2

. (13)

The filter parameters can now be obtained by the following

nonlinear parametric optimization problem

minimize
t

tp

subject to C(ω, ζ) = C0(ω, ζ, x1(0), x2(0))

S(ω, ζ) = S0(ω, ζ, x1(0), x2(0)) .

(14)

where the variables are the switching times t. Nonlinear

optimization routines like SNOPT [34], GAMS [35], and

Matlab [32] can be used to solve (14). The solution provides

an optimal zero vibration (ZV) [16] filter that cancels the

vibrations for systems with non-zero initial conditions.

The shaping filter can be made robust to parameter

variations by formulating zero vibration and derivative

(ZVD) [16], [17] constraints as

Cd(ω, ζ) − C0d(ω, ζ, x1(0), x2(0)) = 0

Sd(ω, ζ) − S0d(ω, ζ, x1(0), x2(0)) = 0 ,
(15)

where

Cd(ω, ζ) =

p∑

k=1

Ik tk etkζω cos(ωdtk)

Sd(ω, ζ) =

p∑

k=1

Ik tk etkζω sin(ωdtk) ,

(16)

and

C0d(ω, ζ, x1(0), x2(0)) =

(
2ωζ

2ω2 − 1

)
x1(0) + x2(0)

S0d(ω, ζ, x1(0), x2(0)) =

(
2ωd

2ω2 − 1

)
x1(0) .

(17)

The ZVD conditions are obtained by setting the derivative

of (9) with respect to ω to zero [16]. Similar expressions

can derived for specified insensitivity (SI) robustness con-

straints [17], [27] and reduced higher-mode excitation con-

straints [12], [28], that limits the sensitivity (13) in specified

bands of frequencies and damping ratios

S(ω, ζ) ≤ Smax , ∀ω1 ≤ ω ≤ ω2 , ζ1 ≤ ζ ≤ ζ2 . (18)

The nonlinear problem (14) is non-convex in the variable

t, as a result KKT conditions only guarantee the local

optimality of the solution [29]. The global optimality can,

however, be verified for such problems using Euler-Lagrange

necessary condition [36]. The methodology is based on the

approach presented in [37] to verify the global optimality of

solution where the initial states are given, and final states

Fig. 2: Vibration sensitivity for optimal ZV and ZVD filters designed for
ω = 1, initial condition x(0) = [0.1, −0.1], and final condition x(T ) =
[1, 0]. The inset is the zoomed-in plot of the vibration sensitivity around
the nominal mode ω = 1.

are either specified, or are constrained by terminal state

inequalities [7].

For implementation on digital controllers, a discrete time

shaping filter can be obtained from (3). Efficient interior

point based algorithms exist for solution of such convex

problems [38]. Since (3) is convex, the solution provides

the global optimal solution to the problem [29]. The discrete

time solution can also be used to obtain initial conditions

for nonlinear optimization routines employed to solve (14).

The approach leads to faster convergence of the nonlinear

routine [39]. The discrete time solution also provides an

approximation to the number of switchings p in the true

time-optimal solution [12].

An example is considered where ZV and ZVD filters

are designed for canceling the vibrations of an undamped

system with ω = 1. The initial conditions are taken as

x(0) = [0.1, −0.1]. The solution is obtained by solving the

nonlinear parametric problem using SNOPT [34] with an

initial point obtained by solving the corresponding LP using

MOSEK [30]. The vibration sensitivities S of the resulting

filters are shown in Fig. 2.

For implementing these filters on flexible systems, the ref-

erence command is first designed for the rigid-body motion

alone, and is later shaped by convolving with a shaping

filter designed separately based on the approach described

above [16], [17]. In this scheme, a single filter is used

to modify the reference command. An alternate scheme is

the Closed-form implementation, where different filters are

utilized for different rigid-body transitions [6], [21]–[25].

Since the filter design can be performed offline, and the

online computation of the rigid-body reference command can

be done very easily, the shaping approach is very efficient as

compared to the approach where optimal control is required

to be recomputed for each reference move [16]. However, the
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filtered reference control only provides an approximation to

the true time-optimal control.

IV. OPTIMAL SHAPED CONTROL

For flexible systems where a true time-optimal shaped

control is required to be computed for a given reference

command, an optimal control formulation similar to (2) can

be written as

minimize T

subject to ẋ(t) = Ax(t) + bu(t)

x(0) = [x1(0), x2(0)] , x(T ) = [1/ω2, 0]

ẏr(t) = Aryr(t) + bru(t)

yr(0) = [y1(0), y2(0)] , yr(T ) = [yref , 0]

− 1 ≤ u(t) ≤ 1 .
(19)

Here, the rigid-body and the flexible mode dynamics are

represented by {yr, Ar, br} and {x,A, b}, respectively. The

non-zero initial conditions are specified as {x(0), yr(0)} and

the control is required to move the system to yref , cancel

the vibrations, and bring the system to rest. Similar to (2),

the optimal control can be shown to be bang-bang using

Pontryagin’s minimum principle [7], [14], [40]. The shaped

command for −1 ≤ u(t) ≤ 1 is given by (4) with

I =
[

1 −2 2 . . . 1
]

. (20)

A parametric optimization problem can now be formulated

where in addition to vibration cancellation conditions (9), the

control needs to satisfy the rigid-body conditions obtained

by the final-value theorem [7], [33]. The resulting non-linear

optimization problem becomes

minimize
t

tp

subject to C(ω, ζ) = C0(ω, ζ, x1(0), x2(0))

S(ω, ζ) = S0(ω, ζ, x1(0), x2(0))
p∑

k=1

Iktk = −y2(0)

p∑

k=1

Ikt2k = 2yref − y1(0) ,

(21)

with I given by (20). The solution of (21) provides an

optimal shaped command for vibration cancellation of flex-

ible system with non-zero initial conditions. As mentioned

earlier, the optimal control needs to be recomputed for each

reference input yref .

V. EXPERIMENTAL VERIFICATION

To test the effectiveness of the input shapers designed for

non-zero initial states, experiments were conducted on the

portable bridge crane shown in Fig. 3 [41]. The crane has a

workspace of approximately 1m×1m×1.6m. The overhead

bridge and trolley are driven using Siemens AC servo motors

and are controlled using a Siemens PLC. The crane is also

equipped with a vision system to measure payload position.

ZV and ZVD shapers were designed for an initial payload

deflection of 5 degrees (i.e., 10 degrees peak-to-peak payload

Fig. 3: Portable Bridge Crane

swing) and a suspension cable length of 1.15m. Using these

shapers, the crane trolley was moved 30cm and the residual

payload swing was measured. As shown in Fig. 4, the ZV

and ZVD shaped commands reduced the initial 10 degree

payload swing down to 3.12 and 2.73 degrees peak-to-peak

oscillation at the end of the move, respectively. This is a

dramatic reduction from the unshaped commands, which

increased the vibration amplitude from the initial conditions.

Note that there are several souces of experimental error such

as inaccuracies in the initial conditions, nonlinearities in the

drive systems, and uncertainty in the suspension length. In

light of these inaccuracies the experimental results are quite

promising.

Figure 4 also shows the effects of errors in the measure-

ment of the initial conditions. The effectiveness of both the

ZV and ZVD shapers degrades as a function of the error, but

Fig. 4: Residual Vibration Amplitude for Unshaped, ZV-shaped, and ZVD-
shaped Moves
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neither command excites more vibration than the unshaped

case over the range of initial conditions tested.

VI. DISCUSSION

In the closed-form implementation of vibration reduction

shaping filters, different filters are utilized for each rigid-

body transition [6], [21]–[25]. These filters are called the

transition shapers [6], and are designed to cancel the vi-

brations during each rigid-body transition. The rigid-body

switch timings are later corrected using a term which is

quadratic in reference point and filter parameters [22]. How-

ever, error in computation of any filter parameters can lead

to cumulative residual vibrations that cannot be cancelled by

subsequent transition shapers. For example, an error in the

switching times corresponding to the first transition shaper

leads to residual vibrations. If the vibrations remain in the

system until the time when the second transition shaper is

implemented, then the subsequent TS filters will not be able

to completely cancel the vibrations.

In order to improve the performance, the residual vi-

brations are required to be estimated, and subsequent TS

filters must be designed with these estimated non-zero initial

conditions. An example is shown in Fig. 5 where the closed-

form control is derived for a flexible system with transfer

function

Y (s)

U(s)
=

ω2

s2(s2 + ω2)
,

a(s)

U(s)
=

ω2

(s2 + ω2)
, (22)

where y and a denote the position and acceleration, re-

spectively. The transition filters are initially designed for

ω = 10 with zero initial conditions, and the rigid-body

switching times are computed for yref = 100. A 10% error

is introduced in the last switching time of the first TS filter.

This error may arise due to error in precise implementation

of TS switching times, or due to a disturbance input. As

a result, the cumulative vibrations can be seen from the

acceleration plot if traditional designs are used. The use

of vibration reduction filters may actually aggravate the

resonance if not designed properly by taking into account

the initial conditions. If the second TS filter is designed with

non-zero initial conditions at the time of second rigid-body

switchings, then the modified TS filter perfectly cancels the

vibrations, as seen in the plot.

In addition to the closed-form implementation of shaping

filters, the proposed approach is useful for flexible systems

where the next reference command arrives before the residual

vibrations have subsided. An estimate of state variables is

usually available that can be considered in the computation

of the switched control parameters.

The approach presented above can be easily extended to

any number of flexible modes that can be considered in

the state matrices {A, b} in (2), (3), and (19). For each

flexible mode, analytical expressions similar to (11) can be

derived. Since the problem is formulated as a constrained

time-optimal control problem, other constraints, for example

specified fuel usage [42]–[46], move vibration [11], specified

deflection [10], [47], velocity limit, etc, can also be included

Fig. 5: Acceleration response for closed-form implementation of TS filters
designed for cancelling ω = 10 mode and yref = 100.

in the original problem as state constraints. Depending upon

the kind of state constraints, the optimal solution might

be bang-bang, bang-off-bang, or might containt singular

arcs [7].

VII. CONCLUSION

A new approach was presented for designing vibration

reduction shaping filters and shaped control for systems

with non-zero initial conditions. The design of vibration

reduction shaping filters considers only the flexible modes,

while optimal shaped commands are designed for the entire

system, including the rigid-body dynamics. The amplitude of

residual vibrations and the vibration sensitivity are derived

to include the vibrations caused by non-zero initial condi-

tions and different designs are evaluated according to these

performance criteria. The true time-optimal solution to such

problems was shown to be bang-bang. A simpler parametric

formulation was presented that provides the switching times

by solving a nonlinear optimization problem. The problem

formulation was also considered in discrete time in order

to obtain solutions that can be implemented on digital

controllers. Simulation results were presented to demonstrate

the effectiveness of the proposed approach and experimental

results from a portable crane verified the proposed approach.
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