
  

  

 Abstract—To solve the level-adjusting problem of high 
accurate and costly payloads when loading and unloading, a 
rope-driven self-leveling device is developed, and a neuro-fuzzy 
controller is proposed. After a brief introduction of the 
configuration characteristics of the device and the 
fundamentals of neuro-fuzzy control, the construction of the 
neuro-fuzzy controller is set up, in which the angles of two 
diagonal inclinations which are measured from the two angle 
sensors are chosen as input variables, and the changes of two 
linear motion units’ positions are the control variables. The 
neuro-fuzzy controller, whose rules are constructed based on 
human’s regulating experience, was tuned by a hybrid 
algorithm, which is a combination of the least square estimate 
(LSE) method and the back-propagation (BP) algorithm. 
Experimental results show that the proposed neuro-fuzzy 
controller can achieve the control objective with high accuracy 
of regulation and short adjusting time, and is easily applied to 
the practical device.   

I. INTRODUCTION 

N  many areas, such as industrial applications etc,  
high accurate and costly payloads (e.g., satellites, 
aircrafts, turbine engines) often need to be loaded and 

unloaded. Such costly payloads can’t endure point-to-point 
or point-to-surface touch with the ground or the assembly 
platform. Besides, their centers of mass usually deviate from 
their geometric centers. This would cause inclination and 
lateral forces in the entire course, which usually leads to 
payloads’ distortion, damage, or even complete destruction.       

To avoid these pitfalls, various methods and mechanisms 
have been studied and applied, for example, link parallel 
platforms [1], cable parallel platforms [2], hybrid parallel 
platforms (combinations of link structures and cable 
structures) [3], and weight compensation mechanisms [4], 
etc. Theoretically, these adjusting methods above all could 
be used for leveling adjustment. However, link parallel 
platforms would inevitably increase the system weight, and 
are not easy to meet precision requirements and realize 
self-regulation; rope parallel platforms are too difficult to 
model and control, and also require large spaces to fix the 
ropes and increase the size of the levelling mechanism; these 
intrinsic shortcomings are also in some way, true for the 
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hybrid parallel platforms; weight-compensating method is 
precise and smooth, and easy to operate, but it often can only 
accomplish one-dimensional regulation, meanwhile, heavier 
matching block and larger structure size are needed when 
regulating heavy and large payloads. Although rope based 
techniques own the above defects, corresponding parallel 
devices have large workspaces, strong pulling forces, and 
can regulate swiftly. Nowadays, research activities are 
mainly focused on the analysis of workspaces [5], the central 
position and pose of payloads [6], kinematics characteristics 
[7], and dynamic characteristics [8]. However, no studies 
have yet been reported on the leveling control of payloads’ 
junction surface, and the equilibrium problem of ropes’ 
pulling forces. To realize the leveling control for 
high-accurate and costly payloads, manual regulating 
devices using four ropes are universally adopted in practical 
applications. Disadvantages of these manual devices are 
obvious, such as great labor intensity, low efficiency, low 
precision, and hidden trouble in safety. How to improve the 
condition has become an urgent difficult problem, which 
needs to be completely solved.  
  Recently, based on the analysis of merits and drawbacks 
of the above methods and mechanisms, meanwhile, 
combining with the widely used manual regulating devices, 
we have developed a rope-driven self-leveling device, 
whose structure and configuration is shown in Fig. 1.  A 2D 
model for the device is established in [9], but for the three 
dimensional payload, the accurate 3D model is quite hard to 
obtain for the reasons given in section II. Designing 
conventional controllers for the rope-driven self-leveling 
device is a complex and arduous job. Fuzzy logic control 
[10,11], which has been proved to be a practical alternative 
for a variety of challenging control applications that are 
difficult to be solved by classical methods, can sufficiently 
incorporate human knowledge or experience into system 
design. Therefore, it may be a quite good choice to use fuzzy 
logic controllers to regulate the payloads. 

However, the conventional ways of designing fuzzy logic 
controllers face the difficulties to transform human 
experience into the rule base and to tune the parameters of 
the membership functions (MFs) so as to maximize 
(minimize) the performance index. In order to overcome 
these drawbacks, several approaches have been developed, 
one of which is fuzzy neural network controller (FNNC) or 
neuro-fuzzy controller [12-17]. Neuro-fuzzy controllers, 
which can combine the merits of fuzzy systems and neural 
networks, have been widely applied in many practical 
applications [16, 17]. Therefore, in this paper, a neuro-fuzzy 
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controller is designed for the leveling adjustment of the 
rope-driven self-leveling device. And, we also use a hybrid 
algorithm, which is a combination of the least square 
estimate (LSE) method [18,19] and the back-propagation 
(BP) algorithm [12,13], to tune the parameters of the 
designed neuro-fuzzy controller to obtain better 
performance.  
  The paper is organized as follows: Section II presents the 
detailed structure of the proposed rope-driven self-leveling 
device for level adjustment. In Section III, the neuro-fuzzy 
controller for the rope-driven self-leveling device is 
developed and a hybrid algorithm, which is a combination of 
the least squares estimate (LSE) method and BP algorithm, is 
presented. Experimental results that show the performance 
of the proposed algorithm on the rope-driven self-leveling 
device are described in Section IV. Concluding remarks are 
given in Section V. 

II. STRUCTURE OF A ROPE-DRIVEN SELF-LEVELING DEVICE 

    
  Fig. 1. Appearance of the prototype of rope-driven self-leveling device          

 In this section we present a prototype of the rope-driven 
self-leveling device. To coordinate the loading and 
unloading of rectangular payloads, manual regulating 
devices using four ropes are universally adopted in the 
practical applications. The desired performances are as 
follows: the junction surface angle with the horizontal is 
smaller than 0.2º, the adjusting time is less than 60 seconds, 
and for safety purpose the pulling force of each rope should 
almost be balanced, i.e., the deviation of each rope’s pulling 
force should not be less or more than 30% of their average. 
We carry out the whole structure design of the device, in 
accordance with this demand. Below is a brief description of 
the various parts and their functions. 
1） Lifting Ring: Installed in the center of rectangular 
worktable, it can implement horizontal and vertical motions 
when connected with lifting equipments. 
2） Rectangular Worktable: It needs to bear all the weight 
of payloads and motor regulation devices, so rigid materials 

should be used. In addition, the rectangular worktable should 
not be eccentric, this not only requests that its center of mass 
should not deviate from its geometric center, but also that 
four regulation devices on it need to be fixed symmetrically 
along its two diagonal directions with certain size 
distribution. 
3） Four Regulation Devices: As the core component of the 
device, each one consists of five parts: motor, motor driver, 
shaft coupling, connecting flange, and linear motion unit. 
The rope is connected with and moved  by the linear motion 
unit which is driven by its motor via shaft coupling, and its 
moving direction can be changed by the crown block 
installed in the corner of the rectangular worktable. The 
payload is regulated by the four ends of such two ropes. Two 
regulation devices are installed symmetrically in the same 
diagonal direction, one of which is used to drive the rope, 
while the other is used to balance the rectangular worktable. 
When one regulation device driving the rope moves toward a 
certain direction, the other regulation device balancing the 
rectangular worktable will accordingly move toward the 
opposite direction. 
4） Two Ropes: Each rope, which is installed between the 
two crown blocks fixed in the two ends of one diagonal 
direction, should be above the axial line of the linear motion 
units.  
5） Force Sensors: One end of the force sensor is connected 
with one end of each rope, and the other is connected with 
one corner of the rectangular payload. 
6） Angle Sensors: To measure the level inclination of the 
payload’s junction surface, angle sensors need to be installed 
symmetrically in the payload’s upper surface or lower 
surface. Ignoring the processing and deformation factors, 
upper surface and lower surface can be viewed as parallel, 
i.e., the dihedral angle of the payload’s upper surface is equal 
to the dihedral angle of the payload’s junction surface.  
7） Computer Control System: Using the scheme of “PC + 
motion control board”, it processes and analyses real-time 
data which are acquired from the force sensors and angle 
sensors, and then sends out commands to the motors to 
realize movement control. 
8） Electrical Sources: They supply power for the 
regulation devices, force sensors, angle sensors, PC, etc.   

III. NEURO-FUZZY CONTROLLER FOR THE ROPE-DRIVEN 
SELF-LEVELING DEVICE  

 In this section, some problems and a control strategy for 
the rope-driven self-leveling device will be presented firstly; 
then, we will design a neuro-fuzzy controller for this device. 
To achieve better performance, we will also use the LSE 
method and BP algorithm to tune the parameters of the 
designed neuro-fuzzy controller. 

A. Problems and Control Strategy  

  It is difficult to design a conventional controller for the 
rope-driven self-leveling device, because some problems are 
encountered when designing the practical control system. 
First, establishing the device’s 3D model is really a tough 
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problem to be solved, getting the numerical relationship 
between the lengths of ropes and the dihedral angle of 
payload’s junction surface is not easy. Though a realistic 2D 
model of the device is proposed in [9] and its analytical 
solution can be obtained, it is so complicated that can’t be 
applied directly and effectively in fact. What’s worse, 
payload’s exact weight and the accurate centroid position, 
which need to be used in the modeling, are usually unknown. 
Furthermore, coupling effect caused by the holistic physical 
structure exists in this real-world application, and is really 
difficult to be weakened. All these problems make it too hard 
to realize leveling adjustment through designing 
conventional controllers which are based on accurate 
mathematical model.   

 
Fig. 2.  Spatial relationship between payload’s upper surface and the 

horizontal surface. 

Fig 2 gives the spatial relationship between the payload’s 
upper surface （OAB）  and the horizontal surface （O A' B'）. 
Two angle sensors with the same precision, which can 
automatically detect the gradient, namely angle, between the 
lines they located in and the horizontal surface, are installed 
symmetrically along the two diagonal directions (OA and 
OB) of the payload’s upper surface. Here, we define OA' and 
OB' as the projection of OA and OB to the horizontal surface, 
respectively. Therefore, the angles from the two angle 
sensors’ measures, denoted as xθ  and yθ , are the angles 
between the diagonal lines (OA and OB) and their respective 
horizontal projections (OA' and OB'). And, assume that θ  is 
the dihedral angle between the payload’s upper surface and 
the horizontal surface, and β  (which is 67.3802° in the 
practical system) is the angle between the two diagonal lines 
(OA and OB). Suppose that ' ' 1OA OB ==1、 , from the 
following equation  

                          
' '

cos
S
S A OB

AOB
θ Δ

Δ

=                                    (1) 

We can obtain that 

' '

S
=arccos( ) 

AOB
S AOB

θ Δ

Δ

                                 (2)         

' '

1/2 OA OB sin AOB  = arccos( ) 
1/2 OA OB sinα
⋅ ⋅ ⋅ ∠

⋅ ⋅ ⋅
          (3) 

21 ( cos )
 =arccos( ) 

sec sec sin
x y x y

x y

sec sec tg tgθ θ β θ θ

θ θ β

− ⋅ ⋅ − ⋅

⋅ ⋅
   (4) 

 From (4), we can deduce that, as long as xθ  and yθ , the 

angles between the diagonal lines (OA and OB) and their 
respective horizontal projection (OA' and OB'), could both 
be adjusted to 0°, the plane (OAB) set by the two intersecting 
straight lines (OA and OB), that is, the junction surface of 
the payload, would be approximately horizontal. To achieve 
this objective, we can regulate the ropes through changing 
the positions, denoted as xu  and yu , of the linear motor 
units.  

B. Design of Neuro-Fuzzy Controller 

 From above discussion, we can see that the controller for 
the rope-driven self-leveling device should have two inputs 
and two outputs. The input variables are the angles ,x yθ θ  of 
the two diagonal inclinations that are measured from the two 
angle sensors, and the output variables are the position 
changes ,x yu u  of the two linear motion units that are used to 
drive the two ropes. 

The structure of the neuro-fuzzy controller for the 
rope-driven self-leveling device is shown in Fig. 3.  This is a 
two-input-two-output neuro-fuzzy network which has four 
layers and 25 rules. The first layer of the controller is the 
input layer. The second layer is the membership function 
layer. Each node in this layer performs the function of a 
fuzzy set. And, the third layer is the rule layer. This layer 
corresponds to the inference process in fuzzy logic 
controllers. In this layer, each node corresponds to one fuzzy 
rule in the rule base. Lastly, the forth layer is the output layer. 
This layer is used to carry out the defuzzification process in 
fuzzy logic controllers [12, 13]. 

Assume that there are M (M=25) rules in the rule base, 
each of which has the following form 
Rule k:  IF xθ  is k

xA%  and yθ is k
yA%  ,  

THEN xu is k
xw  and yu is k

yw  

where 1,2, ,k M= L , k
zw  ( ,z x y= ) are consequent 

 

Fig. 3. Structure of the neuro-fuzzy controller. 
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weighting factors and k

zA% ( ,z x y= ) are Gaussian fuzzy sets 
NB, NS, ZR, PS, or PB, and  

                         
2

2

( )1( ) exp
2 ( )k

z

k
z z

z kA
z

mθ
μ θ

σ
⎧ ⎫−

= −⎨ ⎬
⎩ ⎭

% .               (5)                         

Once a crisp input ( ,x yθ θΘ = T)  is applied to the 
neuro-fuzzy controller, through the singleton fuzzifier and 
the inference process, the firing strength of the kth rule can 
be obtained from the third layer as 
                ( )* ( )k k

x y

k
x yA A

f μ θ μ θ= % % .                                        (6) 

Then, using the weighted-average defuzzification method, 
the outputs of the neuro-fuzzy controller are  

                1

1

( )

M
k k
z

k
z M

k

k

w f
u

f

=

=

Θ =
∑

∑
,  where ,z x y= .                (7) 

C.  Training of the Neuro-Fuzzy Controller 

To achieve better performance and meet the precision 
requirement of the rope-driven self-leveling device, in this 
subsection, we will use the LSE method [18,19] and BP 
algorithm [12,13] to tune the parameters of the designed 
neuro-fuzzy controller. Here, we use the LSE method to get 
the initial values of the consequent parameters at first several 
steps until the RMSE curve will not change obviously; and 
then, we start the BP training process till a satisfactory 
performance can be achieved. 

Given N input-output training data ( 1
xθ , 1

yθ , 1
xu , 1

yu ), 

( 2
xθ , 2

yθ , 2
xu , 2

yu ), …, ( N
xθ , N

yθ , N
xu , N

yu ), the BP algorithm 
should be used to adjust the parameters of the neuro-fuzzy 
controller to minimize the following square error function: 

                            t t t
x yE E E= +                                       (8) 

where  
2 21 1( ) ( ( ) )

2 2
t t t t
x x x xE e u u= = Θ −                                (9) 

2 21 1( ) ( ( ) )
2 2

t t t t
y y y yE e u u= = Θ −                       

(10) in which ( )t
xu Θ and ( )t

yu Θ are the output of the 

neuro-fuzzy controller for the inputs ( ).t t t
x yθ θΘ = ，  

Now, let us present the BP update rules for the parameters 
of the neuro-fuzzy controller first. 

(1) BP update rule for the weighting factors 
( )

( 1) ( )
t

k k
z z w k

z

Ew t w t
w

α ∂
+ = −

∂
     

( ) ( )
( )

t
k t z
z w z k

z

u
w t e

w
α

∂ Θ
= −

∂
            （11） 

(2) BP update rule for the means of Gaussian FSs 
( )

( 1) ( )
t

k k
z z m k

z

Em t m t
m

α ∂
+ = −

∂
   

( ) ( ) ( )( )
( ) ( )

tt
yk t tx

z m x yk k
z z

uu
m t e e

m m
α

∂ Θ∂ Θ
= − +
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(3) BP update rule for the widths of Gaussian FSs 
( )

( 1) ( )
t

k k
z z k

z

Et t σσ σ α
σ

∂
+ = −

∂  

( ) ( ) ( )( )
( ) ( )
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σ σ
∂ Θ∂ Θ
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From (7) 

1
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z
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k

u f
w f

=

∂ Θ
=
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, ,z x y=                              (14)    
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where  
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in which ( )k
zI A%  is the set of fuzzy rules whose antecedent 

FSs include k
zA% . For example 1( ) {1,2,3,4,5}xI A =% . 

In the same way, 
( )t

x
k
z

u
σ

∂ Θ
∂

, 
( )t

y
k
z

u
m

∂ Θ

∂
, 2

( )
( )

t
y

k
z

u
σ

∂ Θ

∂
 can be 

computed. 
    BP algorithm is sensitive to initial values. And, it is easy 
to set reasonable initial values of the antecedent parameters, 
but difficult to determine reasonable initial values of the 
consequent parameters. Therefore, in this study, we utilize 
the LSE method to get the initial values of the consequent 
parameters, as the outputs of the neuro-fuzzy controller are 
linear with the consequent weighting factors. 
    From (7) 

T1

1

( ) ( )

M
k k
z

k
z zM

k

k

w f
u F W

f

=

=

Θ = = Θ
∑

∑
,                              (16)   

where  
1 2

T

1 1 1

( ) ( ) ( )( ) [ , ,..., ]
( ) ( ) ( )

M

M M M
k k k

k k k

f f fF
f f f

= = =

Θ Θ Θ
Θ =

Θ Θ Θ∑ ∑ ∑
,   (17)

    1 2 T[ , ,..., ]M
z z z zW w w w= .                                         (18) 

    After the training data set {( 1
xθ , 1

yθ , 1
xu , 1

yu ), 

( 2
xθ , 2

yθ , 2
xu , 2

yu ), …, ( N
xθ , N

yθ , N
xu , N

yu )} is imported to the 

neuro-fuzzy controller, vectors 1 2( ), ( ),..., ( )NF F FΘ Θ Θ  
can be calculated.  
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Denote 
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  To minimize
2

1

2
N

T t
z z z

t

Q W D E
=

− = ∑ , using the pseudo- 

inverse, the LSE of ( , )zW z x y= can be written as 
[12,13,18,19]    

* 1( ) .T T
z zW Q Q Q D−=                                 (19) 

     Because of the expensive computation in coping with the 
matrix inverse and the possibility that T

z zQ Q  may be singular, 
we need to adopt recursive formulas which are presented 
below to compute the LSE of W [12,13,18,19]. 

1 1 1 1
1

Tt t t t t t t
z z t z zW W P q d q Wγ+ + + +

+
⎡ ⎤= + −⎣ ⎦   (20) 

1 1 1
1

Tt t t t t t
tP P P q q Pγ+ + +
+= −                                    (21) 

1 1 1

1
1

Tt t t tq q P
γ + + +

=
+

                                                   (22) 

where 0,1,..., 1t N= − , tP  is the covariance matrix, and 
N

zW  equals to the least squares estimate *
zW . The initial 

conditions are 0 0zW =  and 0P Iγ= , where I is the identity 
matrix of dimension M M×  and γ  is a positive larger 
number. 
      Based on the discussion above, we can use the hybrid 
algorithm which combines LSE method and BP algorithm 
together to tune the neuro-fuzzy controller for the 
rope-driven self-leveling device. At first, we use the LSE 
method to train the neuro-fuzzy controller; after the RMSE 
curve does not change obviously, then we can start the BP 
training process until a satisfactory performance can be 
achieved. 

IV. EXPERIMENTAL RESULTS 
In our experiment, we use 492 experiential data pairs to 

train the neuro-fuzzy controller. The initial membership 
functions of NB, NS, ZR, PS, PB for ,x yθ θ  are shown in Fig. 

4 (dashed black line). And, ( , )zW z x y= is set to be zero. Fig. 
5 demonstrates the RMSE (root mean squared error) curve in 
the training process. The first 5 steps uses LSE method, and 
the last 20 steps utilize the BP algorithm, in which the 
learning rate wα  =0.1; mα  =0.001; σα  =0.0001. 

After being trained, the rule tables for xu and yu are 
shown in Table I and II, respectively. And, the trained 
membership functions of NB, NS, ZR, PS, and PB for ,x yθ θ  
are also shown in Fig. 4 (solid red line). The control surfaces 

of the neuro-fuzzy controller for xu and yu  are shown in Fig. 
6 (a)-(b). Then, the trained neuro-fuzzy controller is used for 
the leveling adjustment of the rope-driven self-leveling 
device. Fig. 7 gives control results of the neuro-fuzzy 
controller from two experiments where xθ and yθ have the 
different initial angles (3.39°/-1.85° and 5.61º / 4.05°) with 
the opposite sign and the same sign, respectively. From Fig.  
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Fig. 4.   Initial and trained membership functions for xθ  and yθ . 
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Fig. 5.  RMSE curve in the training process. 

TABLE I  RULE TABLE FOR xu  

xθ  (mm)xu
    NB    NS    ZR    PS    PB 

NB 99.61 74.99 21.84 72.92 112.78 
NS 65.86 79.87 28.74 80.29 62.86 
ZR 4.13 1.51 -0.94 -0.85 -1.62 
PS -66.41 -80.66 -27.26 -80.31 -65.25 

      

xθ
 

PB -103.4 -71.47 -20.95 -74.66 -112.62 
 

TABLE II  RULE TABLE FOR yu  

yθ  (mm)yu

NB NS ZR PS PB 
NB 96.14 75.38 1.62 -70.75 -110.66
NS 65.61 77.33 -0.11 -78.26 -66.13 
ZR 17.31 10.73 -0.22 -11.78 -14.35 
PS 68.22 79.08 0.93 -76.47 -66.02 

 
 

yθ
 PB 100.61 72.32 -0.96 -77.62 -108.85

5119



  

-5
0

5 -5
0

5
-100

-50

0

50

100

θy

(a)

θx

u x

-5
0

5
-5

0
5

-100

-50

0

50

100

θy

(b)

θx

u y
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Fig. 7. Control results of the neuro-fuzzy controller for xθ , yθ , and θ . 

7, we can see that the precision of the junction surface 
angle θ  can approach almost to 0° when xθ  and yθ  are 
adjusted to be very small, and the adjusting time is much less 
than 60 seconds, i.e., the trained neuro-fuzzy controller can 
achieve the control objective—leveling adjustment of the 
rope-driven self-leveling device. 

V. CONCLUSION 
 The paper proposes a rope-driven self-leveling device for 

leveling adjustment, then a neuro-fuzzy controller whose 
rules are constructed based on human’s regulating 
experience is designed. We use a hybrid algorithm, which is 
a combination of the least square estimate (LSE) method and 
the back-propagation (BP) algorithm, to tune the parameters 
of the designed neuro-fuzzy controller to obtain better 
performance. Experimental results have demonstrated that 
the neuro-fuzzy controller can achieve the leveling 
adjustment of the rope-driven self-leveling device, and is 
easily applied to practical device. Balance control of the 
pulling forces has not yet been considered in this paper. How 

to realize the synchronization control of the leveling 
adjustment and the pulling force balance is a significant 
challenge and will be a focus of future work. 
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