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Abstract— Exploration always occurs in the presence of
uncertainty. In this paper, we consider path planning for
autonomous vehicles equipped with range-based sensors and
traveling in an uncertain area. The mission of the vehicles is to
explore a set of objects of interest while reducing uncertainty
in object position, visibility and state. A connection is shown
between the Kalman filter (used to reduce uncertainty) and the
so-called Shannon model for exploration through the use of a
range-based covariance. This connection is exploited to estimate
states and to travel between objects of interest. A bound on the
covariance error and several illustrative examples are provided.

I. INTRODUCTION

A. Overview

A vehicle can explore a given area by traveling amongst

specific objects of interest and collecting information with

range based sensors. The quality of information collected by

the onboard sensors can thus be improved by optimizing the

vantage point of the explorer. Thus an optimal exploratory

path requires an understanding of the coupling between the

kinematics of the vehicle and the informatics of the sensor.

But the objects of interest can be obscured, their locations

may not be known with great accuracy and they may have

an unknown state. This paper is devoted to the problem

of planning the paths of vehicles to explore a given area

regardless of these uncertainties.

The key idea of this work is to exploit properties of the

Kalman filter to reduce uncertainty while accounting for the

coupling between informatics and kinematics. Specifically

we use Shannon’s channel capacity equation to represent the

maximum rate that information can be transmitted over a

noisy channel and a range-based covariance to connect esti-

mation and exploration. Accounting for these joint couplings

in the design of optimal paths for exploration is the main

conceptual contribution of this paper.

B. Motivation

Autonomous vehicles are often employed to explore an

area and investigate objects of interest. The Air Force, Navy

and NASA all have many examples of autonomous vehicles

being used to collect information [1] [2] [3]. As these vehi-

cles are used in the real world, sensor noise and measurement

error are always present. Traditionally a Kalman filter is

used to estimate a true state and minimize uncertainty. But
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the standard Kalman filter does not account for range based

sensors where the uncertainty due to noise can be improved

by changing position. Thus we have a coupled problem

between estimation, information collection and kinematics.

In this paper we will show an equivalence between estimation

and information collection when kinematics are considered

and exploit this connection to find optimal paths and true

states.

C. Literature Review

A large body of research has been published in recent

years about motion control of autonomous vehicles. Al-

though an exhaustive overview of the state of the art is

beyond the scope of this paper, a brief review of the most

relevant literature is as follows.

Many methods exist for solving the basic trajectory-

planning problem [4]. However, not all of them solve the

problem in its full generality. For instance, some methods re-

quire the workspace to be two-dimensional and the obstacles,

if any, to be polygonal. Despite many external differences,

the methods are based on few different general approaches:

roadmap [4], [5], [6], cell decomposition [7], [8], [9], [5],

[10], potential field [11], [12], [13] and probabilistic [14],

[15]. Optimal control approaches have also been studied in

[16] and [17].

Information based exploration has been discussed in a few

papers in recent years, most notably in Reference [18]. Other

methods have used information collection to conduct area

searches [19], decentralized sensor control [20] and optimal

sensor placement [21]. Kalman first proposed his filter in

1960 [22] and many other formulations have appeared since,

such as a state-based covariance [23]. The formulation of

an optimal estimator that can affect the uncertainty of its

measurements by direct control of its path, however, has been

discussed infrequently, first as combined sensing and control

[24] and most recently by [18].

Although the current literature discusses various methods

of planning optimal paths for exploration and even account

for the coupling between informatics and kinematics, few

papers account for the additional tri-coupling between esti-

mation, information and kinematics through a range-based

covariance. The current paper addresses this issue.

D. Original Contributions

Based on a generic integrated system model, the problem

of exploration for autonomous vehicles in the presence

of uncertainty is formulated as an optimal path planning

problem where the states are the Cartesian coordinates of the

vehicles and the amounts of information collected about each
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object of interest, the objective function is the total mission

time, and the boundary conditions are subject to inequality

constraints that reflect the uncertainty reduction. The present

paper studies this optimization problem and provides the

following original contributions:

• An exploration problem is solved when the position of

the object of interest is uncertain.

• An equivalence is shown between the “Shannon model

for exploration” and a Kalman filter.

• This equivalence allows for previously derived proper-

ties to be used when uncertainty is present.

• A Kalman filter for exploration is formulated for path

planning when the visibility of the state is unknown

or when the visibility is affected by Gaussian noise. A

bound is given on the lower limit on the uncertainty of

the visibility.

E. Paper Outline

The remainder of the paper is as follows. In Section II,

the optimization problem is formulated first in terms of

Shannon’s Information theory and secondly in terms of a

Kalman filter while in Section III these formulations are

shown to be equivalent. In Section IV, state estimation in

the presence of uncertainty and a range-based covariance are

addressed. Finally, conclusions and future work are discussed

in Section V.

II. PROBLEM FORMULATION

The problem treated in this paper is to minimize the total

mission time required for an autonomous vehicle to collect a

specified amount of information about m objects of interest

in a given area. The vehicle is assumed to have onboard

sensors. Each sensor has a channel of limited bandwidth over

which information is collected and the signal-to-noise ratio

is dependent upon range.

The vehicle begins at a given initial location with free

headings and must collect at least a specified amount of

information about each object of interest.

A. Modeling

We seek to explore a given area, by which we mean to

collect a specified amount of information about each of m

objects of interest, at known locations in the area. To collect

information, we use onboard active, energy-based sensors,

e.g., radar.

Shannon [25] wrote that information is produced when

“one message is chosen from a set of possible messages”

and he introduced a theory to quantify this information. The

earliest application of this theory was in the engineering

of communication systems, which convey messages over a

distance. As Shannon stated, “Frequently the messages have

meaning; that is they refer to or are correlated according

to some system with certain physical or conceptual entities.

These semantic aspects of communication are irrelevant to

the engineering problem” [25]. In this work, the message is

the state of a particular object of interest or area. Here, a

state is a quantitative measure of an object, i.e., the size of

an object, its position, its visibility, the value of its scientific

interest, etc, described by real numbers or numbers of bits.

According to [25], the maximum rate at which information

can be transmitted over a noisy communication channel (i.e.,

the channel capacity) is:

İ = w log
2
(1 + SNR), (1)

where w is the channel bandwidth and SNR is the signal-to-

noise ratio.

Moreover, according to [26], a radar sensor located at

Cartesian coordinates (X,Y ) and observing an object at

Cartesian coordinates (Aj , Bj) (where j represents a par-

ticular object of interest) will provide a reading with signal-

to-noise ratio of the form:

SNR =
k4

((X −Aj)2 + (Y −Bj)2)2
, (2)

where the parameter k depends on the object.

Combining (1) and (2), the information collection model

is as follows. Let Ij denote the amount of information that

the vehicle has collected about the jth object of interest,

1 ≤ j ≤ m. Then,

İj = w log
2
(1 +

k4

j

((X −Aj)2 + (Y −Bj)2)2
), 1 ≤ j ≤ m,

(3)

where we assume that all radar sensing processes, viewed as

communication channels, have the same bandwidth, and the

parameters kj depend on the jth object of interest, which

is located at Cartesian coordinates (Aj , Bj). The signals

in exploration missions usually have a low signal-to-noise-

ratio so we can simplify (3) with a first-order Taylor series

expansion as:

R−1

v =
k4

((X −Aj)2 + (Y −Bj)2)2
, (4)

This model takes neither the uncertainty of the state of the

object of interest (interesting or uninteresting) nor noise in

the signal into account. A typical Kalman filter can be used

to estimate the state of the object, but has no dependence on

the sensor range (and thus, on kinematics). This estimator

can be expressed as:

Ẋ = V cosψ, (5)

Ẏ = V sinψ, (6)

Ż = 0, (7)

Ṗ = AP + PAT − PCTR−1

v CP +Rw, (8)

˙̂
Z = AẐ +K(Ỹ − CẐ), (9)

Ỹ = CZ + v, (10)

K = PCTR−1

v , (11)

where the kinematics of vehicle represented by the change

in Cartesian coordinates (X,Y ) are defined by a simple

unicycle model, the speed of the vehicle is defined by V , the

heading of the vehicle by ψ and the state of the object of

interest, Z, is unchanging. Here P is the covariance matrix,
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A is a linear matrix of state dynamics, C is a linear output

matrix of the sensors, Rv is the variance of the measurement

noise, Rw is the variance of the model uncertainty, v is

Gaussian noise with variance Rv , Ẑ is the estimate of the

state of the object of interest and Ỹ is the measurement

output.

B. Previous Properties

From previous work [27] [28] we have shown that several

properties of optimal paths for information collection exist

for vehicles with range-based sensors. The proofs of these

properties are shown in [28]:

Proposition 1: If the objects of interest are isolated, then

the optimal paths consist of sequences of straight lines (far

from the objects of interest) connected by short turns (near

the objects of interest).

Corollary 1: If in addition to being isolated, the objects

of interest are poorly visible, then the problem becomes a

multi-vehicle traveling salesman problem (MTSP) [29].

Proposition 2: When the visibility of all the objects of

interest approaches infinity, tf → 0 and the lengths of paths

traveled by the vehicles approach zero.

III. ESTIMATION

The Kalman filter model has no dependence upon range to

the object of interest, a needed element for the range-based

sensors in use and to use the previously derived properties.

Here we add a covariance based on range and compare it to

the Shannon information collection model shown earlier.

A. Comparison of the Shannon Channel Capacity Equation

and the Kalman Filter

İ =
wk4

((X −Aj)2 + (Y −Bj)2)2
. (12)

As before, the state of Z is fixed, however this state is

observable only with the corruption of noise. The variance

of the measurement noise, Rv is now dependent upon range

through the SNR derived from the radar equation. In this

formulation, we assume that k is known.

From the new model, if we consider that the state of the

object of interest is “hidden” in the noise with an unchanging

state, A = 0, B = 0, C = 1 and Rw = 0 yielding:

Ẋ = V cosψ, (13)

Ẏ = V sinψ, (14)

Ż = 0, (15)

Ṗ = −PCTR−1

v CP, (16)

˙̂
Z = K(Ỹ − CẐ), (17)

Ỹ = CZ + v, (18)

R−1

v =
k4

((X −Aj)2 + (Y −Bj)2)2
, (19)

K = PCTR−1

v (20)

The boundary conditions of our optimization problem

do not require a specific state of the object of interest

or estimated state, rather, they require that the covariance

of the estimated state approach 0. The estimated state is

independent from the optimization problem so the dynamics

that the optimization is subject to are:

Ẋ = V cosψ, (21)

Ẏ = V sinψ, (22)

Ṗ = −PCTR−1

v CP, (23)

R−1

v =
k4

((X −Aj)2 + (Y −Bj)2)2
, (24)

B. Information Filter

An equivalent form of the Kalman filter is the Information

filter, derived in [30]. The Kalman filter from (21) - (24) can

be reformed as:

Ṗ = AP + PAT − PCTR−1

v CP +Rw, (25)

ζ = P−1, (26)

ζP = I, (27)

0 = ζ̇P + ζṖ , (28)

ζ̇ = −P−1ṖP−1, (29)

= −P−1(AP + PAT −RCTR−1

v CP +Rw)P−1, (30)

= −ζA−ATP−1 + CTR−1

v C − P−1RwP
−1, (31)

= −ζA−AT ζ + CTR−1

v C − ζRwζ (32)

where I is the identity matrix and C =
√
w.

Referring back to (21)-(24), we can simplify (32) as:

ζ̇ = CTR−1

v C, (33)

=
wk4

((X −Aj)2 + (Y −Bj)2)2
(34)

Therefore our final simplified model is:

Ẋ = V cosψ, (35)

Ẏ = V sinψ, (36)

ζ̇ =
wk4

((X −Aj)2 + (Y −Bj)2)2
. (37)

which is exactly the same as the information collection model

formulated from Shannon’s channel capacity equation. This

equivalence of the Kalman filter and the Shannon formulation

shows that information collection is the same as the reduction

of uncertainty. Knowledge of the covariance (or information

collected) can now be used to estimate the final state as:

˙̂
Z =K(Ỹ − CẐ), (38)

Ỹ = CZ + v, (39)

K = ζ−1CTR−1

v (40)

Thus the Kalman filter with a range dependent covariance

utilizes Shannon’s channel capacity equation for the informa-

tion state. The previously derived properties can therefore be

used to find optimal paths while estimating a state corrupted
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with measurement noise.

IV. UNCERTAIN STATE MEASUREMENT

The state of the object of interest is not the only state that

can be corrupted by noise. In this section we address the

measurement of the visibility of the object of interest and

its position. Both of these states are needed to plan optimal

paths [27] [28] .

A. Corrupted Visibility

The utilization of the exploration method presented in this

paper assumes prior knowledge of the location of the object

of interest and its reflectivity / emissivity value, k. While

aerial surveys or flyovers will often reveal the location of

objects of interest, the k value must usually be estimated

when planning optimal paths. In this section, we consider the

estimation of k in a clear and in an obscured environment.

As motivation, consider an autonomous underwater vehi-

cle (AUV) tasked with identifying underwater mines. The

suspected mines have been located by a surface ship quickly

surveying the area with a towed array sonar. The ship can

only identify objects in the water, but cannot confirm if they

are mines or not. An AUV is deployed to ascertain the state

of the object of interest (mine or not) given only their initial

location. The underwater mines lie in clear water, but over

time, growths on the object have changed their accoustical

signature leading to an unknown reflectivity (visibility) con-

stant. Thus the correct k value must be estimated in order to

correctly predict an optimal path, but it is known to be static

throughout the mission period.

The k value can be estimated along with the state of

the object of interest. Closer examination, i.e. traveling to

reduce the sensor range, will reduce the uncertainty of the

measurements. Here the uncertainty depends on k but not

on k̂, the estimated value of k. Only our prediction model

depends on k̂. Figure 1 shows the reduction of uncertainty

as the vehicle approaches the object of interest and the

corresponding error reduction in the estimate for k. The

exploration equations to steer the vehicle and estimate the

state of k and Z (represented for space by α) are:

Ẋ = V cosψ, (41)

Ẏ = V sinψ, (42)

Ż = 0, (43)

k̇ = 0, (44)

Ṗα = −PαC
T
αR

−1

v CαPα, (45)

˙̂α = Kα(Ỹα − Cαα̂), (46)

Ỹα = Cαα+ v, (47)

R−1

v =
k4

((X −Aj)2 + (Y −Bj)2)2
, (48)

Kα = PαC
T
αR

−1

v . (49)

It should be noted here that Rv is always a positive value

so the covariance can only be reduced. Passing close to the

object of interest and then farther away will not minimize

and then increase the uncertainty about its state.
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Fig. 1. Convergence of the estimate of k as a function of time.

A more complicated (and realistic) scenario is that of

acoustically noisy waters. Here, ships in the area and un-

certain terrain can acoustically obscure the waters between

the vehicle and the object of interest. While the state itself

remains unchanged (A = 0), Gaussian noise, W , with

variance Rw is added to the model as the so-called process

noise as:

k̇ = W, (50)

Ṗk = −PkC
T
k R

−1

v CkPk +Rw, (51)

(52)

The time history of the covariance and state estimate is

shown in figure 2.

In this formulation, a steady state covariance error exists

at the final time due to the model noise, W . At the final time,

Ṗ = 0. We can find the final covariance error by examining

the change in covariance in the single state, Pk.

Ṗk = −PkC
T
k R

−1

v CkPk +Rw, (53)

0 = −PkC
T
k R

−1

v CkPk +Rw, (54)

−Rw = −PkC
T
k R

−1

v CkPk, (55)

Pk =

√

RwRv(X,Y )

C2

k

(56)

If an object of interest is directly visited, the steady state

uncertainty will go to zero. Otherwise the steady-state value

of Pk is limited by the range at which the object of interest

is approached.

B. Uncertain Object Location

We next remove the assumption that the location of the

objects of interest are exactly known. It is often the case that

our apriori knowledge of the position of these these objects

is marked with uncertainty. While their actual position is

stationary, the exact range to the object of interest (or heading
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Fig. 2. Convergence of the estimate of k as a function of time. Here
Rw = 40

to reduce this range) may be unreliable. While similar to

the above development (where the position of the object is

unchanging but is observed with noise), here multiple states

are uncertain.

The state equations are:

Ẋ = V cosψ, Ẏ = V sinψ, (57)

Ż = 0, Ȧ = 0, (58)

Ḃ = 0, k̇ = W, (59)

where the object state and position is fixed while the visibility

is dependent upon random environmental changes.

For conciseness, we consider the subscript α to represent

Z,A,B, k. The covariance equations are:

Ṗα = −PαC
T
αR

−1

v CαPα, (60)

where each depends upon the range to the object of interest

but have no input.

The estimate equations are:

˙̂α = Kα(Ỹα − Cαα̂). (61)

The output equations are:

Ỹα = Cαα+ v, (62)

where each output is corrupted by white Gaussian noise.

The variance of the noise:

R−1

v =
k4

((X −Aj)2 + (Y −Bj)2)2
, (63)

is dependent on the range to the object of interest.

The Kalman gains are:

Kα = PαC
T
αR

−1

v , (64)

Rather than plan a path to the actual object of interest,

here, since the object position is unknown, we plan a path to

the estimated location of the object of interest (Â, B̂) with:

ψ(t) = arctan
B̂j − Y

Âj −X
. (65)

Figures 4 and 5 shows the time history of the state esti-

mation and Figure 3 shows the vehicle path with uncertain

object of interest placement.
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Fig. 3. Flight path with uncertain object of interest location

0 5 10 15 20 25 30
85

90

95

100

105

Time (sec)

A
 (

m
)

0 5 10 15 20 25 30
400

600

800

1000

Time (sec)

P
A

A

A
hat

Fig. 4. Time history of the convergence of the A estimate

In the neighborhood of each object of interest there exists

a visibility disk, within which information can be collected

at appreciable rates. Outside of the visibility disk for a

particular object, no information can be collected about that

object. The visibility disk is assumed isotropic, i.e., the rate at

which information is collected depends only upon the range

from the object to the explorer, not on their relative azimuth.

As shown in each of the above figures, there is a definite

range at which uncertainty is reduced, which outlines the

radius of the visibility disk.

2425



0 5 10 15 20 25 30
95

100

105

110

115

Time (sec)

B
 (

m
)

0 5 10 15 20 25 30
400

600

800

1000

Time (sec)

P
B

B

B
hat

Fig. 5. Time history of the convergence of the B estimate

We define Dj as the isotropic visibility disk centered on

the jth object of interest. When the vehicle is within the

visibility disk of the jth object, i.e., (X,Y ) ∈ Dj , the object

is considered visible. Otherwise the object is invisible to

the vehicle. Define D to be the union of all visibility disks

Dj , 1 ≤ j ≤ m, i.e., D = ∪m
j=1

Dj .

Futher definitions will simplify the remaining analysis.

Objects are said to be clustered if their visibility discs are

pathwise connected. Furthermore, clusters are said to be

isolated if they are not pathwise connected. Finally, an object

is said to be isolated if it is not in any cluster.

We can return to the properties of optimal paths discussed

earlier. A vehicle will travel straight if it is outside of D and

will turn when it is within D.

V. CONCLUSIONS

Parameters, such as object visibility and position, can be

estimated and accounted for in the synthesis of optimal paths.

Estimation is only effective, however, when information can

be collected, inside the visibility disc.

Future work will examine the use of the clustering heuris-

tic with non-isotropic sensors as well as applying uncertain

visibility estimation to optimal non-isotropic path planning.
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