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Abstract— This is a brief survey of a little known field of
disturbance estimation and subsequent cancellation, a field with
a long history and is still rather disorganized. Researchers and
results are scattered over almost two centuries, across East
and West: from Jean-Victor Poncelet’s Principle of Invariance
in 1829, to Jingqing Han’s conception of Active Disturbance
Rejection in 1995 and beyond. But the field in recent years
is maturing and coming into a focus with significant practical
and theoretical implications abound. It provides a powerful
alternative to the modern control paradigm in how real world
control problems, of which disturbance rejection is a central
theme, are viewed and solved. In this paper a reader will find
a brief history of ideas, a new, unifying, problem formulation,
and a summary of recent stability analysis results.

I. INTRODUCTION

This paper concerns with a fundamental question of feed-
back control system design: how do we best deal with dis-
turbances in a process and achieve a consistent performance
in a system consists of inconsistent parts, operating in an
environment full of unknowns. In a feedback control system,
the input to a plant is manipulated by the controller so that its
output is what we desire. In addition to the input, however,
this plant output is also affected by disturbances. Therefore,
making a process insensitive to such disturbances is a task
that is central to any control system design, and it is known
as disturbance rejection.

It may come as a surprise that, important as it is, distur-
bance rejection has been carried out, for the most part any
way, rather passively, in both theory and practice. In mod-
ern control proper, disturbance is among many competing
concerns in design, to which the system response is shaped.
The notion of disturbance rejection is mostly synonymous to
disturbance attenuation. Another body of theoretical research
is rooted in the well known internal model principle, as
nicely summarized in [1], where the disturbance rejection
is achieved, in the presence of plant parameter variations,
if the mathematical model of the disturbance is given and
incorporated into the controller. On the practical side, the
method of choice, proportional-integral-derivative (PID) con-
trol, is just as indirect and passive. As disturbance works
its way through a process, it eventually leads to changes in
the process output, causing it to deviate from the setpoint.
And PID simply reacts to such deviations as they occur.
The question is how effective such disturbance rejection
can be, given that by the time controller reacts to it, the
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damage may already be done, sometimes irrevocably. The
answer to such a question is important, of course, and it
may have wide practical implications. Unfortunately, apart
from a few scattered reports stretching the last seven decades,
little has been done to systematically investigate alternatives
in disturbance rejection and to evaluate the accumulative
research results in their totality.

This paper provides a short survey of one such alternative,
the idea of active disturbance rejection that stretches from
the 19th Century to the present. It is a simple idea of
seeking out the disturbance and cancelling it out with the
control action before it does damage. It has the simplicity
and elegance of reducing a complex process to a simple,
disturbance-free, plant easily controlled by an ”invariant”
controller, which is made possible by actively measuring
or estimating the disturbance and counteracting it with the
control action. It is a rather different paradigm, as contrasted
to the modern mathematical tradition in control science.
It is not about closing the loop and using feedback to
change the dynamics of the process from what is given
to what is desired. It is about taking out what’s undesired
from the process before the feedback is applied. Practically
speaking, active disturbance rejection may very well provide
the elusive answer to the question: how do we accommodate
large amount of uncertainties commonly seen in industrial
controls?

Although the results are far and few in between, upon
closer examination, we did find a trail of ideas in the
literature as generations of researchers and engineers sought
to tackle the above question. And in this paper we attempt
to give an overview of and explore the interconnection
among their ideas, design techniques and the more recent
results of stability analysis, through which we seek a better
understanding of disturbance rejection problem itself and,
perhaps, a new way of thinking.

The paper is organized as follows: a brief history of
ideas is given in section II, followed by a new formulation
of disturbance rejection problems that leads to a unified
framework upon which all past, seemingly unrelated, results
can be examined, with their connections exposed. The sta-
bility analysis results are summarized in the ensuing section,
leading to concluding remarks in section IV.

II. A BRIEF HISTORY OF IDEAS

In the process of improving the control system perfor-
mance for steam engine, French engineer/mathematician
Jean-Victor Poncelet seems to be the first person to suggest,
in 1829, that disturbance be “used to generate an activating
signal which will tend to cancel the effect of the same
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disturbance”[2]. This idea is later known as the invariance
principle, which was formally established in the then Soviet
Union by Gheorghe Vladimirovich Shipanov in 1939 [3].
Although the invariance principle becomes classics in control
theory in Soviet Union [4], it did not appear to generate
much interest in the West. Interestingly, Shipanov’s theory
impressed upon the young mind of a Chinese doctoral stu-
dent, Jingqing Han, who studied in Moscow State University
in 1960s and who would revive the idea three decades later
[5].

In the meanwhile, apparently unaware of Shipanov’s ear-
lier work, Johnson proposed in 1971 [6] to treat input
disturbance as a fictitious state, to be estimated with a state
observer, known later on as the Unknown Input Disturbance
Observer (UIO), and canceled directly with the control
signal. Taking advantage of the state space method in modern
control theory of the 1960s, UIO utilizes the input and output
data from the plant and estimate the disturbance as well as
the state, assuming that the plant and disturbance dynamics
is known.

Unaware of UIO, Japanese researchers developed a similar
input disturbance observer in 1987 using the transfer function
approach known simply as Disturbance Observer (DOB)
[7]. A discrete realization of DOB, denoted as Perturbation
Observer, was also proposed [8]-[9]. Schrijver and Dijk
established the equivalence between UIO and DOB [10].
But it was not until 2006 that disturbance observers as
a class by itself was surveyed and brought into the large
family of observers [11], thus bringing the long overdue
attentions to this field, see for example [12]. By and large,
these disturbance observers are different manifestations of
the invariance principle but the researchers were apparently
unaware of it and they are rather concerned with the solutions
of individual engineering problems, not the underlying sci-
entific principles. Consequently, important as it is, this field
of research is still rather disjoint and obscure.

Uncertainties a control system must contend with come
from both unmodeled dynamics and external disturbance, and
they are handled separately in the modern control paradigm
with the former falls under robust control. All above distur-
bance observers share a common premise: the mathematical
model of plant dynamics is accurately known, even though
some researchers speculated that perhaps to some degree
modeling inaccuracy can be tolerated, if not addressed [9],
[10]. From engineering perspective, this still leaves the
problem of uncertainty largely unresolved, particularly those
large uncertainties that can not be brought into the robust
control framework constrained by the Small Gain theorem.

Tornambe and Valigi proposed in 1994 to robustly stabilize
SISO systems, in the context of vehicle stability control,
by estimating the unmodeled dynamics in a way similar
to disturbance estimation [13]. To distinguish this from
the disturbance observers, we denote it as the Dynamics
Estimator (DES). A significant constraint in DES is that
it requires all states to be measured before the unknown
dynamics is estimated and canceled like a disturbance.

Finally in 1995, Han proposed a single solution to deal

with both the dynamic uncertainties and the unknown ex-
ternal disturbances: the Extended State Observer (ESO), by
which the combined effect of both unknown dynamics and
external disturbance is treated as a fictitious state, estimated
using a state observer, and canceled out, reducing a complex
nonlinear time-varying control problem to a simple linear
time-invariant one [5]. Note that Han expanded the notion
of disturbance to include both unmodeled dynamics and ex-
ternal disturbance and, to distinguish it from a mere external
disturbance, we denote it as total disturbance and Han’s
idea as Total Disturbance Estimation. The control design
based on ESO actively seeks out total disturbance and cancel
it out, forming the backbone of a new design paradigm:
Active Disturbance Rejection Control (ADRC) [5], [14],
[15]. (Some translations had it as auto-disturbance rejection
control,until Han’s ideas were systematically introduced into
the English literature first in 2001 [16], and then in 2009
[17].) ESO was compared to DOB, sliding mode observer,
and high gain observer [18], [19].

III. TOTAL DISTURBANCE ESTIMATION AND ACTIVE
DISTURBANCE REJECTION

Consider a general nonlinear single-input single-output
(SISO) plant in the state space form as

ẋ = A(x) + B(x) (a(x, z, d) + b(x, z, d)u) (1)
ż = g(x, z, d)
y = C(x)

where x ∈ Rn, z ∈ Rm, u ∈ R, y ∈ R are observable state,
unobservable state, input and output of the system, respec-
tively, d ∈ Rp is external input disturbance, A(·), B(·), C(·)
are known nonlinear functions, g(·) is an unknown nonlinear
function, a(·) and b(·) are unknown or at most partially
known nonlinear functions. The unobservable dynamics is
assumed to be bounded-input-bounded-state (BIBS) stable.
Such description restricts the unknown dynamics and distur-
bances to be directly associated with the control input u. In
contrast, most control design techniques used today assume
a disturbance free plant such as

ẋ = A(x)x + B(x)
(
â(x) + b̂(x)u

)
(2)

y = C(x)

where A(·), B(·), C(·), â(x) and b̂(x) are known nonlinear
functions. Assuming that the control law designed for (2) is

u = b̂(x)−1 (K(x)− â(x)) (3)

the question is to what degree the solution for (2) can be
applied to the original nonlinear plant in (1) if â(x) and
b̂(x) do not closely approximate a(x, z, d) and b(x, z, d),
respectively?

A. Total Disturbance Rejection

We are particularly interested in the cases with significant
uncertainties, either in the dynamics of the plant or in the

2452



external disturbances, or both, where such close approxima-
tions do not hold. It is here that we introduce the notion of
the total disturbance.

The plant in (1) can be rewritten as

ẋ = A(x) + B(x)
(
â(x) + b̂(x)(u + f)

)
(4)

y = C(x)

where f , denoted as the total disturbance, represents both
the unknown dynamics that is internal to the plant and the
external disturbances, can be obtained as

f = b̂(x)−1
(
a(x, z, d)− â(x) + (b(x, z, d)− b̂(x))u

)
(5)

Now, if we take a leap of faith and treat f as a signal that
can be estimated from the input-output data of the plant, then
the closed-loop system will remain unaffected by the total
disturbance with a simple modification of the control law in
the form of

u = b̂(x)−1 (K(x)− â(x))− f̂ (6)

where f̂ is the real time estimate of f . Almost like a magic,
this idea works, as seen in one engineering application after
another. Recently theoretical analysis is also backing it up,
as shown later in the paper.

We take a moment to appreciate the importance of Han’s
work. He discovered, in 1995, that the internal disturbance
(uncertain dynamics) and external disturbances can be re-
jected all together in a simple and elegant way. He made
possible a new understanding that control problems are es-
sentially disturbance rejection problems and the disturbances
are best actively rejected instead of passively accommodated.
Furthermore, this new paradigmatic shift breaks down those
artificial boundaries between linear and nonlinear systems,
between time varying and time-invariant systems, and helps
us to identify a new set of fundamental principles, which
allows a new set of tools in dealing with the challenging
problems that we encounter in the real world.

B. Total Disturbance Estimation

To implement the solution (6), both x and f need to be
estimated, since x is generally not available for feedback. To
this end, Han proposed the ESO as the solution by making f
an extended state variable, rewriting the state equations, and
building a state observer. For the sake of clarity, we denote
the ESO as it is applied to the plant (4) TDE, as shown in
Figure 1.

Fig. 1. Estimation and Rejection of Total Disturbance

Given the nominal information A(x), B(x), C(x), â(x)
and b̂(x), a TDE is constructed as follows

˙̂x = A(x̂) + B(x̂)
[
â(x̂) + b̂(x̂)

(
u + f̂

)]

+L1 (ym − C(x̂)) (7)
˙̂
f = b̂(x̂)−1L2 (ym − C(x̂))

where L1 and L2 are observer gains to be selected. (Multiple
extended states can be constructed to estimate f and its
derivatives. Correspondingly, L2 may be a vector. For sim-
plicity, however, in this paper only one disturbance state is
used). ESO as it was originally proposed employs nonlinear
gains. Selections and parameterization of such gains were
addressed by Gao in [20]. Corresponding to (6), u0 in Figure
1 is given as

u0 = b̂(x̂)−1 (K(x̂)− â(x̂)) (8)

Note that all previous disturbance observers, including
UIO, DOB(POB), and DES can be formulated in the TDE
form. For UIO, this demonstrates that it not only estimates
the external disturbance, but also the unknown internal
dynamics; for DES, on the contrary, this illustrates that it
not only estimates the unknown internal dynamics, but also
the external disturbance. For DOB, although it is equivalent
to UIO in estimating f , its transfer function implementation
has the disadvantage of not allowing the state to be estimated
at the same time, limiting the choice of the control laws.
Regardless of the particular form of disturbance estimation,
these different disturbance rejection methods find a unifying
principle in ADRC, i.e. the disturbance is actively rejected
as opposed to passively accommodated. For this reason, they
can all be viewed as a particular implementation of ADRC.

If we treat (4) with f = 0 as the nominal model of the
plant, then TDE estimates whatever difference between it
and the actual plant. By estimating f and cancelling it out,
we allow the controller to be invariant in the presence of
uncertain dynamics and external disturbance and this is the
remarkable strength of active disturbance rejection.

IV. STABILITY ANALYSIS

In this section we provide a brief summary of stability
analysis results for various disturbance observers. For conve-
nience and clarity, they are presented in the TDE framework
and characterized according to the model used, the forms
of observer and controller, the methods of stability analy-
sis, the assumptions made, and the conclusions drawn. For
uniformity, the symbols in original papers may be changed.
Moreover, only the result for nth-order plant are presented
while less general work is briefly mentioned.

A. Stability Proof for External Disturbance Estimation and
Rejection

UIO and DOB are both designed to estimate external
disturbances, in state space and transfer function representa-
tions, respectively. In stability analysis of DOB, Bickel and
Tomizuka derive the conditions for the input/output stability
of a system representing a class of robotic manipulators
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and the asymptotic stability of the system without external
disturbance [21]; DOB is further extended to nonlinear plants
by Chen et. al and Back et. al, where stability robustness is
also studied [22], [23].

A stability analysis of UIO applied in vehicle steering
control is provided by Hahn et. al in [24]. UIO is also applied
in Fault Detection and Isolation with actuator faults chosen
as extra states, the dynamics of which are usually called
adaptive control law or adaptive algorithm in the adaptive
control context [25]. For example, Demetriou applies UIO
to 2nd-order systems and provides stability analysis [26].
Recently, Wang and Lum Apply multiple parallel UIOs,
corresponding to different models under the combination
of actuator faults, to determine the aircraft actuator fault
location and give a general-form stability analysis [27]. For
simplicity, only one of the three actuator fault types studied
in [27], the Lock in place , is presented here with the
simplification of the plant.

1) Plant Model/Nominal Model:
In the sense of disturbance estimation, suppose ith actuator

is locked, the system described in [27] is

ẋ = Ax + Biu + biū + Ed (9)
y = Cx

where x ∈ Rn, y ∈ Rr, d ∈ Rq, the vector u ∈ Rp represents
p actuators, ū ∈ R is the unknown constant lock value of
actuator i, A,B, C, E are known matrices representing the
plant without fault, Bi is B with ith column all zero, and bi

denotes the ith column of B.
The nominal model of the system is

ẋ = Ax + Biu (10)
y = Cx

2) Disturbance Definition:
The unknown input is defined as

f(u) = ū (11)

Note that the external disturbance d is not included in f
because the matrices selection (I − HC)E = 0 makes the
disturbance term cancelled in the estimation error dynamics
of the UIO in the following discussion, since A, B,C and
E are exactly known.

3) Observer/Controller:
With an augmented state f̂ to estimate the unknown lock

value of actuator i, a UIO is established as follows.

ẇ = Fw + GBiu + Gbif̂ + Kym (12)
˙̂
f = L2(ym − Cx̂)
x̂ = w + Hym

where w and x̂ are UIO state vector and plant state estimation
vector respectively, L2 is a gain matrix to be designed with
adaptive control method, and matrices F, G,K and H are
determined to make the UIO stable: (I −HC)E = 0, G =
I −HC, F = A−HCA−K1C, K2 = FH,K = K1 +K2,
and F is Hurwitz.

4) Stability Analysis:
Define e = x− x̂ and ∆f = ū− f̂ . After derivation, the

UIO estimation error dynamics is obtained as

ė = Fe + Gbi∆f (13)
∆ḟ = L2Ce + ˙̄u

Since ū is a constant during the faulted period, the stability
of the system depends on the gain matrix L2, which needs to

make
[

F Gbi

L2 0

]
Hurwitz. The Lyapunov’s direct method

is then used to determine the stability condition. Wang et al.
establish that the globally exponentially stability for the UIO
estimation error dynamics is guaranteed if
• The matrix A is Hurwitz.
• The estimation error of the locked position, ∆f = f−f̂ ,

is bounded and globally Lipschitz.
• The estimation error ∆f is persistently exciting (PE).

B. Stability Proof for Model Uncertainty Estimation and
Rejection

Chakrabortty and Arcak provide stability analysis for a
controller designed to estimate uncertain internal dynamics
in 2006 [28]. Actually, back to 1994, in the original DES
paper, Tornambe and Valigi also provide stability analysis
for a more general plant, presented as below[13].

1) PLant Model/ Nominal Model:
Consider a system

ẋ = Ax + B (a(x, z) + b(x, z)u) (14)
ż = g(x, z)
y = Cx

where x ∈ Rn, z ∈ Rm, y ∈ R, u ∈ R, and A,B, C
represents a nth-order cascaded integral plant.

The nominal model of the system is

ẋ = Ax + Bu (15)
y = Cx

2) Disturbance Definition:
The unknown input is defined as the discrepancy between

the nonlinear plant and its nominal model:

f(x, z, u) = ẋn − u = a(x, z) + (b(x, z)− 1)u (16)

3) Observer/Controller:
Assuming x1, · · · , xn are available, a DES is established

as follows.

ξ̇ = −βn−1ξ −
n−2∑

i=0

βixi+2

−βn−1

(
n−1∑

i=0

βixi−1 + u

)
(17)

f̂ = ξ +
n−1∑

i=0

βixi+1

where ξ and f̂ are DES state vector and model discrepancy
estimation respectively, βn−1 := σ (b(x, z)) µ (µ is a suitable
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positive constant and σ(x) is the sign of x), and βi, i =
0, · · · , n− 2 are arbitrary constants.

Eq. (17) is rather complex but it can similarly obtained by
simply passing the model discrepancy f(x, z, u) = ẋn − u
through a low pass filter of the form

˙̂
f = βn−1(f(x, z, u)− f̂) (18)

The idea of this DES is manipulating (18) with state
variable substitution so that the required available highest
order derivative of the output is y(n−1) instead of y(n).

With the model discrepancy estimated and rejected by

u = u0 − f̂ (19)

and the forced nth-order cascaded integral plant is regulated
by

u0 = −Kx (20)

where K is the controller gain vector to make the nth-order
cascaded integral plant Hurwitz.

4) Stability Analysis:
The Lyapunov’s direct method is employed to prove the

stability of the DES system. Because there is no external
input to the system by assumption, the asymptotic stability
is established with a lower bound of µ based on the following
assumptions.
• There exists a radially unbounded Lyapunov function

V (x, z) such that 1) V (0, 0) = 0, ∂V
∂ζ |ζ=0 = 0; 2)

∂V
∂x (A − BK)x + ∂V

∂z g(x, z) ≤ −‖ζ‖2 for the defined
compact domain, where ζ = [xT zT ]T .

• The function b(x, z) is continuous, always positive or
negative and norm-lower-bounded by a positive constant
b for the domain of interest

• The sign of b is known for the domain of interest.

C. Stability Proof for Total Disturbance Estimation and
Rejection (1)

Only the ESO-based control algorithms are designed with
the purpose of total disturbance estimation and rejection.
Zhou et. al formulate an nth-order system with ADRC
controller as a singular perturbation problem and applies
variation of Lyapunov’s direct method to prove the exponen-
tial stability of the system based on several assumptions [29].
In another paper on ADRC stability, Zheng et. al provide a
less conservative stability analysis [30], which is summarized
below.

1) Plant Model/Nominal Model:
Consider a system

ẋ = Ax + B (a(x, d) + bu) (21)
y = Cx

where x ∈ Rn, y ∈ R, u ∈ R, d ∈ R, A,B, C represent a
plant of n cascaded integrators, a(·) is an unknown nonlinear
function, and b is an unknown constant.

The nominal model of the system is

ẋ = Ax + Bb̂u (22)
y = Cx

where b̂ is the nominal value of b.

2) Disturbance Definition:
The total disturbance to be estimated is

f(x, d, u) = b̂−1
(
a(x, d) + (b− b̂)u

)
(23)

Based on the fact that b can be determined accurately in
some application, b̂ is assumed to be equal to b. Thus the
total disturbance is

f(x, d) = b−1a(x, d) (24)

3) Observer/Controller:
With an extended state defined as xn+1 = bf(x, d), the

system (21) can also be written in augmented state space
form:

ẋ = Āx + B̄bu + Eḟ (25)
y = C̄x

where Ā =
[

A B
0 0

]
, B̄ =

[
B
0

]
, E =

[
0
B

]
, and

C̄ =
[

C 0
]

Let states x1, · · · , x̂n+1 estimate x1, · · · , xn+1 respec-
tively, an ESO is constructed:

˙̂x = Āx̂ + B̄bu + L(ym − C̄x̂) (26)

where L = [ L1

L2
] is the ESO gain vector, and the total

disturbance estimate is f̂ = b−1xn+1. (Note here the
augmented state space form of the ESO is equivalent to the
form in (7))

The total disturbance is rejected by (19) and then the
forced nominal plant is stabilized by

u0 = b−1 (−Kx̂) (27)

4) Stability Analysis:
By applying Lyapunov’s direct method, Zheng et. al

establish the asymptotic stability condition for both the ESO
estimation error and the system tracking error based on the
following assumptions
• f(x, d) is given.
• ḟ(x, d) is globally Lipschitz with respect to x.
By solving the state space equations, Zheng et. al also

establish the boundedness of the ESO estimation error and
the system tracking error without the above assumptions.
Furthermore, it is established that the upper bounds of both
errors are functions of ωo and ωc assuming
• ḟ(x, d) is bounded.

D. Stability Proof for Total Disturbance Estimation and
Rejection (2)

The latest stability analysis for total disturbance esti-
mation and rejection is provided by Freidovich and Khalil
[12]. In this work the ESO is applied in the framework of
the Nonlinear High-gain Observer (NHO) [31] to form an
ENHO.
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1) Plant Model/Nominal Model:

ẋ = Ax + B (a (x, z, d) + b (x, z, d) u) (28)
ż = g (x, z, d)
y = Cx

where x ∈ Rn, z ∈ Rm, u ∈ R, y ∈ R, d ∈ Rp, and A,B, C
represent a plant of n cascaded integrators (in [12], a and b
are exchanged).

The nominal model of the system is

ẋ = Ax + B
(
â(x) + b̂(x)u

)
(29)

y = Cx

2) Disturbance Definition:
The definition of the extended state in [12] can be seen in

the conclusion section: perturbation due to model uncertainty
and disturbance. According to the notion of TDE, this
extended state is equivalent to the total disturbance:

f(x, z, d, u) = b̂(x)−1 (∆a + ∆bu) (30)

where ∆a = a(x, z, d) − â(x), ∆b = b(x, z, d) − b̂(x). (in
[12] the extended state σ = b̂−1f )

3) Observer/Controller:
The ENHO in TDE form is

˙̂x = Ax̂ + B
[
â(x̂) + b̂(x̂)(u + f̂)

]

+L1(ym − Cx̂) (31)
˙̂
f = b̂(x̂)−1L2(ym − Cx̂)

where â, b̂ are approximations of a, b, and L1 and L2 are
chosen to make eigenvalues of the observer in LHP.

The total disturbance is rejected by (19) and then the
forced nominal plant is stabilized by

u0 = b̂(x̂)−1 (−Kx̂− â(x̂)) (32)

4) Stability Analysis:
The plant and the observer error dynamics are formulated

as a singularly perturbed system. By applying variation of
Lyapunov’s direct method, Freidovich and Khalil establish
the BIBS stability of the system with an lower bound of ωo

based on the following five assumptions.
• The vector d belongs to a known compact set and its

derivative is bounded.
• a, b are continuously differentiable and their derivatives

are locally Lipschitz; b ≥ b0 with a known b0 > 0, and
g is locally Lipschitz.

• The unobservable state dynamics in (28) is BIBS stable
(in original NHO paper [31], this part represents the
zeros of the system).

• The infinity norm kb = max
(x,z)∈Ωc,d∈D

∣∣∣ ∆b
b̂(x)

∣∣∣ < 1
‖G(s)‖∞ ,

where G(s) = αn+1
sn+1+α1sn+···+αn+1

.
• The initial states of the system and the observer are

inside the defined compact set.
The conclusion that the system error norm approaches 0

as ωo → ∞ is then established. Freidovich and Khalil also
give the conditions for the asymptotic stability of the system
when d is a constant.

E. Stability Analysis Comparison

Although presented in the same framework of TDE,
the stability analyses and conclusions of the disturbance-
observer-based control approaches briefly summarized in this
section are quite different from and not well connected to
each other. This is partly due to the fact that researchers have
not recognized that there is a common principle of TDE that
ties all their work together and they, for the most part until
very recently, worked mostly in isolation. And this makes it
rather a challenging task to present different work from the
past cohesively. Nonetheless, we try to highlight the unique
features of stability analysis carried out under various names,
such as UIO, DES, ESO, and ENHO. To this end, a brief
summary is shown in Table I, where we try to differentiate
each study with regard to 1) the type of plant considered, 2)
a priori information needed for analysis, 3) the assumptions
made, and 4) conclusions drawn, as listed in the left column
of the table.

In summary, the stability analyses for UIO and DES
presented above focus on the constant input disturbance
rejection and internal unknown dynamics rejection, respec-
tively. Their exponential and asymptotic stability assessments
are obtained with the assumptions of no unknown internal
dynamics and no external disturbance, respectively, which
makes their results applicable to a rather narrow range of
problems.

The stability analysis carried out in ESO and ENHO
concerns with the total disturbance and is more general.
Between them, the ESO stability analysis focuses on the
practical aspects (assuming, as the case in the real world, the
parameter b is normally a constant with a small amount of
uncertainties), and obtains the stability condition premised
upon the boundedness of ḟ , which is again a reasonable
assumption in physical systems. Furthermore, the study es-
tablishes a clear connection between the bandwidth of ESO
and the upper bound of the estimation error, which helps
the users to tune observer in practice. The ENHO stability,
on the other hand, concerns with a more general scenario
where b(·) is an nonlinear function and where there may
exist unobservable states, with the trade-off that the stability
constraints are perhaps a little more conservative and less
intuitive.

TABLE I
MAIN RESULT SUMMARY OF THE DIFFERENT DISTURBANCE OBSERVERS

UIO DES ESO ENHO
Plant linear d = 0 b constant -
f(·) f(u) f(x, z, u) f(x, d) f(x, z, d, u)

Info A, B, C, E system system â(·), b̂(·) ,
needed order, b̂ order system order
Assump A Hurwitz; z is stable; ḋ bounded;

-tions ∆f is PE, b(·) ≥ b0; ḟ(·) a(i), b(i)

bounded, sign(b) is is bounded smooth;
Lipschitz known z b.s

Conclu observer system system system
-tion error g.e.s error a.s b.s b.s

a.: asymptotically, b.: BIBS, e.: exponentially, g.: globally, s: stable
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V. CONCLUDING REMARKS

In this paper we traveled back in time and discovered
what has happened in the history of control pertaining to
disturbance estimation and rejection. We found a field of
ups and downs, dating back to 1829. It is a field that is still
quite disjoint in recent times with progress far and few in
between and researchers often not aware of either past or
current results in the same field. By providing a unifying
framework in this paper, in the form of total disturbance
estimation and active disturbance rejection, it is our hope
that past results can be meaningfully brought together and
surveyed, making it possible to find connections among each
other, to distinguish redundancies from novelties, and to
share the knowledge gained.

In the process, we believe that we come up on an al-
ternative paradigm to address the pressing issues of control
practice, particularly the ones involving large amount of
uncertainties. Perhaps the total disturbance estimation and
rejection framework formulated here could go a long way
in helping practitioners thinking through the problems and
finding solution and in helping theoreticians finding an excit-
ing field of research that full of intriguing problems, such as
how much uncertainty can be estimated and rejected based
on the input-output data of a plant, under what conditions
stability of such systems are assured, etc.
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