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Abstract— This paper is concerned with the output tracking

control problem for a class of nonlinear switched cascade

systems with external disturbances under some average dwell-

time based switching laws. The problem is solved based on the

variable structure control technique and the characteristic of

the system. The variable structure controllers and the average

dwell-time are designed under which the output of the closed-

loop switched system can follow the desired output exactly

after a finite time internal and all the states remain globally

bounded. And the effectiveness of the proposed design approach

is illustrated with simulation results.

I. INTRODUCTION

Variable structure control with sliding model control has

developed into a general design method being examined for

a wide spectrum of system types, which is characterized by

a discontinuous control that changes structure on reaching

a sliding surface. And the objective of variable structure

control has been greatly extended from stabilization to other

control functions. This control method can make the system

completely insensitive to parametric uncertainty and external

disturbances. Today, research and development continue to

apply variable structure control to a wide variety of engi-

neering systems.

On the other hand, a large class of natural and man-made

systems are often governed by several dynamical modes.

The interchange between modes is often determined by

time t and state x or based on some environmental factors

that are not predicted a priori. Such a system is called a

switched system, which is a special kind of hybrid system

that consists of a family of continuous time or discrete-

time dynamical systems and a rule called the switching
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signal to control the switching between modes. An important

qualitative property of such systems is stability [1-10]. The

challenge to analyze the stability of switched systems lies

partly in the fact that even if the individual systems are stable,

the switched system might be unstable. [2] showed that when

all modes are exponentially stable the entire switched system

is exponentially stable under any switching signal if the time

between two successive switchings, called the dwell time, is

sufficiently large. Later, [3] extended the dwell time approach

to the concept of average-dwell time. Then, [4] used this

average-dwell time approach to achieve the same stability

result where the family of modes was enlarged to include

unstable modes. [5] used the concept to analyze the stability

of general switched nonlinear systems. Besides this method,

many other methods had been reported, like common Lya-

punov function method [6,7], multiple Lyapunov function

method [8], switched Lyapunov function method [9], convex

combination method [10], and so on. And all these methods

are summarized in the books [11, 12].

In addition to the stability analysis problem for switched

systems, many other problems such as controllability and

reachability problems [13, 14], robust H∞ control problems

[15, 16], passivity [17] have been extensively investigated.

However, as a valuable problem which have great practical

significance, little attention has been paid to tracking control

problem for switched systems.

In fact, switched systems are a certain kind of variable

structure systems. Therefore, sliding modes may exist on

the switching surfaces, which we usually prefer them not to

happen. But, there still have existing results enforcing sliding

mode occurring for switched systems such that the system

possess certain desirable properties such as insensitivity to

parameter variations and external disturbances [18, 19].

In this paper, we consider the robust output tracking

control problem via variable structure control strategy for a

class of disturbed nonlinear switched cascade systems under

some average-dwell time based switching laws. Sufficient

conditions for the solvability of the problem are given in

the paper. The piecewise Lyapunov functions and a common
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sliding surface are constructed. Based on the characteristic

of the switched system, the switched variable structure

controller and the average dwell-time are designed, which

guarantees that the states of the corresponding disturbed

closed-loop system remain globally bounded and the output

of the system can follow the desired signal exactly after a

finite time interval.

Notation: We use standard notations throughout this pa-

per. Given a real matrix M , MT denotes the transpose of

M . I is an identity matrix whose dimension is implied from

context. λmax(P ) and λmin(P ) denote the maximum and

minimum eigenvalues of P . ‖·‖ denotes the Euclidean norm.

Rn denotes the n-dimensional real Euclidean space. Rm×n

is the set of all real m × n matrix.

II. PROBLEM STATEMENT

We consider the nonlinear switched cascade systems de-

scribed by














ż = fσ(z, ξ),

ξ̇ = Aσξ + B
[

Gσ(z, ξ)uσ + Fσ(z, ξ)
]

,

y = Cξ,

(1)

where z ∈ Rn−d, ξ ∈ Rd are the states; y ∈ Rm is the

measurable output; σ : [0,∞] → IN = {1, . . . , N} is the

switching signal which will be determined later, and σ(t) = i

means that the ith subsystem is activated; ui(t) ∈ Rm is the

control input; Fi(z, ξ) represents the external disturbances;

Ai, Bi are known matrices; fi(z, ξ), Gi(z, ξ) are known

smooth vector fields with appropriate dimensions. Further,

det(Gi(z, ξ)) 6= 0 for ∀ [zT , ξT ]T ∈ Rn, fi(0, 0) = 0.

In this paper, we need the following assumptions.

Assumption 1: Matrix B is of full column rank, and m < d.

Assumption 2: The Matrix CB is nonsingular.

Assumption 3: ‖Fi(z, ξ)‖ ≤ ρi(t), i ∈ IN for some known

continuous and uniformly bounded functions ρi(t).

The basic assumption on the reference trajectory yd is as

follows.

Assumption 4: The reference trajectory yd is piecewise

differentiable. Additionally, there exist known constants Y1

and Y2 such that

‖yd(t)‖ ≤ Y1, ‖ẏd(t)‖ ≤ Y2, ∀t ∈ [0,∞).

Remark 1. Assumptions 1∼3 are assumptions that are

usually made in the variable structure control. Similarly, As-

sumption 4 is the usual assumption made when the tracking

control problem is considered.

We now state the output tracking control problem for

switched system (1).

The output tracking control problem: Find, if possible a

switching law σ and an output feedback controller uσ =

ασ(z, ξ) such that the following two facts are true:

(i) limt→+∞(y(t) − yd(t)) = 0;

(ii) the state (z, ξ) of the closed-loop system (1) is globally

bounded.

Our objective is to solve the output tracking control

problem with variable structure output feedback.

The following Definition and lemma will be used in the

development of our results.

Consider the general nonlinear system

ẋ = f(x, u), (2)

where x ∈ Rn is the state, u ∈ Rp is the input, f(x, u) is a

smooth vector and satisfies f(0, 0) = 0. Denote ‖| · |‖ as the

essential supremum norm in the functional space Lp
∞

, i.e.,

‖| u |‖= sup{‖u(t)‖, t ≥ 0} < ∞.

Definition 1 [20]: System (2) is input-to-state stable if and

only if there exist a proper, positive definite and radially

unbounded function V (x) such that for some class K∞

functions γ, η we have

∂V (x)

∂x
f(x, u) ≤ −η(‖x‖) + γ(‖u‖), ∀x, u.

Consider the nonlinear switched system

ẋ = fσ(x, v), (3)

where σ is the switching signal as given in the description

of system (1), fi(x, v) are smooth vector fields, the set of

measurable functions v : [0, ∞) → Rl is the input.

Lemma 1 [21]: Suppose that there exist continuous dif-

ferentiable functions Vp : Rn → [0,∞), p ∈ IN , class

K∞ functions α1, α2, γ, and numbers λ0, µ ≥ 1 such that

∀x ∈ Rn, v ∈ Rl, and ∀p, q ∈ IN , we have

α1(‖x‖) ≤ Vp(x) ≤ α2(‖x‖), (4)

∂Vp

∂x
fp(x, v) ≤ −λ0Vp(x) + γ(‖v‖), (5)

Vp(x) ≤ µVq(x), (6)

Let σ be a switching signal having average dwell-time τa.

Then, the switched nonlinear system (3) is input-to-state

stable if τa > ln µ
λ0

.

III. MAIN RESULTS

For a vector ǫ = [ǫ1, · · · , ǫd] ∈ Rd, define

sgn ǫ = [sgnǫ1, sgnǫ2, . . . , sgnǫd]
T .
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Let

{(tk, ik), |ik ∈ IN ; k = 1, 2, . . . , Nσ(0, t);

0 = t1 ≤ t2 ≤ · · · ≤ tNσ(0,t) ≤ T}

be the switching sequence in the interval [0, T ) that is

generated by the switching signal σ, and Nσ(0, T ) is the

number of switchings that occur during [0, T ).

Theorem 1: Suppose Assumption 1∼4 are satisfied and that

(i) there exist smooth positive definite functions Gi, i ∈ IN ,

class K∞ functions β1, β2, γi, and positive numbers α1i,

α2i, α3, λ0i, µz ≥ 1 such that for ∀z ∈ Rn−d, ξ ∈ Rd, and

∀i, j ∈ IN , we have

β1(‖z‖) ≤ Gi(z) ≤ β2(‖z‖), (7)

∂Gi(z)

∂z
fi(z, ξ) ≤ −λ0iUi(z) + γi(‖ξ‖), (8)

Gi(z) ≤ µzGj(z). (9)

(ii) there exist positive definite matrix Q, a matrix N and a

positive scalar ϑ such that the following inequalities

AiQ + QAT
i + BN + NT BT + ϑQ + I < 0, (10)

BT Q−1 = C, (11)

hold.

Let

e(t) = (CB)−1[y(t) − yd(t)]. (12)

Then, under an arbitrary switching law satisfying the

average dwell-time

τa ≥ τ∗

a =
lnµz

λ
and t2 ≥ td, (13)

where λ ∈ (0, λ0), λ0 = min{λ0i | i = 1, 2, · · · , N}, td is

a certain positive constant that can be calculated later. The

variable structure controller

ui = −G−1
i (z, ξ)

[

(CB)−1CAiξ + κ1e + (κ2 + ρ(t))sgne

−(CB)−1ẏd(t)
]

, (14)

where κ1 and κ2 are two positive constants, will solve the

output tracking problem for the corresponding closed-loop

system (1).

Proof: The proof is divided into two parts. First of all, we

will show that the output y(t) of (1) can follow exactly the

desired signal yd(t) after a finite time interval. Then, we

will show that the state of (1) is globally bounded under the

average-dwell time based switching laws.

We first give the proof for the first part. Let ρ(t) =

max{ρi(t) | i = 1, 2, · · · , N}. The derivative of e(t) along

the trajectory of system (1) with (15) is

ė(t) = (CB)−1[ẏ(t) − ẏd(t)]

= (CB)−1[Cξ̇ − ẏd(t)]

= (CB)−1CAiξ +
[

Gi(z, ξ)ui + Fi(z, ξ)
]

−(CB)−1ẏd(t)

= −κ1e − (κ2 + ρ(t))sgne + Fi(z, ξ).

For any p = 1, 2, · · · ,m. When ep > 0 we can get

ėp(t) = −κ1ep − (κ2 + ρ(t))sgnep +
(

Fi(z, ξ)
)

p

≤ −κ1ep − κ2 − ρ(t) + ‖
(

Fi(z, ξ)
)

p
‖

≤ −κ1ep − κ2 − ρ(t) + ‖
(

Fi(z, ξ)
)

‖

≤ −κ1ep − κ2. (15)

Similarly, when ep < 0, we have

ėp(t) = −κ1ep − (κ2 + ρ(t))sgnep +
(

Fi(z, ξ)
)

p

≥ −κ1ep + κ2 + ρ(t) − ‖
(

Fi(z, ξ)
)

p
‖

≥ −κ1ep + κ2 + ρ(t) − ‖
(

Fi(z, ξ)
)

‖

≥ −κ1ep + κ2. (16)

It can be seen from (15) and (16) that all ep, p =

1, 2, · · · ,m, will arrive at zero in finite time interval and

be kept here thereafter. Denote the time instant that all ep

hit zero as td.

Now, we proceed to prove the second part. Firstly, we will

prove that the state ξ of the second part subsystem of system

(1), i.e.

ξ̇ = Aσξ + B
[

Gσ(z, ξ)uσ + Fσ(z, ξ)
]

, (17)

is globally bounded under switching laws satisfying the

average dwell-time (13).

View ynd = [yT
d , ẏT

d ]T as the new input for the closed-

loop system (14), (17), let P = Q−1, K = NP , it is easy

to verify that (10) is equivalent to

PAi + AT
i P + PBK + KT BT P + ϑP + P 2 < 0. (18)

Choose

V (ξ) = ξT Pξ (19)

as the common Lyapunov function candidate for system (17).

Where P is the common solution P of (18).

Then, based on (11) and (18), when σ = i, the derivative

of V (ξ) along the trajectory of (17) is

V̇ = ξT (AT
i P + PAi)ξ + 2ξT PB[Gi(z, ξ)ui + Fi(z, ξ)]

= ξT (AT
i P + PAi + PBK + KT BT P )ξ

+2ξT CT [Gi(z, ξ)ui + Fi(z, ξ) − Kξ]

≤ −ϑξT Pξ − ξT P 2ξ + 2yT [Gi(z, ξ)ui

+Fi(z, ξ) − Kξ].

1785



Let δ = λmin(P 2), then, from (14), we have

V̇ ≤ −ϑV (ξ) − δ‖ξ‖2 + 2yT [−(CB)−1CAiξ − κ1e

−(κ2 + ρ(t))sgne + (CB)−1ẏd(t) + Fi(z, ξ) − Kξ].

Based on Assumption 3, ‖yd‖ ≤ ‖ynd‖, ‖ẏd‖ ≤ ‖ynd‖

and y = yd when t ≥ td, we can find positive constants ̟1,

̟2, ̟3, such that

V̇ ≤ −ϑV (ξ) − δ‖ξ‖2 + ̟1‖ynd‖‖ξ‖ + ̟2‖ynd‖
2

+̟3‖ynd‖

≤−ϑV (ξ) − δ
(

‖ξ‖ −
̟1

2δ
‖ynd‖

)2
+

(

̟2 +
̟2

1

4δ

)

‖ynd‖
2

+̟3‖ynd‖

≤−ϑV (ξ) +
(

̟2 +
̟2

1

4δ

)

‖ynd‖
2 + ̟3‖ynd‖, ∀t ≥ td.

Let χ(‖ynd‖) =
(

̟2 +
̟2

1

4δ

)

‖ynd‖
2 + ̟3‖ynd‖, we know

that V (ξ), χ(‖ynd‖) are class K∞ functions. It is easy to

know that the closed-loop system (14), (17) is input-to-

state stable with respect to the new input ynd when t ≥ td

under arbitrary switching laws. So, under the switching laws

satisfying the average dwell-time (13), it is also input-to-state

stable with respect to the new input ynd when t ≥ td. By

virtue of Assumption 4, we can conclude that ynd is bounded.

Thus, the global boundedness of ξ under the switching laws

satisfying the average dwell-time (13) when t ≥ td follows

from the property of input-to-state stability.

When t ≤ td, noticing that all the switched subsystems

of closed-loop system (14), (17) are globally Lipschitz for a

given bounded ynd, therefore, the state ξ has no finite escape

time when t ∈ [0, td] for arbitrary switched subsystems. So,

when t ∈ [0, td], the state ξ has no finite escape time either

under arbitrary switching laws satisfying the average dwell

time (13) for the closed-loop system (14), (17) no matter

which subsystem is activated firstly.

The above analysis shows that the state ξ is globally

bounded for the closed-loop switched subsystem (14), (17)

under an arbitrary switching law satisfying the average dwell

time (13).

From (7)∼(9) and Lemma 1, it is easy to see that the z-

part of system (1) is input-to-state stable with regard to ξ

under arbitrary switching laws satisfying the average-dwell

time

τa1
≥ τ∗

a1
=

lnµz

λ0
, λ0 = min{λ0i | i = 1, 2, · · · , N}.

(20)

As the designed average dwell-time (13) is a special case of

(20), it is easy to know that the z-part of system (1) is also

input-to-state stable with regard to ξ under arbitrary switch-

ing laws satisfying the average-dwell time (13). Similarly,

from the input-to-state stable theory, we know that the state

z is also globally bounded under the designed switching law

(13).

Remark 2: It is pointed out in the proof of Theorem

1 that the state ξ has no finite escape time for arbitrary

switched subsystems of system (1) when t ≤ td. However,

if switchings occurs during 0 ≤ t ≤ td, the state ξ of the

switched system (1) would have finite escape time. So, we

let t2 ≥ td in order to guarantee the boundedness of the state

ξ of the switched system (1).

IV. EXAMPLE

Consider the switched system:














ż = fσ(z, ξ),

ξ̇ = Aσξ + B
[

Gσ(z, ξ)uσ + Fσ(z, ξ)
]

,

y = Cξ,

(21)

where

f1 = −z5 − 2z + ξ2, f2 = −z3 − z + ξ1, G1 = 6 + ξ2
1 ,

G2 = 2 + ξ2
2 , F1 = 0, F2 = 0.06 cos t,

A1 =

[

−2 0

0 1

]

, A2 =

[

−4 0

−2 −5

]

, B =

[

0

4

]

,

Let ϑ = 1. Solving the matrix inequality (10), we can

obtain

P =

(

0.2291 0.6872

0.6872 2.7490

)

, N = [0, − 13.205].

Then, from (11), we know that C = [2.7490, 10.9959]. Thus,

we have y = 2.7490ξ1 + 10.9959ξ2.

Choosing yd = cos 10t, ρ1(t) = 0, ρ2(t) = 0.06, we can

calculate that e = −ξ1 + ξ2 + yd, td = 1.23.

For the z-part of system (21), select G1(z) =
1
2z2, G2(z) = z2. Simple calculation shows that λ01 =

λ02 = 1.5, γ01(‖ξ‖) = ξ2
2 , γ02(‖ξ‖) = ξ2

1 , µz = 2. Choose

λ = 1 < λ0 = 1.5, the average-dwell time that the switching

laws satisfied is

τa ≥ τ∗

a = 0.69. (22)

Design the switched variable structure controller for sys-

tem (21) as

u1 = −
1

6 + ξ2
1

[−0.125ξ1 + 0.25ξ2 + 0.0227e

+0.01sgne + 0.227 sin 10t],

u2 = −
1

2 + ξ2
2

[−0.75ξ1 − 1.25ξ2 + 0.0227e

+0.07sgne + 0.227 sin 10t],

where κ1 = 1, κ2 = 0.01.
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Let the initial state be [1, 0.8, 0] and t2 ≥ 1.23. Fig.

1, Fig. 2 and Fig. 3. show the simulation results using the

proposed method. Fig. 1 and Fig. 2 indicate that the output

of system (21) with the designed variable controller can track

the desired signal yd reasonably and all the states of system

(21) remain uniformly bounded under the designed average-

dwell time based switching law. Fig. 3. shows that the length

of the first switching time interval of the designed switching

law is bigger than 1.23, which is in accordance with (13).
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Fig.1. The state response of the closed−loop switched system.
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V. CONCLUSIONS

In this paper, we have studied the robust output tracking

control problem for a class of nonlinear switched cascade

systems with external disturbances under some average-

dwell time based switching laws. Based on the structural

characteristic of the system, a sliding surface and a switched

variable structure controller are designed. The states of the

corresponding disturbed closed-loop system remain globally

bounded and the output of the system can follow the desired

signal exactly after a finite time interval under the designed

switching law. An example is given out to demonstrate the

design procedure of our approach. Simulation results show

that the goal of output tracking can be achieved by the

approach.
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