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Abstract— In the study of vapor compression cycle, momen-
tum balance equation is often ignored in the heat exchanger
model. In this paper, we investigate the effect of the momentum
balance through a systematic study of the open loop stability
of a heat exchanger. We consider 1-D fluid flow in a pipe
in four cases of increasing complexity the most general case
corresponds to the heat exchanger model: 1. incompressible flow
without heat transfer; 2. incompressible flow with heat transfer;
3. compressible flow without heat transfer; 4. compressible flow
with heat transfer. Among the three balance equations, mass,
momentum, and energy, case 1 involves only the momentum,
case 2 involves both momentum and energy, case 3 involves
mass and momentum, and case 4 requires all three equations.
It is shown that in cases 1, which corresponding to the
incompressible flow without heat input, the system is lumped
and always stable, and in cases 2, 3 and 4, the system is
stable if and only if the equilibrium flow velocity is sufficiently
high. Finite difference approximation and linearization of the
dynamic models are used for local stability evaluation in case
3 and 4. The overall cycle analysis as well as a simulation
example is also included. The result of this study now forms
the foundation to investigate the open loop stability and closed
loop control design for vapor compression cycles used in HVAC
and electronic cooling systems.

I. INTRODUCTION

Vapor compression cycles (VCC) have been widely ap-

plied in various industrial and household thermal-fluid pro-

cesses, such as air-conditioning and refrigeration systems

[1], [2]. Recently, the refrigeration cycle has been used for

the purpose of high-power microelectronics cooling [3]. In

general, the highly-integrated chips are compactly assembled

with high-density thermal energy generation, and their peak

heat fluxes are expected to reach up to 1 kW/cm2. This

will lead to critical heat dissipation problems. Transient

simulation is another critical concern for plant operation and

optimization [1], [2], [4], [5]. To improve the cooling capa-

bility and efficiency of the whole refrigeration system, it is

desirable to investigate novel dynamic thermal management

methods at the system level. These can be used to obtain

insightful understanding of the vapor compression cycle op-

eration. A reliable dynamic model can also be used to predict

large transient behavior during system start-up/shutdown [6],

[7] and to avoid potentially harmful operating conditions.

Due to the large inertia of heat and mass transfer pro-

cesses, the evaporator and condenser are generally treated

as dynamic components. These transient heat exchangers

play dominant roles in the overall system since they usually

retain most of the active refrigerant charge in the cycle. To
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develop a low-order heat exchanger model with appropri-

ate accuracy, the lumped-parameter moving-boundary (MB)

method is employed [8]. It assumes mean void fraction

in heat exchangers to be time-invariant, simplifying the

challenging problem from the transient momentum conser-

vation. It should be noted that the assumption of time-

invariant mean void fraction is only demonstrated to be

valid for complete evaporation or condensation. A moving-

boundary (MB) formulation with a simple set of ordinary

differential equations is given in [9] for dynamic simulation

of refrigeration system, including the superheat vapor, two-

phase, and subcooled liquid zones. However, the three-

zone evaporator model is only valid over small variations

in operating conditions. The advanced moving-boundary

models with switching policy may obtain better accuracy and

robustness in wide transient operation range [10]. During the

vapor compression system start-up or shut-down processes,

the drastic dynamics changes will drive the above three zones

to form or disappear correspondingly [4]. Instead of the

traditional moving boundary methods, the finite volume (FV)

formulation is another kind of dynamic modeling approach,

which is verified to be more robust through start-up and all

load-change transients of a centrifugal chiller. In addition, the

FV model has better charge prediction ability compared with

the homogeneous two-phase assumption of MB model. The

disadvantage is that FV model executes three-times slower

than MB with similar accuracy [6].

Nevertheless, none of the above dynamic models has

included the full conservation equations, especially the mo-

mentum balance. The pressure drop in heat exchangers is

neglected in both the MB and FV models. In fact, it is

important to include the momentum balance in electronics

cooling, where microchannels are commonly used and signif-

icant pressure drop is observed in microscale heat exchangers

[11]. In this paper, we try to study the flow system with

increasing complexity, from the simplest incompressible flow

without heat input to the complex compressible flow with

heat input. Eventually, the comprehensive heat exchanger

dynamics, including the full mass balance, energy balance,

and momentum balance equations, is under investigation.

A set of analytical stabilizing conditions can be explicitly

obtained. With the inlet boundary conditions, the open-loop

stability of heat exchanger is shown to be relevant to its

fluid flow velocity. A numerical simulation example is finally

presented to demonstrate the corresponding stability results.

II. GENERAL HEAT EXCHANGER DYNAMICS

Heat exchangers, including evaporator and condenser, are

the key dynamic components in a vapor compression refrig-
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eration cycle. Without loss of generality, the comprehensive

conservation principles for refrigerant flow can be formulated

as the following set of partial differential equations.

Mass Balance:

∂ρA

∂t
+

∂ṁ

∂z
= 0 (1)

Momentum Balance:

∂ṁ

∂t
+

1

A

∂(ṁ2/ρ)

∂z
+

∂PA

∂z
+ Fvisc = 0 (2)

Energy Balance:

∂[ρA(u + υ2/2)]

∂t
+

∂[ṁ(u + υ2/2) + PAυ]

∂z
−

q

L
= 0 (3)

where ṁ is the mass flowrate, ṁ = ρAυ, q is the refrigerant

heat gain from the hot side, Fvisc is the friction force due

to fluid viscosity, Fvisc = πDτ for circular channels.

For a horizontal heat exchanger, the specific total energy

e = u + υ2/2, the mass flux w = ρυ, and defining ξ =
ρe, the full refrigerant dynamics can be characterized by the

following equations:

Mass Balance:
∂ρ

∂t
= −

∂w

∂z
(4)

Momentum Balance:

∂w

∂t
= −

∂(w2/ρ + P )

∂z
−

4τ

D
(5)

Energy Balance:

∂ξ

∂t
= q′ −

∂[w(ξ + P )/ρ]

∂z
(6)

where the specific heat gain from outside, q′ = q
AL

, the

kinetic energy term υ2/2 compared with the enthalpy is

usually negligible and thus ignored in most cases [1], [2],

[4], [5]. Here for the simplicity of analysis, assuming there

exists the homogeneous friction stress τ = f
2 ρυ2 = fw2

2ρ

for two-phase flow. The detailed friction stress correlations

for both the single and two-phase flows are given in the

Appendix or the reference [11].

Since there are three first order spatial derivatives, there

needs to be three boundary conditions in general

g







ρ(t, 0)
w(t, 0)
ξ(t, 0)


 ,




ρ(t, L)
w(t, L)
ξ(t, L)





 = 0. (7)

In addition, the wall energy balance may also be included

in the comprehensive heat exchanger dynamics,

CwMw

∂Tw

∂t
−

∂qin

∂z
+ UrπD(Tw − Tr) = 0. (8)

where Ur is the heat transfer coefficient between the refriger-

ant and wall, then q′ in (6) reads 4Ur(Tw −Tr)/D. Here the

Boelter, Gnielinski and Petukhov correlations are employed

for the single-phase boiling, while Kandlikar correlation is

used for two-phase nucleate and convective boiling [11]. As

for the condensation, the Shah’s correlation is used for the

prediction of heat transfer coefficient [12].

A. Linearized Heat Exchanger Dynamics

To analyze the stability of the heat exchanger about

an operating point, consider a specific operating condition

(ρ∗, w∗, ξ∗) corresponding to a constant heat input q′. Since

the system is at a steady state, the equilibrium condition

satisfies:

∂w∗

∂z
= 0

∂(w∗2/ρ∗ + P ∗)

∂z
+

4τ∗

D
= 0 (9)

∂(w∗(ξ∗ + P ∗)/ρ∗)

∂z
= q′.

with the linearized boundary condition from (7):

D0




ρ∗(0)
w∗

ξ∗(0)


 + D1




ρ∗(L)
w∗

ξ∗(L)


 = c (10)

where D0 and D1 are two constant 3×3 matrices, and c is a

3×1 constant vector. Note that w∗ is constant throughout the

heat exchanger, but ρ∗ and ξ∗ are possibly spatially varying

(i.e., dependent on z).

Linearize the 3 balance equations (4)–(6) about

(ρ∗, w∗, ξ∗), and write the equations in terms of the

deviation from the equilibrium, ρ̃ := ρ − ρ∗, w̃ := w − w∗,

ξ̃ := ξ − ξ∗, we get the third order convective equation

with spatially varying coefficients and coupled boundary

conditions:

∂X (t, z)

∂t
=

∂A(z)X (t, z)

∂z
+ E(z)X (t, z) (11)

D0X (t, 0) + DLX (t, L) = 0

where

X =
[

ρ̃ w̃ ξ̃
]T

,

A =




0 −1 0

(w∗2

ρ∗2 − ∂P∗

∂ρ
) −2w∗

ρ∗
−∂P∗

∂ξ
w∗

ρ∗
( ξ∗+P∗

ρ∗
− ∂P∗

∂ρ
) − ξ∗+P∗

ρ∗
−w∗

ρ∗
(1 + ∂P∗

∂ξ
)




E =




0 0 0

− 4
D

∂τ∗

∂ρ
− 4

D
∂τ∗

∂w
0

0 0 0


 .

B. Finite Difference Discretization

We now return to the original equation (11). There are

many possible discretization schemes, from the Galerkin

approximation to finite element method. In this paper, we

approximate ∂
∂z

using a simple finite differencing scheme.

Let Xi = X (i∆z), ∆z = L/N . Using backward differenc-

ing, the approximation of (11) becomes:

Ẋi = AiXi − Ai−1Xi−1 + EiXi (12)

where Ai = A(i∆z)/∆z, Ei = E(i∆z) and the boundary

condition is D0X0 + DLXN = 0. In general, let D⊥ be a

matrix whose columns form a basis for the null space of[
D0M DLM

]
:

[
D0M DLM

]
D⊥ = 0. (13)
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More explicitly, the spatial finite difference heat exchanger

model mentioned above can be described as follows

Finite Difference Approximate Dynamic Model:

For z ∈ [0, L],∆z = L/N, i = 0, 1, . . . , N, it follows that

Mass Balance:

dρi

dt
=

1

∆z
(wi−1 − wi) (14)

Momentum Balance:

dwi

dt
=

1

∆z

(
w2

i−1

ρi−1
+ Pi−1 −

w2
i

ρi

− Pi

)
−

4τi

D
(15)

Energy Balance:

dξi

dt
= q′ +

1

∆z

[
wi−1

ρi−1
(ξi−1 + Pi−1) −

wi

ρi

(ξi + Pi)

]
(16)

III. STABILITY ANALYSIS OF HEAT EXCHANGER

SYSTEMS

With the above finite-difference modeling method, the

linearization of heat exchanger model (14)-(16) can be rep-

resented in the general form (12). Notice that when the inlet

condition is specified, X0 = 0, the stability is determined by

the stability of all the discretized matrices Ai.

A case of particular interest is when the output of the heat

exchanger is connected back to the input with a gain of γ:

X0 = −γXN . (17)

And it follows from (13) that

D⊥ =

[
γI
−I

]
. (18)

If all Ai are Hurwitz (i.e., all eigenvalues are in the open

left half plane, M−1AM = Λ,Λ < 0), the necessary and

sufficient condition for stability is

γ2 < 1. (19)

This condition is not particularly surprising, it follows that

the L2 gain of the heat exchanger (with input X (t, 0) and

output X (t, L)) is bounded by 1. Hence (19) is simply the

classic small gain stability condition.

However, when the outlet condition is specified, XN = 0,

the backward differencing scheme needs to be replaced by

forward differencing, resulting in the stability condition that

Ak matrices need to be anti-stable, which also agrees with

the previous analysis.

We could also transform (12) to the Laplace domain and

view the heat exchanger as a matrix transfer function from

X0 to XN :

XN = (−1)N

N∏

i=1

(sI − (Ai + Ei))
−1Ai

︸ ︷︷ ︸
F

X0. (20)

If (Ai + Ei) is a stable matrix, the gain (or the H∞-norm)

of F satisfies the small gain condition:

‖F‖H∞

= sup
ω

‖F(jω)‖ ≤ 1. (21)

This is an important property when we consider the full

refrigeration cycle as the interconnection of heat exchangers.

A. Incompressible Flow without Heat Input (Case 1)

For incompressible flow, such as liquid, the governing

equations (4)-(6) can be significantly simplified. The mass

density always remains constant with respect to both time

and location, so the mass balance equation or continuity

equation degenerates as

∂ρ

∂t
= −

∂w

∂z
= 0 (22)

It can be implied that the mass flux also remains constant,

wi = w0 = w̄, ρi = ρ0 = ρ̄ in the finite difference model.

Since there is no heat input here, so the fluid pressure is

only dependent on density and also kept constant, Pi =
P0 = P̄ . The fluid in heat exchanger is homogeneous and

characterized by a simple lumped model. As a result, only

the momentum balance is involved in this case, which is the

well-known Navier-Stokes equation.

Momentum Balance:

dw̄

dt
= −

4τ̄

D
(23)

Let δw̄ = w̄−w̄∗ around the equilibrium w̄∗, one may obtain

the linearized model

d(δw̄)

dt
= −

(
4

D

∂τ̄∗

∂w̄

)
δw̄∗ (24)

The incompressible flow system without heat input is

locally stable if and only if the condition (25) is satisfied

∂τ̄∗

∂w̄
> 0. (25)

In fact, this condition holds definitely since the friction τ̄∗

always increases with the velocity value or the mass flux w.

B. Incompressible Flow with Heat Input (Case 2)

As shown above, for incompressible flow, the density and

the mass flux are lumped along the length, ρi = ρ0 = ρ̄,

wi = w0 = w̄. When the heat is transfered into the fluid, its

specific energy changes correspondingly, thus the pressure P
only changes with ξ. Then the fluid in heat exchanger will

be subject to two balances below.

Momentum Balance:

∂w

∂t
= −

∂P

∂z
−

4τ

D
= −

∂P

∂ξ

∂ξ

∂z
−

4τ

D
(26)

Energy Balance:

∂ξ

∂t
= q′ −

w

ρ

∂(ξ + P )]

∂z
= q′ −

w

ρ

(
1 +

∂P

∂ξ

)
∂ξ

∂z
(27)

Then by resorting to the linearizing method mentioned in

Section II, it is easy to get the following local linear model

[
∂(δw)

∂t
∂(δξ)

∂t

]
=

[
− 4

D
∂τ̄∗

∂w̄∗
−∂P∗

∂ξ̄

− q′

w̄∗
− w̄∗

ρ̄∗

(
1 + ∂P∗

∂ξ̄

)
] [

∂(δw)
∂z

∂(δξ)
∂z

]

(28)

where δw = w − w∗, δξ = ξ − ξ∗, (w∗, ξ∗) is the steady-

state mass flux and specific energy at the equilibrium point.
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The incompressible flow system with heat input is locally

stable if and only if the conditions (29)-(30) are satisfied

4

D

∂τ̄∗

∂w̄
+

w̄∗

ρ̄∗

(
1 +

∂P ∗

∂ξ̄

)
> 0, (29)

4w̄∗

ρ̄∗D

∂τ̄∗

∂w̄

(
1 +

∂P ∗

∂ξ̄

)
−

q′

w̄∗

∂P ∗

∂ξ̄
> 0. (30)

It should be noted that ∂P
∂u

= ρ∂P
∂ξ

since the specific energy

variable ξ = ρ(u+υ2/2). In general, the friction τ increases

with the mass flux w, ∂τ
∂w

> 0, and the pressure P increases

with the specific internal energy u and ξ, ∂P
∂ξ

> 0, therefore

the condition (29) holds for the positive flow velocity υ = w
ρ

.

C. Compressible Flow without Heat Input (Case 3)

As a matter of fact, incompressible flow is only an

idealization to simplify our analysis. In reality, all materials

are compressible to some extent, especially the gas flow. So

it is more desirable to investigate the stability of compress-

ible flow systems, here we start from the isothermal heat

exchanger with mass and momentum equations (14)-(15).

With the local linearizing method in Section II, one may

get

Ai =

[
0 − 1

∆z
1

∆z

(
w∗2

i

ρ∗2

i

−
∂P∗

i

∂ρi

)
− 4

D

∂τ∗

i

∂ρi

−
2w∗

i

ρ∗

i
∆z

− 4
D

∂τ∗

i

∂wi

]

(31)

The eigenvalues of Ai can be obtained from its characteristic

equation det(λI −Ai) = 0, that is,

λ2 +

(
2w∗

i

ρ∗i ∆z
+

4

D

∂τ∗
i

∂wi

)
λ

+
1

∆z2

(
w∗2

i

ρ∗2i

−
∂P ∗

i

∂ρi

)
−

4

∆zD

∂τ∗
i

∂ρi

= 0 (32)

The compressible flow system without heat input is locally

stable if and only if both of the conditions (33)-(34) are

satisfied

w∗
i

ρ∗i
+

2∆z

D

∂τ∗
i

∂wi

> 0, (33)

(
w∗2

i

ρ∗2i

−
∂P ∗

i

∂ρi

)
−

4∆z

D

∂τ∗
i

∂ρi

> 0. (34)

The condition (33) definitely holds since the friction τ
increases with the mass flux w.

D. Compressible Flow with Heat Input (Case 4)

Linearizing the full finite difference dynamics (14)-(16)

yields the model (12) with (35) (shown at the top of the

next page). The eigenvalues of Ai can be obtained from its

characteristic equation, det(λI −Ai) = 0. Then the stability

of the discretized system is determined by the the system

matrix in (35) by using the Routh-Hurwitz stability criterion

[13]. Defining the mean flow velocity υ = w/ρ, and

a =
ξ + P

ρ
, b =

∂P

∂ρ
, c =

∂P

∂ξ
, d =

f∆z

D

the system matrix (35) is equivalently as follows



0 −1 0
(1 + 2di)υ

∗2
i − bi −(2 + 4di)υ

∗
i −ci

(ai − bi)υ
∗
i −ai −(1 + ci)υ

∗
i


 (36)

Then the stabilizing conditions of the compressible flow

system with heat input become as follows

(3 + ci + 4di) υ∗

i > 0, (37)

(3 + 2ci + 6di + 4cidi) υ∗2
i > aici + bi, (38)

(1 + ci + 2di + 2cidi) υ∗2
i > aici + bi, (39)(

8 + 8ci + 28di + 24cidi + 2c2
i + 16cid

2
i

+4c2
i di + 24d2

i

)
υ∗2

i > 2aici + aic
2
i

+4aicidi + 2bi + bici + 4bidi. (40)

These conditions are thus available for stability evaluation

of the heat exchanger system around equilibrium.

IV. STABILITY ANALYSIS OF REFRIGERATION

CYCLE

The heat exchanger dynamics (4)-(6) is applicable to

both the evaporator and condenser. We now consider the

entire refrigeration cycle with the evaporator heat input qe,

condenser heat extraction qc, compressor speed ω, and valve

opening Av . For the linearized analysis, first consider the

cycle in a steady state under a constant operating condition

(q∗e , q∗c , ω∗, A∗
v). The linearized dynamics for the evaporator

and condenser are both of the form in (11), and may be

combined into a model of the same structure:

∂X (t, z)

∂t
=

∂A(z)X (t, z)

∂z
+ E(z)X (t, z) (41)

X =

[
Xe

Xc

]
, A =

[
Ae 0
0 Ac

]
, E =

[
Ee 0
0 Ec

]
.

The boundary conditions of the evaporator and condenser

are connected through the expansion valve and compressor.

Linearized about the operating point, we have

Linearized Valve Model (v):

Xe(t, 0) = GvXc(t, Lc) + HvδAv (42)

Linearized Compressor Model (m):

Xc(t, 0) = GmXe(t, Le) + Hmδω (43)

where δAv = Av − A∗
v and δω = ω − ω∗ are the control

variables.

The same finite difference discretization scheme may be

applied to approximate the convective type partial differential

equation (41) by a set of ordinary differential equations as

in (12). Let X be the discretized Xe and Xc:

X =
[
Xe1

. . . XeNe
Xc1

. . . XcNc

]T
.

Then

Ẋ =

[
Ae 0
0 Ac

]
X +

[
Ee 0
0 Ec

]
X

+E0(GENX + Hu). (44)
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Ai =




0 − 1
∆z

0
1

∆z

(
w∗2

i

ρ∗2

i

−
∂P∗

i

∂ρi

)
− 4

D

∂τ∗

i

∂ρi

−
2w∗

i

ρ∗

i
∆z

− 4
D

∂τ∗

i

∂wi

− 1
∆z

∂P∗

i

∂ξi

1
∆z

(
w∗

i
ξ∗

i

ρ∗2

i

+
w∗

i
P∗

i

ρ∗2

i

−
w∗

i

ρ∗

i

∂P∗

i

∂ρi

)
−

ξ∗

i
+P∗

i

ρ∗

i
∆z

−
w∗

i

ρ∗

i
∆z

(
1 +

∂P∗

i

∂ξi

)


 (35)

where Ae and Ac are block subdiagonal matrices, Ee and

Ec are diagonal matrices, and

E0 =

[
−AT

e1
. . . 0 0 . . . 0

0 . . . 0 −AT
c1

. . . 0

]T

,

EN =

[
0 . . . I 0 . . . 0
0 . . . 0 0 . . . I

]
,

G =

[
0 Gv

Gm 0

]
, H =

[
Hv 0
0 Hm

]
, u =

[
δAv

δω

]
.

This is in the standard state space form of a linear control

system, and standard linear system analysis and design tools

may be applied.

Ẋ = AX + Bu (45)

Note that the interconnection matrices, the linearized gains

of the compressor and valve, Gm and Gv , directly affects the

property of the system. The full cycle may also be viewed

as the interconnection between the evaporator and condenser

through the gain matrices Gm and Gv . We have shown that if

the evaporator and condensers are both stable, then the inlet

to outlet transfer function is small gain. Hence, a sufficient

condition for the full cycle stability is that the interconnection

gains Gm and Gv preserves the small gain condition.

V. CASE STUDY

The refrigeration system parameters are acquired from the

testbed component manufacturers for simulation purposes.

Refrigerant R-134a is chosen as the working fluid, whose

thermophysical property data are provided by the NIST1.

In the following simulations, the heat exchanger is divided

into N = 5 sections along its flow path for finite difference

models. The detailed component models of the refrigeration

system have been developed in [14].

With loss of generality, we consider four input variables of

the refrigeration system: the evaporator heat input qe (this is

to simulate the electronics cooling power), the compressor

speed ω, the opening position Av of electronic expansion

valve, and the condenser cooling water flowrate mdc. In

this example, we choose the initial system inputs as follows

qe=7.5 (kW), ω=3000 (rpm), Av=15 (%), mdc=0.3 (kg/s).

Then by solving a set of nonlinear equations, we may obtain

the corresponding steady states, which are presented in Fig.

1. It shows the pressure-enthalpy (P − h) diagram of vapor

compression cycle, where ‘C’,‘V’,‘E’,‘M’ denote the exit

points of the condenser, expansion valve, evaporator and

compressor, respectively. Notice that the pressure drop is

relatively small, e.g. the steady pressure profile along the

1National Institute of Standards and Technology,
http://webbook.nist.gov/chemistry/fluid/
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Fig. 1. Pressure-Enthalpy Diagram from Finite Diff. Heat Exchanger Model

condenser length Pc=[1162.3,1161.9,1161.6,1161.4,1161.3]

(kPa). This is because convectional-scale evaporator and

condenser are used in our current first-stage testbed.

Rather than just the steady-state operation, the transient

dynamics and stability of the refrigeration system are the

main concerns in this paper. To confirm the cycle stability,

one may investigate the open-loop responses of the refriger-

ation system to the inputs qe, ω, Av , respectively. Starting

from the above steady states, we impose a step increase on

the evaporator heat qe from 7.5 (kW) to 8.5 (kW) at the

5th second then let the refrigeration system settle down to

new steady states. Afterwards, we change compressor speed

stepwisely from 3000 (rpm) to 4000 (rpm) at the 30th second

while qe is fixed at 8.5 (kW) and Av is fixed at the initial

value of 15 (%). The next step is to change Av separately

at the 55th second, both evaporator and condenser settle

down to new equilibriums as shown in Fig. 2 and Fig. 3.

For the safe operation purpose, we should make sure the

evaporator exit flow is vapor only all the time, otherwise

it would damage the compressor. The transient evaporator

exit flow quality is depicted in Fig. 4. Also in this figure,

the cycle of performance (COP), superheat degree (SH) and

cycle energy gain (ECR = Wm + qe − qc) responses in

transient are included, where Wm is the compressor power

and qc the condenser dumping energy.

VI. CONCLUSIONS

In this paper, systematic studies have been performed to

investigate the effect of momentum balance on the heat

exchanger dynamics and its open-loop stability. With respect

to different flow conditions, four cases are taken into account
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Fig. 2. Dynamic responses of refrigerant pressure, enthalpy, mass flux,
and wall temperature in condenser
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Fig. 3. Dynamic responses of refrigerant pressure, enthalpy, mass flux,
and wall temperature in evaporator
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Fig. 4. Dynamic responses of cycle energy gain, superheat, evaporator exit
quality, and cycle of performance

from incompressible flow to compressible flow, and from

isothermal flow to non-isothermal flow with heat transfer.

General sufficient and necessary stabilizing conditions are

obtained to ensure the local heat exchanger system stability.

Moreover, we also include some stability analysis about the

overall refrigeration cycle. The proposed analysis method

may offer some guide to the transient operation and design

of vapor compression cycle systems.
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