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Abstract— The stabilization of a class of single input switched

nonlinear systems is investigated in the paper. The systems

concerned are of switched upper-triangular structure. The

stabilization of the switched system under some switching law

is investigated. Sufficient conditions are given under which the

globally asymptotically stabilization problem is solvable. We

exploit the structural characteristics of the switched nonlinear

systems to construct the Lyapunov functions. The switching law

and a nonlinear switched state feedback controller are explicitly

designed. The relevant result for the linear switched system with

the same structure is particularized.

I. INTRODUCTION

A switched system is a dynamical system described by

a family of continuous time subsystems and a rule that

governs the switching between them. In recent years, the

study of switched systems has received more and more

attention. The motivation for studying switched systems

comes partly form the fact that many practical systems

are inherently multimodel in the sense that several dynam-

ical systems are required to describe their behavior which

may depend on various environmental factors, and from

the fact that the methods of intelligent control design are

based on the idea of switching between different controllers.

For example, chemical processes, transportation systems,

computer controlled systems and communication industries

can be modeled as switched systems. Stability issues have

been a major focus in studying switched systems. There

has been increasing interest in the stability analysis and
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design methodology recently in the literature about switched

systems [1-5]. Because of the interaction between continuous

dynamics and discrete dynamics, switched systems may have

very complicated behaviors. For example, switching between

stable subsystems may lead to instability, whereas switching

between unstable subsystems can give rise to stability. Sta-

bility under arbitrary switching law is a desirable property

which can be assured by a common Lyapunov function [6, 7].

However, when the switched systems fail to have a common

Lyapunov function, they still may be asymptotically stable

under some properly chosen switching law. In this case,

multiple Lyapunov function method and single Lyapunov

function method are generally used [8-11]. Many other

methods such as programming method [4], dwelled-time

method [12], conic switching method [13] and so on are

derived to discuss the stability of switched systems. Among

these methods, the multiple Lyapunov function method is

relatively more preferable. Since the switching law can be

explicitly constructed when this method is employed, and the

constructed switching law can either dependent on the whole

or partial state of the switched systems.

Compared with the existing results on asymptotic stability

of switched systems, little attention has been paid to the

study of switched systems with continuous control variables.

This is because more difficulties arise from the interaction

between continuous control variables and discrete switching

signal. [3] and [14] analyzed the stabilization of switched

linear systems. [15] studied the stabilization of a class of cas-

caded switched nonlinear systems. [16] discussed the stabi-

lization of switched nonlinear systems in compatible Byrnes-

Isidori canonical form. Common Lyapunov functions were

constructed in these papers to guarantee the stabilization of

the switched systems they studied under arbitrary switching

law. Multiple Lyapunov functions were used in [17, 18] to

solve the stabilization problem of switched nonlinear systems

with input constrains. The state feedback controller and

output feedback controller and their corresponding switching

laws were designed respectively in these two papers.

In this paper, we discuss the stabilization problem of a
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class of upper-triangular switched nonlinear systems with

multiple Lyapunov function method. The switched system we

studied consists of two parts, one of which is an autonomous

switched system, while the other is a switched system with

control input. Under the assumption that the autonomous part

is uniformly globally quadratically stable, sufficient condi-

tions are given, which guarantee the globally asymptotically

stabilizbility of the switched system. A nonlinear switched

state feedback and the switching law are constructed based

on the structure characteristics of the switched system. And

the switching law constructed only dependents on partial

state of the switched system. Finally, a corollary is given

to illustrate the applicability of the method for the linear

switched system with the same structure.

The paper is organized as follows: Section 2 includes the

description of the switched nonlinear system we study and

the preparative definitions. Section 3 is our main result, and

an example is worked out to illustrate the feasibility of our

results in section 4. A brief conclusion is given in section 5.

Notation: R+ is the set of nonnegative real numbers, Rn

is an n-dimensional real vector space, | · | is the Euclidean

vector norm.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

Consider a switched nonlinear control system described as

ξ̇ = fσ(t)(ξ) + gσ(t)(ξ)uσ(t), uσ(t) ∈ R, (1)

where ξ ∈ Rn is the state; σ(t) : [0,+∞) → P =

{1, · · · , N} is the switching signal which is assumed to be

a piecewise right continuous function of time, implying that

only a finite number of switches is allowed on any finite

interval of time. The variable σ(t), which takes values in the

finite index set P , is a discrete state that indexes the vector

fields fi(ξ), gi(ξ), and the control input ui, which altogether

determine ξ̇(t). The vector fields fi(ξ), gi(ξ), i = 1, · · · , N ,

are smooth, and fi(0) = 0. We assume that the state of the

switched system does not jump at the switching instants, i.e.

the trajectory is everywhere continuous, is made all through

the paper.

Define the distribution

G = Span{g1, · · · , gN}.

The following proposition tells when system (1) can be

transformed into a switched upp-triangular form under some

geometry conditions [19].

Proposition 1: If there exists a nonsingular involutive distri-

bution △ of dimension d for all ξ in Rn, which is invariant

under fi(ξ), gi(ξ), ∀ i ∈ P . In addition, G ∈ △. Then,

system (1) can be transformed into the following switched

triangular form
{

ξ̇1 = f1σ(t)(ξ1, ξ2) + g1σ(t)(ξ1, ξ2)uσ(t),

ξ̇2 = f2σ(t)(ξ2),
(2)

where ξ1 ∈ Rn−d, ξ2 ∈ Rd.

Remark 1: For the linear switched system

ξ̇ = Aσ(t)ξ + Bσ(t)uσ(t), ξ ∈ Rn, uσ(t) ∈ R. (3)

if △ is invariant under Ai and Im{Bi} ⊂ △, for each i ∈ P ,

then the linear switched system (3) can be transformed into
{

ξ̇1 = A11σ(t)ξ1 + A12σ(t)ξ2 + B11σ(t)uσ(t),

ξ̇2 = A22σ(t)ξ2,
(4)

As the coordinate transformation is a diffeomorphism, we

will mainly investigate the globally stabilization problem for

switched system (2).

III. MAIN RESULTS

This section gives the globally stabilization of switched

system (2). The Lyapunov functions are recursively con-

structed, a nonlinear switched feedback controller and the

switching law are also explicitly formulated simultaneously.

We first write the functions g1i(ξ1, ξ2) in the form

g1i(ξ1, ξ2) = g1i(ξ1, 0) + ĝ1i(ξ1, ξ2)ξ2, i ∈ P . (5)

For switched system (2), we make the following assump-

tions:

Assumption 1: There exist smooth, positive definite and

radially unbounded functions Ui(ξ1), functions βij(ξ1) ≤ 0,

i, j = 1, · · · , N , such that

∂Ui(ξ1)

∂ξ1
f1i(ξ1, 0) +

1

4ε2
i

[

∂Ui(ξ1)

∂ξ1
g1i(ξ1, 0)

]2

+γi|ξ1|
2 +

N
∑

j=1

βij(ξ1)(Uj(ξ1) − Ui(ξ1))≤ 0, (6)

∣

∣

∣

∣

∂Ui(ξ1)

∂ξ1

∣

∣

∣

∣

≤ αi|ξ1|, ∀i ∈ P , ∀ξ1 ∈ Rn−d and ξ1 6= 0,

(7)

for some positive constants εi, γi, αi.

Assumption 2: The vector fields f1i(ξ1, ξ2), i ∈ P are

globally Lipschitz continuous. i.e. for each i ∈ P , there exist

li > 0, such that

|f1i(ξ1, ξ2) − f1i(ξ1, 0)| ≤ li|ξ2|, ∀ξ1 ∈ Rn−d, ξ2 ∈ Rd.

(8)

Assumption 3: There exist a proper positive definite, and

radially unbounded function Q(ξ2) such that

∂Q(ξ2)

∂ξ2
f2i(ξ2) ≤ −γ0|ξ2|

2, ∀i ∈ P , ξ2 ∈ Rd, (9)
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for some positive constant γ0 > 0.

Theorem 1: Suppose that the switched nonlinear system (2)

satisfies Assumption 1-3, then the switching law

σ(t) = min{i|i = arg max
i∈P

{Ui}}, (10)

and the nonlinear switched feedback controller

ui = −
1

2ε2
i

∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2, (11)

solve the globally asymptotically stabilization problem for

switched system (2).

Proof: For system (2), we define the following Lyapunov

function candidate

W (ξ) = Wσ(t)(ξ) = Uσ(t)(ξ1) + kσ(t)Q(ξ2), (12)

positive constants ki, i = 1, · · · , N , will be defined later.

When σ(t) = i, i.e. the ith subsystem is activated, from

(6) we have

∂Ui(ξ1)

∂ξ1
f1i(ξ1, 0)+

1

4ε2
i

[

∂Ui(ξ1)

∂ξ1
g1i(ξ1, 0)

]2

+γi|ξ1|
2 ≤ 0,

(13)

and the time derivative of W (ξ) along the trajectory of the

switched system (2) is

Ẇ (ξ) =
∂Ui(ξ1)

∂ξ1
f1i(ξ1, ξ2) +

∂Ui(ξ1)

∂ξ1
g1i(ξ1, ξ2)ui

+ki

∂Q(ξ2)

∂ξ2
f2i(ξ2)

=
∂Ui(ξ1)

∂ξ1
f1i(ξ1, 0) +

∂Ui(ξ1)

∂ξ1

(

f1i(ξ1, ξ2)

−f1i(ξ1, 0)
)

+
∂Ui(ξ1)

∂ξ1
g1i(ξ1, 0)ui

+
∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2ui

≤
∂Ui(ξ1)

∂ξ1
f1i(ξ1, 0) +

∣

∣

∣

∣

∂Ui(ξ1)

∂ξ1

∣

∣

∣

∣

|f1i(ξ1, ξ2)

−f1i(ξ1, 0)| +
1

4ε2
i

[

∂Ui(ξ1)

∂ξ1
g1i(ξ1, 0)

]2

+ε2
i u

2
i +

∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2ui

+ki

∂Q(ξ2)

∂ξ2
f2i(ξ2).

From (13), Assumption 2 and Assumption 3, we obtain

Ẇ (ξ) ≤ −γi|ξ1|
2 + αili|ξ1||ξ2| + ε2

i u
2
i

+
∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2ui − kiγ0|ξ2|

2

≤ −γi|ξ1|
2 + αili|ξ1||ξ2| − kiγ0|ξ2|

2

+

[

εiui +
1

2εi

∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2

]2

−
1

4ε2
i

[

∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2

]2

. (14)

Substituting (11) into (14), then, we get

Ẇ (ξ) ≤ −γi|ξ1|
2 + αili|ξ1||ξ2| − kiγ0|ξ2|

2

−
1

4ε2
i

[

∂Ui(ξ1)

∂ξ1
ĝ1i(ξ1, ξ2)ξ2

]2

≤ −γi|ξ1|
2 + αili|ξ1||ξ2| − kiγ0|ξ2|

2

≤ −γi|ξ1|
2 +

γi

2
|ξ1|

2 +
α2

i l
2
i

2γi

|ξ2|
2 − kiγ0|ξ2|

2

≤ −
γi

2
|ξ1|

2 −

(

kiγ0 −
α2

i l
2
i

2γi

)

|ξ2|
2

≤ −min

(

γi

2
, kiγ0 −

α2
i l

2
i

2γi

)

(

|ξ1|
2 + |ξ2|

2
)

.

For each i ∈ P , choose ki >
α2

i
l2
i

2γ0γi

, The globally asymp-

totically stabilization problem for switched system (2) under

the switching law (10) follows.

Remark 2: Since the second part of the switched system (2)

has a lower dimension, its Lyapunov function is relatively

easier to find than that of the whole switched system. There

are methods available for finding the common quadratic

Lyapunov function for such switched systems [4, 6].

In the following, we examine the linear switched system

(4) for which the result of theorem 1 above applies. First of

all, the following assumptions are made

Assumption 4: For the linear switched system

ξ̇1(t) = A11σ(t)ξ1(t) + B11σ(t)uσ(t), (15)

there exist positive definite, quadratic functions V1(ξ1) =

ξT
1 Piξ1, functions β̂ij(ξ1) ≤ 0, i, j = 1, · · · , N , such that

AT
11iPi + PiA11i +

1

4ε̂2
i

PiB11iB
T
11iPi

+
N

∑

j=1

β̂ij(ξ)(Pj − Pi) + γ̂iI ≤ 0, (16)

holds for some positive constants γ̂i, i = 1, · · · , N .

Assumption 5: For the switched system ξ̇2(t) =

A22σ(t)ξ2(t), there exists positive definite, quadratic function

V2(ξ2) = ξT
2 Q̂ξ2, such that

AT
22iPi + PiA22i ≤ −γ̂0I, (17)

holds for some positive constant γ̂0.

Corollary 1: Suppose that the linear switched system (4)

satisfies Assumption 4-5, then the switching law

σ(t) = min{i|i = arg max
i∈P

{Pi}}, (18)

and the linear switched feedback controller

ui = −
1

8ε̂2
i

BT
11iPiξ1, (19)

solve the globally asymptotically stabilization problem for

switched system (4).
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Remark 3 : As the Lyapunov functions for subsystems of the

first part of system (2) in corollary 1 are in quadratic form,

the condition (7) in theorem 1 are automatically satisfied.

IV. EXAMPE

Consider the nonlinear switched system with the following

structure
{

ξ̇ = f1σ(t)(ξ, z) + g1σ(t)(ξ, z)uσ(t),

ż = f2σ(t)(z),
(20)

in which

f11(ξ, z) = −ξ + z1 sin z2, g11(ξ, z) = ξz1,

f12(ξ, z) = −4ξ
√

1 + 4ξ2+z2 sin z1, g12(ξ, z) = ξ+z1z2,

f22(z) =

(

−7z1

√

1 + z2
1(1 + sin2 z2)

−5z2

)

,

f21(z) =

(

−4z1

√

1 + z2
1

−z2(1 + z2
1)

)

, σ(t) = {1, 2}.

we can get

f11(ξ, 0) = −ξ, g11(ξ, 0) = 0, ĝ11(ξ, z) = [ξ, 0],

f12(ξ, 0) = −4ξ
√

1 + 4ξ2, g12(ξ, 0) = ξ,

ĝ12(ξ, z) = [
1

2
z2,

1

2
z1].

Choosing U1(ξ) = 2ξ2, U2(ξ) = 1
2

√

1 + 4ξ2, Q(z)=
√

1 + z2
1 + z2

2 , ε1 = ε2 = 1, γ1 = 1, γ2 = 7
4 , β12(ξ) = −1,

β21(ξ) = − 1
2ξ2(1 + 4ξ2)−

1

2 , we can calculate that

∂U1(ξ1)

∂ξ1
f11(ξ1, 0) +

1

4

[

∂U1(ξ1)

∂ξ1
g11(ξ1, 0)

]2

+γ1|ξ1|
2 + β12(ξ1)(U2(ξ1) − U1(ξ1))

≤ −ξ2 −
1

2

√

1 + 4ξ2 ≤ 0,

∂U2(ξ1)

∂ξ1
f12(ξ1, 0) +

1

4

[

∂U2(ξ1)

∂ξ1
g12(ξ1, 0)

]2

+γ2|ξ1|
2 + β21(ξ1)(U1(ξ1) − U2(ξ1))

≤ −6ξ2 −
ξ4(

√

1 + 4ξ2 − 1)

(1 + 4ξ2)
≤ 0,

∣

∣

∣

∣

∂U1(ξ)

∂ξ

∣

∣

∣

∣

= 4ξ,

∣

∣

∣

∣

∂U2(ξ)

∂ξ

∣

∣

∣

∣

=
2ξ

√

1 + 4ξ2
≤ 2ξ,

|f11(ξ, z)− f11(ξ, 0)| ≤ |z1|, |f12(ξ, z)− f12(ξ, 0)| ≤ |z2|,

∂Q(z)

∂z
f21(z) = −4z2

1 − 2z2
2(1 + z2

1) ≤ −z2
1 − z2

2 ,

∂Q(z)

∂z
f22(z) = −7z2

1(1 + sin2 z2) − 10z2
2 ≤ −z2

1 − z2
2 .

Let α1 = 5, α2 = 2, l1 = l2 = 1, γ0=1, we can see that

Assumption 1, Assumption 2, and Assumption 3 are satisfied.

Choose k1 = 13, k2 = 2, the lyapunov function for system

(20) is

W (ξ, z) =







ξ2 + 13
(

√

1 + z2
1 + z2

2

)

, if σ(t) = 1,
√

1 + ξ2 + 2
(

√

1 + z2
1 + z2

2

)

, if σ(t) = 2,

Construct the switching as

σ(t) =

{

1, if U1(ξ) ≥ U2(ξ),

2, otherwise,
(21)

According to (11) we can obtain the switched state feedback

controller as,

ui =

{

−2ξ2z1, i = 1,

−2ξz1z2(1 + 4ξ2)−
1

2 i = 2,

(22)

Let the initial state (ξT
0 , zT

0 )T = [3,−2, 3]T , Figure 1 shows

the the state response of the closed-loop switched system (20)

with the designed state feedback (22) under the constructed

switching law (21), which indicate that the feasibility of our

result.
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ξ 

Fig. 1. The state response of the switched system (37)

V. CONCLUSIONS

The paper has considered the globally stabilization of a

class of switched nonlinear systems with triangular structure

under some switching law. Using the multiple Lyapunov

functions of the first part with single control input and the

common Lyapunov function of the second part without con-

trol input the piecewise continuous Lyapunov functions for

the whole switched system are constructed. The partial state

dependent switching law and the switched state feedback

controller for the switched system are also explicitly formu-

lated. A numerical example has been given out to illustrate

the feasibility of our methods. The globally stabilization of

this kind of switched systems under other conditions or using

other methods remains for further study. Other problems of
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switched systems with the same structure can be considered,

such as robust control, tracking control problems.
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