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Abstract— This paper discusses the controllability problem
of Boolean networks with inputs (control nodes) and outputs
(controlled nodes). An algorithm for testing controllability is in
general NP-hard, and the existing polynomial-time algorithm is
limited to a class of tree-structure networks. In this paper, based
on a sufficient condition for controllability, a polynomial-time
algorithm is proposed. The proposed algorithm is applicable to
a wider class of large-scale Boolean networks compared with
the existing algorithm. The key idea in our approach is to
use an adjacency matrix of a directed graph induced by a
Boolean network, and Boolean operations are not focused. The
effectiveness of the proposed approach is shown by an example
of a biological network.

I. INTRODUCTION

Recently, much attention has been paid on modeling,

analysis, and control synthesis of biological networks such as

gene regulatory networks and metabolic networks in not only

theoretical biology community but also control community

[1]. Biological networks are in general complicate, and

can be expressed as ordinary/partial differential equations

with high nonlinearity and high dimensionality. For such a

complex system, it will be one of the suitable approaches to

use simpler models such as Petri nets, Bayesian networks,

Boolean networks, and hybrid systems (see e.g., [7], [9]).

In particular, for a piecewise affine model, which is a

kind of hybrid systems, and a Boolean network model, the

controllability problem has been developed so far. However,

a piecewise affine model can be applied to only the class

of relatively low-dimensional systems [3], [5]. A Boolean

network model expresses the state as binary variables (inhibit

or activate), and the transition rules of the state are given by

Boolean functions [10], [11]. So a Boolean network will be

more practical for analysis of large-scale biological systems

thanks to its bold simplification. Thus various approaches

based on this model have been well-studied so far (see e.g.,

[2], [6], [12], [13]). The controllability problem of Boolean

networks has been discussed in [4]. This problem is to deter-

mine whether expressions of some selected genes (controlled

nodes) can be inhibited or activated by expressions of the

other gene (control nodes) in a gene regulatory network. In

addition, it has been proven in [4] that this problem is NP-

hard in a general setting, and, for the classes of networks

including a tree structure or at most one loop, a polynomial-

time algorithm for controllability test has been proposed.

For Boolean network models, there is a criticism that this
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model is too simple as a model of biological networks, but

as a first step towards further detailed analysis of large-

scale biological networks, this model will provide some

indications.

In this paper, the controllability problem of Boolean

networks with inputs (control nodes) and outputs (controlled

nodes) is also considered, and based on simple operations

on an adjacency matrix of a directed graph induced by

a Boolean network, a sufficient condition for the Boolean

network to be controllable is proposed. The proposed con-

dition is given as the form of an algorithm, which is a

polynomial-time algorithm. A key in this paper is to give

up computing complex Boolean operations in a rigorous

way and to focus on deriving an easily-checkable sufficient

condition for controllability so as to be applied to large-

scale networks. Therefore, the proposed algorithm can be

applied to a wider class of Boolean networks including non-

tree structures compared with the method in [4].

Notation: Let N denote the set of nonnegative integers,

and {0, 1}m×n the set of m × n matrices consisting of

elements 0 and 1. We also denote by In and 0m×n the

n×n identity matrix and the m×n zero matrix, respectively.

For simplicity of notation, we sometimes use the symbol 0
instead of 0m×n and the symbol I instead of In. Let M⊤

express the transpose of the matrix M .

II. BOOLEAN NETWORK MODELS

In this section, a Boolean network model [10], [11] is

briefly explained. A Boolean network model consists of a set

of nodes and a set of regulation rules for nodes, where each

node expresses a gene, a molecule, or an event in the genetic

network. The state variable ξi at node i takes a Boolean value

of 0 or 1 representing the respective “inactive” or “active”

status of the node. A regulation rule for each node is given

in terms of a Boolean function, and each node state changes

synchronously. Thus the dynamics of this network are in

general given by the state equation

ξ(k + 1) = fa(ξ(k)) (1)

where ξ(k) = [ ξ1(k) ξ2(k) · · · ξl(k) ]⊤ ∈ {0, 1}l is the

state vector at time k ∈ N , and fa : {0, 1}l → {0, 1}l is

a Boolean function consisting of the logical AND (∧), OR

(∨), NOT (¬), and XOR (⊕).

As an example, we will consider a Boolean network in

Fig. 1, which is given in [4]. In this example, the state ξ1

of node 1 at time k + 1 is given by the logical AND of the

state ξ2 of node 2 and the state ξ3 of node 3 at time k. In a

similar way, ξ2 and ξ3 at time k + 1 are given by the state

ξ1 of node 1 and the logical NOT of the state ξ2 of node 2
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Fig. 1. Example of Boolean network model

at time k, respectively. Thus the Boolean network model of

Fig. 1 is expressed as the state equation






ξ1(k + 1) = ξ2(k) ∧ ξ3(k),
ξ2(k + 1) = ξ1(k),
ξ3(k + 1) = ¬ξ2(k).

(2)

For example, if the state at time k is given as ξ(k) =
[ 1 0 1 ]⊤, then the state at time k + 1 is given as

ξ(k + 1) = [ 0 1 1 ]⊤.

III. PROBLEM FORMULATION

A. Boolean network model with inputs/outputs

In a Boolean network model (1), the state ξ(k) is uniquely

determined by giving the initial state ξ(0) = ξ0 ∈ {0, 1}l,

which implies that (1) is an autonomous system and has no

control inputs.

On the other hand, this paper will consider the Boolean

network model with control (i.e., input) nodes and controlled

(i.e., output) nodes to discuss the output-controllability of

this model. This model is given by

Σ

{

x(k + 1) = f(x(k), u(k)),
y(k) = Cx(k)

(3)

where x ∈ {0, 1}n is the state, u ∈ {0, 1}m is the input,

y ∈ {0, 1}r (r ≤ n) is the output, f : {0, 1}n × {0, 1}m →
{0, 1}n is a Boolean function consisting of the logical AND,

OR, NOT, and XOR, and C ∈ {0, 1}r×n is the output matrix

satisfying for each element cij of C,
∑r

i=1 cij = 1, ∀j and
∑r

j=1 cij = 1, ∀i. Furthermore, the product of C and x in

y = Cx expresses a product operation on matrices/vectors

of the real number field. Thus the above condition on C

guarantees that the output is the state variable itself, i.e., for

each i there exists j such that yi = xj holds. For example, the

case of y = x is also included here. Note that this condition

on C will not be restrictive in analyzing controllability of

biological networks such as gene regulatory networks, since

the relation on regulation among genes/molecules will be

discussed there.

We will give an example of the above model. For the

Boolean network (2) represented in Fig. 1, consider to choose

either ξ1(k), ξ2(k) or ξ3(k) to be the control input. For

example, suppose that x(k) = [ ξ1(k) ξ2(k) ]⊤ and u(k) =
ξ3(k), that is, ξ3(k) itself is the control input. Then it follows

that
{

x1(k + 1) = x2(k) ∧ u(k),
x2(k + 1) = x1(k)

(4)

where xi(k) denotes the i-th element of x(k). Note here

that ξ3(k + 1) = ¬ξ2(k) is ignored because we assume that

ξ3(k) itself is the control input. In a similar way, x(k) =
[ ξ⊤1 (k) ξ⊤3 (k) ]⊤ and x(k) = [ ξ⊤2 (k) ξ⊤3 (k) ]⊤ can be

considered in this case. As for the output y = Cx, either

case of C = I2, C = [ 1 0 ], C = [ 0 1 ] can be considered

in this case.

B. Definition of Output-Controllability

For the system Σ of (3), the notion of output-

controllability is defined as follows.

Definition 1: Suppose that for the system Σ of (3), the

finite time T ∈ N and the initial state x0 ∈ {0, 1}n are

given. Then the system Σ is said to be T -output-controllable

at x0, if for every yf ∈ {0, 1}r there exists a control input

sequence u(k) ∈ {0, 1}m, k = 0, 1, . . . , T − 1, such that

y(T ) = yf . Furthermore, the system Σ is said to be T -

output-controllable if it is T -output-controllable at every x0.

The above notion of controllability comes from the fact

that in control of genetic networks we often would like to

determine if expressions of certain specified gene states will

be able to be inhibited (or activated). Note also that the

control time T is explicitly specified in the above definition.

As an example, consider whether the Boolean network

with inputs and outputs (4) is T -output-controllable or not by

directly calculating state trajectories of the system. Consider

the controllability of the system (4) with y = x (i.e., C = I2)

for T = 2. From (4) we have
{

x1(2) = x1(0) ∧ u(1),
x2(2) = x2(0) ∧ u(0).

(5)

So if x1(0) = 0, then x1(2) ≡ 0 holds irrespective of the

value of u(1). Similarly, if x2(0) = 0, then x2(2) ≡ 0
holds. Therefore we see that the system (4) is not 2-output-

controllable. In the same way, we see that the system (4)

is not T -output-controllable in every case of C = I2,

C = [ 1 0 ], and C = [ 0 1 ] for T ≥ 2. On the other hand,

for the system (2), suppose that x(k) = [ ξ⊤1 (k) ξ⊤3 (k) ]⊤

and u(k) = ξ2(k). Then we obtain the Boolean network with

inputs/outputs
{

x1(k + 1) = u(k) ∧ x2(k),
x2(k + 1) = ¬u(k)

(6)

Consider the controllability of this system (6) for T = 2.

From (6) we have
{

x1(2) = u(1) ∧ (¬u(0)),
x2(2) = ¬u(1).

(7)

Thus we see that the system is not 2-output-controllable for

C = I2, while that the system is T -output-controllable with

T ≥ 2 for both cases of C = [ 1 0 ] and C = [ 0 1 ].
Note that for (5) with y = x we see that the controllability

property does not hold due to the fact that y(T ) directly

depends on x(0). On the other hand, for (7) with y =
x, y1(2)(= x1(2)) is adjacent to u(1) and u(0) in the

Boolean network, which implies y1(2) is arbitrarily given

by u(1) and u(0). In a similar way, y2(2)(= x2(2)) is

adjacent to u(1). However, (y1(2), y2(2)) = (1, 1) cannot

be realized by u(0) and u(1) because y1(2) = 0 always
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holds when y2(2) = 1. These examples are very important

in discussing the controllability in this paper, that is, if the

Boolean function of yi(T ) includes an initial state x(0), or

includes the same input in the outputs at the same time, then

the system in question is not T -output-controllable. In the

following section, by motivating the above discussion, we

will consider to derive a controllability condition.

IV. OUTPUT-CONTROLLABILITY CONDITION

In this section, by using the form of an algorithm, a suffi-

cient condition for the system (3) to be T -output-controllable

will be proposed.

A. Preliminaries

In Boolean functions, identical equations are in general

given by

h(a) ∧ (¬h(a)) ≡ 0, h(a) ∨ (¬h(a)) ≡ 1 (8)

where h(·) is any Boolean function of a vector of binary

variables. Obviously such identities on xi or ui affect the

controllability in a Boolean network (note that even if

y(T ) = x(0) ∨ (¬x(0)) ∨ u(0), y(T ) ≡ 1 holds irrespective

of u(0)).
Example 1: Consider a simple example given by























x1(k + 1) = u(k),
x2(k + 1) = x1(k) ∧ (¬u(k)),
x3(k + 1) = x1(k) ∧ x2(k),
y1(k) = x2(k),
y2(k) = x3(k).

(9)

This system has the following relation:

y2(2) = x1(0) ∧ {u(0) ∧ (¬u(0))} = 0. (10)

Similarly, we see that y2(T ) = 0, T ≥ 2 hold identically.

In this paper, we will focus on finding such identities in

y(T ). Before discussing a kind of initial condition and a

kind of input-independency, several symbols are introduced

in this subsection.

First, the following assumptions are made.

Assumption 1: The Boolean function f in (3) has no

redundant variables.

For example, in the logical function h(a, b) = a∧(b∨¬b),
h(a, 0) = h(a, 1) holds. So b is a redundant variable, and

h(a, b) can be rewritten as h(a) = a. Assumption 1 holds for

any Boolean function by rewriting the system in terms of De

Morgan’s laws (e.g., ¬(a∨b) = (¬a)∧(¬b)) and eliminating

redundant variables from a given Boolean function. By

Assumption 1 it is guaranteed that the Boolean function f

itself does not include any identities, although y(T ) may

include some identities. Suppose that the number of the

logical NOT appeared in (3) is given by p, where the logical

NOT operators are distinguished when the corresponding

terms are different even if the corresponding variables are the

same. In addition, consider the fictitious inputs vi(k) = 1,

i = 1, 2, . . . , p, which have one-to-one correspondence with

the variables operated by the logical NOT, i.e., ¬xi or ¬ui

in (3). Then the system (3) can be equivalently rewritten as

the following system:

Σv

{

x(k + 1) = fv(x(k), u(k), v(k)),
y(k) = Cx(k)

(11)

where the Boolean function fv does not include the logical

NOT, and v(k) = [ v1(k) · · · vp(k) ]⊤ = [ 1 · · · 1 ]⊤.

For example, the system (9) is rewritten as














x1(k + 1) = u(k),
x2(k + 1) = x1(k) ∧ (v(k) ⊕ u(k)),
x3(k + 1) = x1(k) ∧ x2(k),
y1(k) = x2(k), y2(k) = x3(k)

(12)

subject to v(k) = 1.

Next, consider the adjacency matrix Φ ∈
{0, 1}(n+m+p)×(n+m+p) for the directed graph induced by

the Boolean network of the system (11). For example, the

adjacency matrix for the system (12) is given by

Φ =













0 1 1 0 0
0 0 1 0 0
0 0 0 0 0
1 1 0 0 0
0 1 0 0 0













x1

x2

x3

u

v

(13)

x1 x2 x3 u v

where if there exists an arc from node i to node j, then

the (i, j)-th element of Φ is 1. Hereafter, without loss of

generality, the following assumption is made.

Assumption 2: The i-th element of [ x⊤ u⊤ v⊤ ]⊤

is assigned to node i in the directed graph, where i ∈
{1, 2, . . . , n + m + p}.

By Assumption 2, node i is identified with the i-th

element of [ x⊤ u⊤ v⊤ ]⊤. Then in Fig. 2, which shows

a temporal/spatial network of the system (9), we say that for

example, there exists a path between x2(2) and u(0).
Using the adjacency matrix Φ, we also compute the matrix

ΦtC⊤
0 C⊤, t = 1, 2, . . . , T , where C0 = [ In 0n×(m+p) ] ∈

{0, 1}n×(n+m+p). For the system (11), ΦtC⊤
0 C⊤ expresses

whether there exist paths between y(T ) and x(T − t), y(T )
and u(T − t), or y(T ) and v(T − t) for any given T . In

other words, ΦtC⊤
0 C⊤ expresses which elements of x(T−t),

u(T − t) and v(T − t) are variables of a Boolean function

representing yi(T ). However, note here that from ΦtC⊤
0 C⊤,

we cannot specify an explicit form of the Boolean function

in question.

Furthermore, the following symbol is used:

[ (Xt)⊤ (U t)⊤ (V t)⊤ ]⊤ = ΦtC⊤
0 C⊤, where Xt ∈ Nn×r ,

U t ∈ Nm×r, V t ∈ N p×r. Let also Xt
ix,jx

, U t
iu,ju

, V t
iv ,jv

denote each element of Xt, U t, V t, respectively. If

Xt
ix,jx

≥ 1 holds, then there exist Xt
ix,jx

paths between

yjx
(T ) and xix

(T − t). For the state xix
, ix = 1, 2, . . . , n of

the system (3), let Px express the index set of elements of

xix
operated by the logical NOT as ¬xix

. In a similar way,

for the control input uiu
, iu = 1, 2, . . . , m of the system (3),

let Pu express the index set of elements of uiu
operated by

the logical NOT as ¬uiu
. Here, p = |Px| + |Pu| holds. In

addition, there is a one-to-one correspondence between each
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Fig. 2. Temporal/spatial network of the system (9)

element of Px, Pu and the index iv of v. Let ν(ix) and

ν(iu) express the index iv of v corresponding to ix ∈ Px

and iu ∈ Pu, respectively. In the case of the system (12),

Px = ∅, Pu = {1} hold, and for iu = 1, ν(iu) = 1 holds.

Finally, we define the following matrices: X0 =
C0Φ

T C⊤
0 C⊤ ∈ Nn×r , U = B̄Φ̄C⊤

0 C⊤ ∈ NmT×r ,

where B̄ = diag(B, B, . . . , B) ∈ {0, 1}mT×(n+m+p)T ,

B = [ 0m×n Im 0m×p ] ∈ {0, 1}m×(n+m+p), Φ̄ =
[ Φ⊤ (Φ2)⊤ · · · (ΦT )⊤ ]⊤ ∈ N (n+m+p)T×(n+m+p).

Remark 2. Identities may not be appeared in the biolog-

ical relevance. The reasons why identities are appeared are

that the state is binarized and that a time-delay of the state

is ignored. To overcome the latter point, a temporal Boolean

network model ξ(k + 1) = fa(ξ(k), ξ(k − 1), . . . , ξ(k −T ))
has been proposed in [14]. The proposed method can also

be applied to a temporal Boolean network model.

B. Proposed Algorithm

Now we propose a T -output-controllability test algorithm.

Since the controllability problem is NP-hard [4], we pay

our attention on deriving a sufficient condition for the

controllability. Although this sufficient condition is given in

the form of an algorithm, it is somewhat complex. Thus

before describing an algorithm, we describe the outline of

the algorithm.

First, we consider a necessary condition for y(T ) to

include identical equations. From Fig. 2 of the example

(12), we see that y2(2)(= x3(2)) in (10), which has no

identities, has two paths from u(0) and that v(0) is connected

to some node on the paths. In this way, if some identical

equation exists in yj(T ), there always exist more than 2

paths from yj(T ) to some state and also the logical-NOT

operations exist on the paths, which is a necessary condition

and not necessarily a sufficient condition. Since it will spend

huge time to rigorously specify the existence of identities

for a large network, we consider here to exclude the cases

satisfying the above necessary condition, i.e., we do not

determine here the controllability in such cases.

Next, for the system that includes no identical equations,

we use a kind of input-independency to determine the con-

trollability. For example, consider the case that neither iden-

tity on u nor x exists in y(T ) and that y(T ) is expressed by

y1(T ) = h1(u1(0), u2(3)), y2(T ) = h2(u1(1), u2(1), u2(2))
as a result of recursive calculation (see Section 6 for such

an example), where h1, h2 are some Boolean functions.

This system is obviously T -output controllable because each

yj(T ) is expressed by different ui(k) and no x0 exists in

yj(T ). From the viewpoint of adjacency relation, this implies

that there exists no path between x(0) and y(T ), there exists

at least one path from each yj(T ) to some ui(k), and each

ui(k) has a path with only one yj(T ) or has no path to any

yj(T ). This can be easily found from the adjacency matrix,

although it is a sufficient condition for the controllability.

This is a rough story of our approach.

The proposed algorithm is given as follows.

T -output-controllability test algorithm:

Part A: Check of the existence of identical equations

Step 1: Set t = 1. Compute X1, U1 and V 1.

Step 2: If T = 1, go to Step 6. Otherwise set t = t + 1.

Compute Xt, U t and V t.

Step 3: If there exists (ix, jx) such that Xt
ix,jx

≥ 2 or

(iu, ju) such that U t
iu,ju

≥ 2, denote them by (i∗x, j∗x) or

(i∗u, j∗u), respectively, and go to Step 4. Otherwise, go to

Step 2 if t < T and go to Step 6 if t = T .

Step 4: If there exists i∗x such that i∗x ∈ Px or i∗u such that

i∗u ∈ Pu, and V t
ν(i∗

x
),j∗

x

≥ 1 or V t
ν(i∗

u
),j∗

u

≥ 1 holds, go to

Step 8. Otherwise, go to Step 5.

Step 5:

Step 5-1: Set j = 1.

Step 5-2: If any element of j∗x-th column or j∗u-th column

in V j is greater than or equal to 1, go to Step 8. Otherwise,

go to Step 5-3.

Step 5-3: If j ≤ t− 1, set j = j + 1 and go to Step 5-2,

or else go to Step 2 .

Part B: Check of the independence of each y(T )

Step 6: If the following conditions hold for X0 and U , the

system (3) is T -output-controllable, or else if only condition

(i) does not hold, then go to Step 7. Otherwise go to Step 8.

(i) X0 = 0n×r holds,

(ii) Each column vector of U is a non-zero vector,

(iii) Each row vector of U is a zero vector, or has only

one element with a non-zero value.

Step 7: Suppose x(0) = x0 for a given constant vector

x0 ∈ {0, 1}n. Let L ⊆ {1, 2, . . . , n}(x0) denote the index set

of elements of x(1) = fv(x0, u(0), v(0)) that are constant for

any u(0) (v(0) = 1). Then if the following condition holds,

the system (3) is T -output-controllable at x0. Otherwise, go

to Step 8.

(iv) For XT−1(= C0Φ
T−1C⊤

0 C⊤), there exists no

l ∈ L(x0) satisfying XT−1
l,jx

≥ 1.

Step 8: This algorithm cannot determine whether the system

(3) is T -output-controllable or not (at x0).

Then the following theorem is obtained.

Theorem 1: For a given T , the following statements hold:

(i) The system (3) is T -output-controllable if conditions
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(i), (ii) and (iii) in Step 6 hold subject to Part A.

(ii) For a given x0 ∈ {0, 1}n, the system (3) is T -output

-controllable at x0 if condition (iv) in Step 7 holds

subject to Part A and Step 6.

See Appendix I for the proof. Furthermore, the computa-

tional complexity of the proposed algorithm is given by the

following lemma.

Lemma 1: The computational complexity of the proposed

algorithm is O((n+m+ p)3(T − 1)+ (n+m+ p)nrT ) for

T ≥ 2, n, m, p, r ≥ 1.

The proof will be omitted due to the limited space.

From Lemma 1, we see that the proposed algorithm is a

polynomial-time algorithm.

As an example, consider the system (9) again. Suppose

T = 2. In Step 3, from U2
1,2 = 2, we obtain (i∗u, j∗u) =

(1, 2) and ν(i∗u) = 1. In Step 4, from Px = ∅ and Pu =
{1}, we have i∗u ∈ Pu and V 2

1,2 = 1. So go to Step 8,

i.e., it is impossible to determine if the system (9) is 2-

output-controllable. In fact, from (10), y2(2) includes the

identity u(0) ∧ (¬u(0)) = 0. Thus we see that there exists

an identical equation. Let us also consider the case of y = x2,

C = [ 0 1 0 ] in the system (9). Then for T = 2, we have

ΦC⊤
0 C⊤ = [ 1 0 0 | 1 | 1 ]⊤, Φ2C⊤

0 C⊤ = [ 0 0 0 | 1 | 0 ]⊤.

From Step 1 → Step 2 → Step 3 → Step 6, we can see that

the system (9) is 2-output-controllable.

As for identical equations, the proposed algorithm ex-

cludes the case of ¬h(a) ∧ ¬h(a) as well as (8). This is

a weak point. Furthermore, consider the system x(k + 1) =
x(k)⊕u(k). This system is T -output-controllable for T = 1.

However, the proposed algorithm cannot determine whether

this system is 1-output-controllable or not; thus there exists

a class of systems such that the proposed algorithm cannot

determine the controllability.

While the proposed algorithm includes such disadvan-

tages, one of the main advantages of the algorithm is that the

computational complexity of the above algorithm is small.

V. NUMERICAL EXAMPLE

As a numerical example, we consider the Boolean network

model of a neurotransmitter signaling pathway in Fig. 3,

which has been proposed in [8]. This model expresses the

molecular pathway between two neurotransmitter systems,

the dopamine and glutamate receptors. The state equation

of this system is omitted due to the limited space (see [8]).

From Fig. 3, we see that this Boolean network includes at

least four loops, e.g., the loop of ξ2, ξ4, ξ6, and ξ5, the loop

of ξ11, ξ12, ξ14, ξ9 and ξ10, etc.

We consider here the case in which for a fixed dimension

of u(k) and the fixed output y(k) = [ ξ8(k) ξ16(k) ]T ,

all combinations of ξi(k), i = 1, 2, . . . , 7, 9, . . . , 15 are

considered as the control inputs, which we call the input-

combinations, and then for a given T , the proposed algorithm

is applied to the system of the form (3) obtained for each

input-combination of ξi(k). It is remarked that depending on

the choice of the control inputs, there exist several cases to

which the polynomial-time algorithm proposed in [4] cannot

be applied due to the graph-structure constraints.

Fig. 3. Simplified model of interaction pathway between the glutamatergic
and dopaminergic receptors. Activation (solid), Inhibition (broken).

By applying our algorithm to the case of each input-

combination of ξi and each fixed T , we can obtain, for

example, the following results. In the case of dimu(k) = 2
and T = 5, there exist at least 6 input-combinations of ξi

that makes the system 5-output-controllable.

On the other hand, in the case of dimu(k) = 4 and T = 6,

we obtain as one of combinations of x(k) ∈ {0, 1}12 and

u(k) ∈ {0, 1}4 that make the system 6-output-controllable

x(k) = [ ξ1(k) ξ3(k) ξ4(k) ξ5(k) ξ6(k) ξ8(k) ξ9(k)

ξ11(k) ξ12(k) ξ14(k) ξ15(k) ξ16(k) ]
⊤

, (14)

u(k) = [ ξ2(k) ξ7(k) ξ10(k) ξ13(k) ]
⊤

. (15)

In fact, based on the above result we can verify that y(6)
is given as y1(6) = u1(4), y2(6) = u1(1) ∨ (u2(2) ∧
¬u3(0)∧u4(2)), which implies that y(6) can be freely given

by control inputs. It is remarked that the polynomial-time

algorithm proposed in [4] cannot be applied to the system

with the state (14) and the input (15) because the network

includes the two loops, i.e., the loop of ξ2, ξ4, ξ6, and ξ5,

the loop of ξ7, ξ11, ξ12, and ξ14. It is expected that such a

result will be one of guidelines in experimental approaches

to the control problem of biological systems.

VI. CONCLUSION

In this paper, a sufficient condition for a Boolean network

model with inputs and outputs to be output-controllable has

been derived by exploiting an adjacency matrix of its network

graph. The obtained condition, which is given in the form

of an algorithm, can be checked in polynomial time with

respect to the state/input dimensions and the control time;

thus it will be one of the powerful tools that can provide
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some clues for finding effective control inputs to control a

large-scale genetic network.

There are many interesting open problems to be addressed

in the future. For example, it is one of the significant topics

to apply the proposed approach to a practical and large-scale

gene network with more than 100 dimensions, and to show

the efficiency of our approach from the experimental point

of view.
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APPENDIX I

PROOF OF THEOREM 1

In this appendix, Theorem 1 is proven.

Proof: Noting that the identical equations have the

form in (8), and x(T ) is obtained recursively from (11), the

identical equations appeared in x(T ) always have the form

(V1 ⊕ w(k)) ∧ (V2 ⊕ w(k))(≡ 0), (16)

(V1 ⊕ w(k)) ∨ (V2 ⊕ w(k))(≡ 1) (17)

where w(k) denotes either variable of x(k) or u(k),

V1 =
⊕

(i,j)∈I1

vi(k + j), V2 =
⊕

(i,j)∈I2

vi(k + j),

V1 ⊕ w(k) = w(k), V2 ⊕ w(k) = ¬w(k), vi = 1

and I1, I2 are some subsets of the index set {(i, j) | i =
1, 2, . . . , p; j = 0, 1, . . . , T − 1}.

Thus the first story of the proof is to exclude the case

that y(T ) includes the identities that have the form of (16)

or (17), from the viewpoint of a necessary condition for the

identity to exist in y(T ).
In Step 3, from Xt

ix,jx

≥ 2 for some t, ix = i∗x, and jx =
j∗x, we see that more than 2 paths from yjx

(T ) to xix
(T − t)

exist, which is necessary for the identity on xix
(T − t) to

exist (Similarly for the case of U t
iu,ju

≥ 2). Thus we next

focus on the existence of logical NOT (i.e., vi) in these paths

in Step 4 and Step 5.

Consider the case that the logical NOT (i.e., vi) corre-

sponding to xi∗
x

(T − t) or ui∗
u

(T − t) obtained in Step 3

exists in (11), in other words, either i∗x ∈ Px or i∗u ∈ Pu

holds. Then the condition V t
ν(i∗

x
),j∗

x

≥ 1 implies that the

term vν(i∗
x
)(T − t) ⊕ xi∗

x

(T − t) is included in the paths

in question, which is a necessary condition for the existence

of the identity in yj∗
x

(T ). Thus we exclude this case (Step

4). (Similarly for the case ui∗
u

(T − t)).
In the other case, from (16), (17), for v(T − j), some

j ∈ {1, 2, . . . , t − 1}, to exist in the paths in question is

necessary for the existence of identities. If any element of

the j∗x-column or the j∗u-column of V j is greater than or

equal to 1, some element of v(T − j) exists in the paths in

question. Thus we exclude this case (Step 5-2).

The next story is to show that for the system in the case

that y(T ) includes neither identities of (16) nor identities of

(17), it is T -output-controllable (at x0).

First, the proof of the statement (i) is given. Condition

(i) in Step 6 implies that there exists no path between each

element of x(0) and each element of y(T ), since the (i, j)-th
element of X0 expresses if a path from xi(0) to yj(T ) exists

or not. On the other hand, note that (mh + i, j)-th element

of U expresses if a path from ui(T − h− 1) to yj(T ) exists

or not (h = 0, 1, . . . , T − 1). Thus condition (ii) in Step 6

implies that there exists at least one path from each element

of y(T ) to some ui(k).
Furthermore, condition (iii) in Step 6 means that the input

ui(k) for each i ∈ {1, 2, . . . , m} and k ∈ {0, 1, . . . , T − 1}
has a path connected to only one element of y(T ), or has

no path to any element of y(T ). From these conditions, it

follows that each ui(k) affects at most one yj(T ) and not

the other yh(T ), h �= j. Hence the value of yj(T ) can be

independently specified by the corresponding ui(k), which

implies that the system (11) is T -output-controllable.

Next, the statement (ii) is proven. Since condition (i)

in Step 6 does not hold, in this case, there exists a path

between some element of x(0) and some element of y(T ).
On the other hand, condition (iv) in Step 7 guarantees that

there exists no path between constant elements of x(1) =
fv(x0, u(0), v(0)) and elements of y(T ). Thus y(T ) is not

affected by the value of x0. Therefore, from (ii)-(iv), it

follows that the system (11) is T -output-controllable at x0.

This completes the proof.
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