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Abstract— In this paper, we develop a dynamic model for an
internal combustion engine using Support Vector Regression
(SVR). In particular, a linear programming SVR (LP-SVR)
approach is investigated. The computational advantages and
generalization capability of the LP-SVR dynamic engine model
are illustrated through a case study, where a model is developed
for an L4 gasoline engine. Simulation results are reported to
demonstrate the effectiveness of proposed approach and to
illustrate the trade-offs among different modeling attributes.

I. INTRODUCTION

To meet the ever demanding customer expectations and

increasingly stringent government emission regulations, and

in response to the stiff global market competition, automotive

companies are striving to develop advanced powertrain and

vehicle technologies under substantial time and cost con-

straints. Along with the introduction of new engine hardware

innovations, there also come with new engine control devel-

opment processes, where more emphasis has been placed

on model-based design and calibration [1] as a way to

deal with complexity and to assure robust performance. In

this process, a dynamic engine model is a critical tool that

facilitates the control strategy design, performance analysis

and overall system integration. Much effort has been devoted

to engine modeling by the industrial and academic engine

control community, and many different types of models with

different levels of complexity and fidelity can be found in

literature, for example, in [2], [3] and references therein.

Existing engine models that serve to support engine con-

trol and calibration are often phenomenological in nature.

They capture the cause-effect relationship between the inputs

(i.e., the adjustable engine control variables such as throttle,

spark, valve timing, etc.) and outputs (namely, the response

variables such as the torque, temperature, emissions). The

models generally can be categorized into two classes: the

grey-box models where certain first principles are combined

with system identification techniques in the modeling pro-

cess, and the black-box models which rely primarily on data

and regression techniques for model development. While

representative grey-box models can be found in literature (see

[2], [3] and references therein), several black-box models

have been developed using neural networks [4], [5].
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Even though the thermodynamic processes associated with

engine operation have many statistical characteristics due to

the empirical engine mapping practice, engine modeling has

been rarely attacked from the statistical learning perspective.

The aim of our work is to explore the state-of-the-art

statistical learning methodologies to develop a framework for

engine modeling and control strategy development. In par-

ticular, we investigate a Linear Programming Support Vector

Regression (LV-SVR) approach which exploits the functional

representation capability of the supporting vector regression

and the computational advantages of linear programming

optimization. Using an L4 engine as a case study, we show

that a dynamic engine model developed using the proposed

LP-SVR approach has the desired model accuracy as well

as computational efficiency. It should be pointed out that

several papers can be found in literature that use support

vector machine as a modeling tool for automotive systems,

such as [6], [7], [8]. However, we believe that this is the first

application that exploits the LP-SVR for engine modeling.

The rest of the paper will be organized as follows: In the

next section, we provide the general background of statistical

learning, with particular emphasis on support vector regres-

sion. Then, the soft-constrained LP-SVR, including details of

the algorithm and its implementation, is introduced. As a case

study, we apply the LP-SVR to the engine modeling of an

L4 gasoline engine, and demonstrate the computational and

generalization characteristics of the LP-SVR. Future works

are outlined together with the conclusions.

The following generic notations will be used throughout

this paper: lower case symbols such as x,y,α, · · · refer to

scalar valued objects, lower case boldface symbols such as

x,y, · · · and underlined Greek letters such as β ,γ, · · · refer to

vector valued objects, and finally capital boldface symbols

will be used for matrices.

II. SVR FOR DYNAMIC SYSTEM IDENTIFICATION

During the past decade, as a powerful statistical learning

technique for predictive data analysis, the support vector

machine (SVM) has been gaining popularity in the field of

machine learning[9], [10], [11]. Essentially, the SVM is a

universal approach for solving problems of multidimensional

function estimation. It is based on the Vapnik-Chervonenkis

(VC) theory [9]. Initially, it was designed to solve pattern

recognition problems, where in order to find a decision

rule with good generalization capability, a small subset

of the training data, called the support vectors (SVs), are

selected. Experiments showed that it is easy to recognize

high-dimensional identities using a small basis constructed
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from the selected support vectors. Since the inception of

this concept, the idea of support vector learning has also

been successfully applied to various fields such as regression,

density estimation and solving linear operator equations.

When SVM is employed to tackle the problems of function

approximation and regression estimation, it is often referred

to as the support vector regression (SVR) [9], [12]. Research

on this topic has shown that the SVR type of function

approximation is very effective [10], [11], [12], especially for

the cases involving high-dimensional input space. Another

important advantage for using SVR in function approxima-

tion is that the number of free parameters in the function

approximation scheme is equal to the number of support

vectors. Such a number can be obtained by defining the width

of a tolerance band through the ε-insensitive loss function.

Thus, the selection of the number of free parameters can be

directly related to the approximation accuracy and does not

have to depend on the dimensionality of the input space or

other factors as that in the case of multilayer feedforward

neural networks.

The ε-insensitive loss function is attractive because, unlike

the quadratic and Huber cost functions where all the data

points will be support vectors, the SV solution derived can

be sparse. In the realm of data modeling, the sparsity plays

a crucial role in improving the generalization performance

and computational efficiency. It has been shown that sparse

data representations reduce the generalization error as long

as the representation is not too sparse, which is consistent

with the principle of parsimony [13], [14].

For the purpose of modeling complex nonlinear dynamical

systems using sparse representation, SVR has been exploited

in the context of nonlinear black-box system identification

very recently [15], [16], [17], [18]. Applications to automo-

tive systems have also been reported [6], [7], [8]. Although it

is believed that the formulation of SVR embodies the struc-

tural risk minimization principle to combine the excellent

generalization properties with a sparse model representation,

some data modeling practicians have begun to realize that the

capability of the standard quadratic programming SVR (QP-

SVR) method to produce sparse models has perhaps been

overstated. For example, it has been shown that the standard

SVR technique does not always lead to parsimonious models

in system identification [17]. A recent study has compared

the standard SVR and uniformly regularized orthogonal least

squares (UROLS) algorithms using time series prediction

problems, and has found that both methods have similar

excellent generalization performance but the resulting model

from SVR is not sparse enough [19]. It is explained that the

number of support vectors found by a quadratic programming

algorithm in an SVR is only an upper bound on the number

of necessary and sufficient support vectors, due to the linear

dependencies between support vectors in the feature space.

On the other hand, due to the distinct mechanism used for

selecting the support vectors, the linear programming support

vector regression (LP-SVR) is advantageous over QP-SVR in

model sparsity, ability to use more general kernel functions

and fast learning based on linear programming [20], [21].

The idea of linear programming support vector machines is

to use the kernel expansion as an ansatz for the solution,

but to use a different regularizer, namely the norm of the

coefficient vector. In other words, for LP-SVR, the nonlinear

regression problem is treated as a linear one in the kernel

space, rather than in the feature space as in the case of QP-

SVR. Obviously, the choice of kernel plays a critical role in

the performance of LP-SVR.

III. SOFT-CONSTRAINED LINEAR

PROGRAMMING SVR

Conceptually there are some similarities between the LP-

SVR and QP-SVR. Both algorithms adopt the ε-insensitive

loss function, and use kernel functions in the feature space.

Consider the regression in the following set of functions

f (x) = wT φ(x)+b (1)

with given training data, {(x1,y1), · · · ,(xl ,yl)} where l de-

notes the total number of exemplars, xi ∈ Rn are the inputs

and yi ∈R are the target output data. The nonlinear mapping

φ : Rn 7→ Rm(m > n) maps the input data into a so-called

high dimensional feature space (which can be infinite dimen-

sional) and w ∈ Rm,b ∈ R. In ε-SV regression, the goal is

to find a function f (x) that has at most ε deviation from

the actually obtained targets yi for all the training data, and

at the same time, is as flat as possible. In the conventional

support vector method, one aims at minimizing the empirical

risk subject to elements of the structure

minimize 1
2
‖w‖2 +C ∑

l
i=1(ξi +ξ ∗

i )

sub ject to







yi −〈w,φ(x)〉−b ≤ ε +ξi

〈w,φ(x)〉+b− yi ≤ ε +ξ ∗
i

ξi,ξ
∗
i ≥ 0

(2)

where ξi and ξ ∗
i are the slack variables corresponding to

the size of the excess deviation for positive and negative

direction respectively. This is a classic quadratic optimization

problem with inequality constraints, and the optimization

criterion penalizes data points whose y−values differ from

f (x) by more than ε . The constant C > 0 determines the

trade-off between the flatness of f and the amount up to

which deviations larger than ε can be tolerated. By defining

the ε-insensitivity loss function,

L(yi − f (xi)) =

{
0, i f |yi − f (xi)| ≤ ε
|yi − f (xi)|− ε, otherwise

(3)

the optimization problem (2) is equivalent to the following

regularization problem,

minimize Rreg[ f ] =
l

∑
i=1

L(yi − f (xi))+λ‖w‖2 (4)

where f (x) is in the form of (1) and λ‖w‖2 is the regular-

ization term. The ε-insensitivity loss function (3) defines an

ε-tube. According to the well-known Representer Theorem

[11], the solution to the regularization problem (4) can be
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written as the SV kernel expansion

f (x) =
l

∑
i=1

βik(xi,x) (5)

provided k(xi,xi) = 1, where k(xi,x) is the kernel function.

Obviously, the kernel functions k(xi,x) play a crucial role in

determining the characteristics of the model (5). In support

vector learning algorithms, the kernel function provides an

elegant way of working in the feature space, thereby avoiding

all the troubles and difficulties inherent in high dimensions.

Several commonly-used kernel functions in the literatures

are:

• Linear kernel:

k(x,x′) = 〈x,x′〉

where 〈·, ·〉 denotes the inner product of two vectors;

• Gaussian radial basis function (GRBF) kernel:

k(x,x′) = exp

(
−‖x−x′‖2

2σ2

)

;

• Polynomial kernel:

k(x,x′) = (1+ 〈x,x′〉)q;

• Sigmoid kernel:

k(x,x′) = tanh(α〈x,x′〉+ γ);

• Thin plate spline kernel:

k(x,x′) = ‖x−x′‖2ln‖x−x′‖.

σ ,q,α,γ are adjustable parameters of the kernel functions.

Defining

β = [β1,β2, · · · ,βl ]
T
,

LP-SVR replaces (4) by

minimize Rreg[ f ] =
l

∑
i=1

L(yi − f (xi))+λ‖β‖1 (6)

where f (x) is in the form of (5) and ‖β‖1 denotes the l1-

norm of β in the coefficient space. This regularization prob-

lem is equivalent to the following constrained optimization

problem

minimize ‖β‖1 +C ∑
l
i=1(ξi +ξ ∗

i );

sub ject to







yi −∑
l
j=1 βik(x j,xi) ≤ ε +ξi,

∑
l
j=1 βik(x j,xi)− yi ≤ ε +ξ ∗

i ,

ξi,ξ
∗
i ≥ 0.

(7)

From the geometric perspective, it can be followed that

ξiξ
∗
i = 0 in SV regression. Therefore, it is sufficient to

just introduce slack variables ξi ≥ 0 in the constrained

optimization problem (7). Thus, we arrive at the following

formulation of SV regression with fewer slack variables

minimize ‖β‖1 +2C ∑
l
i=1 ξi;

sub ject to







yi −∑
l
j=1 βik(x j,xi) ≤ ε +ξi,

∑
l
j=1 βik(x j,xi)− yi ≤ ε +ξi,

ξi ≥ 0.

(8)

In an attempt to convert the optimization problem above into

a linear programming problem, we decompose βi and |βi| as

follows

βi = α+
i −α−

i , |βi| = α+
i +α−

i (9)

where α+
i ,α−

i ≥ 0. It is worth noting that the decompositions

in (9) are unique, i.e., for a given βi there is only one pair

(α+
i ,α−

i ) which satisfies both equations. Furthermore, both

variables can not be larger than zero at the same time, i.e.,

α+
i ·α−

i = 0. In this way, the l1−norm of β can be written

as

‖β‖1 =



1,1, · · · ,1
︸ ︷︷ ︸

l

,1,1, · · · ,1
︸ ︷︷ ︸

l





(
α+

α−

)

(10)

where α+ = (α+
1 ,α+

2 , · · · ,α+
l )T and α− =

(α−
1 ,α−

2 , · · · ,α−
l )T . Furthermore, the constraints in the

formulation (8) can be written in the following vector form

(
K −K −I

−K K −I

)




α+

α−

ξ



 ≤

(
y+ ε
ε −y

)

(11)

where Ki j = k(xi,x j),ξ = (ξ1,ξ2, · · · ,ξl)
T and I is an l × l

identity matrix. Thus, the constrained optimization problem

(8) can be implemented by the following linear programming

problem with the variables α+,α−, and ξ :

minimize cT





α+

α−

ξ





sub ject to

(
K −K −I

−K K −I

)




α+

α−

ξ



 ≤

(
y+ ε
ε −y

)

(12)

where c =



1,1, · · · ,1
︸ ︷︷ ︸

l

,1,1, · · · ,1
︸ ︷︷ ︸

l

,2C,2C, · · · ,2C
︸ ︷︷ ︸

l





T

.

In the QP-SVR case, the set of points not inside the tube

coincides with the set of SVs. While, in the LP context, this

is no longer true (although the solution is still sparse), any

point could be an SV, even if it is inside the tube. Actually,

the sparse solution still can be obtained in LP-SVR even

though the size of the ε−insensitive tube was set to zero,

due to the soft constraints used. However, sparser solution

can usually be obtained by setting non-zero ε .

Many standard software packages can be used to solve

the LP problem given by (12). In our work, MATLAB c©

functions are used to perform the LP problem formulated

for dynamic engine modeling.

IV. APPLICATION OF LP-SVR FOR ENGINE

MODELING

As a case study to evaluate the applicability of the LP-SVR

for engine modeling, we consider an L4 gasoline engine as

the platform. In addition to the spark, fuel and air, this engine

is equipped with the intake VVT (variable valve timing)

mechanism. A high fidelity proprietary engine model, which

has been extensively validated and is being used for engine
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TABLE I

SUMMARY OF LP-SVR ENGINE MODEL

Tq HC NOx Texh Tcat Cov

sparsity (%) 3.12 2.39 0.94 0.63 0.62 0.21
Rel. rms for
training(%)

7.56 5.44 5.93 3.07 0.08 3.28

Rel. rms for
validation(%)

6.97 5.72 5.54 4.40 0.17 4.97

Opt. time (sec) 242.1 331.7 96.70 64.10 146.6 95.38
Sim. Time
for validation
(sec)

0.73 0.52 0.20 0.14 0.13 0.03

kernel rbf1 rbf2 rbf3 rbf4 lin. lin.

TABLE II

COMPARISON OF LP-SVR (LP) AND QP-SVR (QP) MODELS

Tq Tcat NOx
LP QP LP QP LP QP

Sparsity (%) 3.12 20.92 0.62 3.85 0.94 36.94
Rel. rms for
training

7.59 6.51 0.08 0.07 5.93 5.73

Rel. rms for
validation

6.97 6.37 0.17 0.09 5.54 5.34

Opt time for
training

242.2 14915 146.6 14421 96.70 15130

Sim time for
validation

0.73 6.69 0.13 0.70 0.20 9.50

kernel rbf1 rbf1 lin. lin. rbf3 rbf3

and chose the one that gives the best training result for each

output variables in terms of modeling accuracy. One can see

the computational times required for optimization and for

simulation are directly correlated to the sparsity of the model

and to the type of the kernel used. The linear kernel requires

less computational time, as one would expect. For those

functions that use the same type of kernel, the computational

time of the resulting model is almost linearly dependent on

the sparsity (see (Tq, HC, NOx,Texh) for the GBRF kernel

and (Tcat, Cov) for the linear kernel).

Figure 2 shows the time traces of three outputs of the LP-

SVR model for the validation run, comparing three outputs

of the LP-SVR with the high fidelity model. One can see

that the prediction of the LP-SVR model is very close to

that given by the “virtual” engine, indicating an excellent

generalization. The plots for other outputs are omitted, as

similar trends are exhibited.

To understand the advantages/disadvantages of the LP-

SVR modeling approach, especially in relation to other

known methodologies, a regression model is developed using

standard least squares algorithm to fit the data using a

standard polynomial function. Moreover, an SVR model

using quadratic programming (QP-SVR) is also developed

to clarify the trade-offs between the computational effort

and generalization capability. The LP-SVR and QP-SVR

models use the same inputs and the same model structure

(i.e., the same regression window for inputs and output),

and their main attributes are summarized in Table II for

three representative output variables: engine torque, Tcat and

NOx that compares LP-SVR with QP-SVR. Note, however,

that the parameters of the SVR model (namely the values
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Fig. 2. SIMULATION RESULTS OF THE LP-SVR MODEL FOR
VALIDATION.

for ε and C) are different for LP-SVR and QP-SVR, and

they are optimized for each case to achieve the best model

accuracy. Similar characteristics are revealed by models for

the other output variables which are not listed here due

to space limitation. One can see from Table 2 that, while

the LP-SVR model has slightly higher rms, its substantial

computational advantage (in terms of optimization time and

simulation time) over the QP-SVR is very obvious.

VI. CONCLUSIONS

In this paper, we presented a novel approach for en-

gine modeling using linear programming support vector

regression. Through a case study, we demonstrated that

the dynamic engine model developed using the proposed

approach has several special characteristics that make it

attractive. First, compared to the quadratic programming

SVR, the linear programming SVR has better sparsity which

directly translates to model simplicity. Second, the LP-SVR
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is computationally much more tractable than QP-SVR, as

measured by the time it takes to perform the optimization

in determining the support vectors. This computational ef-

ficiency is achieved without substantial compromise for the

model accuracy. It also makes the LP-SVR more attractive

for on-line applications. Third, the striking similarity in the

prediction accuracy between the training phase and validation

phase confirms the excellent generalization property. The LP-

SVR also provides several mechanisms, such as the choice of

the kernel and the ε-insensitive loss function, that will allow

the user to tune the process to achieve the desired modeling

results.

At this stage, the use of statistical learning tools such

as the support vector regression has been primarily limited

to off-line applications, such as the one illustrated in this

paper. The resulting models are also validated for series-

parallel implementation where the measured output is used

for future predictions. While the series-parallel model is

useful for prediction purpose, a parallel model where the

measured output is not used for prediction is needed for

stand-alone simulation applications. The excellent sparsity

and computational simplicity demonstrated by the LP-SVR,

however, suggest the potential of this approach for on-

line applications such as adaptation. Additional mechanisms,

such as iterative training and weights updating, have been

explored to assure the validity of model in the parallel

implementation. Our future work will focus on exploring the

statistical learning tools for on-line control and adaptation,

aimed at improving the engine control robust performance

over its life-cycle.
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