
  

  

Abstract—A nonlinear fluid flow model is used in this paper 
to analyze and control DiffServ Networks. The controller design 
is based on the integrated dynamic congestion control strategy. 
In this paper different second order sliding mode controllers are 
proposed to solve the infinite switching problem. The same as 
standard sliding mode control, second order sliding mode 
technique is also robust to model uncertainties and disturbances, 
meanwhile overcome the inherent chattering problem which is 
more acceptable in application. The performance of the control 
algorithms are verified by the simulation results. 

I. INTRODUCTION 
he DiffServ Network that is under consideration by IETF 
can provide different services to users of the Internet [1]. 

It adheres to the basic Internet philosophy and can be seen as 
a kind of extending of the Internet. There are two important 
services of DiffServ Network, one is premium traffic service 
and the other is ordinary traffic service. Premium service is 
designed for applications with stringent delay and loss 
requirements on per packet basis that can specify upper 
bounds on their traffic needs and required quality of service 
[2], while ordinary traffic is intended for applications that 
have relaxed delay requirements and allow their rates into the 
network to be controlled [3]. 

For DiffServ Network, the fluid flow model is extensively 
used for network performance evaluation and control, 
especially for congestion control problems. Recently, in order 
to develop the network congestion controller, model-based 
schemes have been proposed to provide theoretic analysis for 
networking problems, but most of them are based on linear 
control theory. For example, analysis and control design tools 
are applied to control traffic in ATM networks [4] and 
analyze the stability of congestion control schemes in TCP/IP 
networks [5], [6]. But due to the inaccurate and uncertain 
nature of network models, the design of congestion 
controllers whose performance can be analytically 
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established and demonstrated in practice is still a challenging 
unresolved problem.  

Sliding mode control (SMC), as a special class of nonlinear 
systems is accepted as a robust control for dynamic systems. 
But generally speaking, any sliding mode is a mode of 
motions on the discontinuity set of a discontinuous dynamic 
system. Such mode is understood in the Filippov sense and 
features theoretically-infinite frequency of control switching 
[7]-[9]. So reduce the chattering is very important for SMC, 
and second order sliding mode control (SOSMC) [10] is an 
effective method.  

In this paper, our attention is focus on applying second 
order sliding mode control to address the queue regulation of 
premium and ordinary buffers in DiffServ Network, as well 
as reduce the chattering problem obviously and make the 
controller much more feasible. The continuous SOSMC may 
be used to achieve robust stabilization in finite time of the 
sliding variable to zero in the presence smooth disturbance.  

The rest of the paper is organized as follows: in section II, 
illustrate the control problem by giving the fluid flow model 
and the integrated dynamic congestion control strategy. The 
second order sliding mode controller is described in section 
III, three algorithms are used in the design procedure. In 
section IV simulations are performed in order to illustrate the 
feasibility of the control scheme and the conclusion is given 
in the last section.  

II. PROBLEM STATEMENT  
Based on fluid flow theory, a validated nonlinear DiffServ 

Network buffer dynamic is given as follows [3]. 
( )( ) ( ) ( )

1 ( )
x tx t C t t

x t
λ= − +

+
&                     (1) 

where ( )x t  denotes the queue length of the buffer, and it is 
taken as the state variable; ( )C t represents the to-be-assigned 
capacity, and it is chosen as the control input for premium 
buffer; while a nonlinear function ( )tλ  is used to denote the 
average incoming traffic rate, and it is chosen as the control 
input for ordinary buffer. 

In system (1) we have assumed that the sources of data are 
persistent and have ignored the latency of coming traffic. But 
in fact, the input and output of traffics are shifted in time. So 
we can reformulate the system in equation (2): 

( )( ) ( ) ( )
1 ( )

x tx t C t t
x t

λ τ= − + −
+

&              (2) 

For control purpose, the model might be represented as a 
system of coupled state and output equations  
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x t
x t C t t

x t
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λ τ⎧ = − + −⎪ +⎨
⎪ =⎩

&
              (3) 

Notice that the index ( , )i p r= where p and r indicate 
premium and ordinary buffers dynamic respectively [11] here 
and all over this paper. 
The control strategy is illustrated in figure 1. For system (2), 
the state variables are ( ),   ( )p rx t x t . For premium buffer the 

control signal is link capacity ( )pC t  and the data coming rate 

( )p tλ  can be treated as disturbance of the system, so the 
control purpose is that through accommodating link capacity 

let the system output signal ( )px t  trace the desired 

reference queue length ( )d
py t ; For ordinary buffer the link 

capacity ( )rC t is the left over capacity calculated from 
( ) ( ) ( )r pC t C t C t= −  which is uncontrolled, so the control 

signal is ( )r tλ , the control purpose of ordinary buffer is that 
through adjusting the arriving rate of data ( )r tλ let the output 

signal ( )rx t  trace the desired reference queue length ( )d
ry t . 

serverC  is the max available or assigned link capacity. 
,p rτ τ are block delays in premium traffic and ordinary traffic, 

and they capture and correspond to any delay in the network 
due to propagation, processing, transmission. 
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Fig. 1. Schematic diagram of the control strategy 

III. PROPOSED SECOND ORDER SLIDING MODE CONTROLLER  
Consider an uncertain nonlinear system  

( , , )x f t x u=&                                (4) 
with relative degree one, where x  is the measurable state 
vector, u  is the control input. 

Define a proper sliding manifold in the state space 
( , ) 0t xσ =                               (5) 

  Assume that the sliding variable has a relative degree one, 
which implies that the second derivative of σ  can be 
expressed as  

( , ) ( , )t y t y uσ ϕ γ= +&& &                      (6) 
The main idea behind second-order sliding mode is to act 

on the second-order derivative of the sliding variable σ  

rather than the first derivative as in standard sliding modes. 
Keeping the main advantages of the standard sliding modes, it 
has additional advantage that it removes the chattering effect 
[13]. The second-order sliding mode is determined by the 
equalities 0σ σ= =& , which forms a 2-dimensional condition 
on the states of the dynamic system. 

In the SOSMC, the time derivative of the control 
( ) ( )v t u t= & is used as the control input, instead of the actual 

control ( )u t . If we choose ( ( )) 0x tσ =  as sliding manifold, it 
turns out that ( )v t  affects  ( ( ))x tσ&&  but not ( ( ))x tσ& , and the 
problem becomes that of steering ( ( ))x tσ to zero by acting on 
its second derivative. The new control ( )v t is designed to be a 
discontinuous signal, but its integral (the actual control ( )u t ) 
is continuous, so that the chattering is eliminated. That 
characteristic is very important for our control strategy, 
because in section II we have illustrate our control procedure 
as follows: first control premium buffer by control signal 

( )pC t , then control ordinary buffer with input disturbance 

( ) ( ) ( )r pC t C t C t= − , if the control signal ( )pC t is frequently 
changed, the disturbance for ordinary buffer will be 
artificially increased, so decrease chattering is very much 
important for our control strategy. That is why we design 
second order sliding mode controller for a system with 
relative degree one. 

The control objective is to design a sliding mode control 
system for the output of the system shown in (3) to track the 
reference trajectory, which is, asymptotically.  The proposed 
second order sliding mode control system is designed to 
achieve the position tracking objective and is described as 
follows. 

A. Lyapunov based second order sliding mode controller 
First choose a sliding variable as conventional sliding 

mode control, 
( ) ( ) ( )d

i i it x t y tσ = −                             (7) 
The sliding variable dynamics are derived 

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) 1
d di

i i i i i i i
i

x t
t x t y t C t t y t

x t
σ λ τ= − = − + − −

+
& & & &   (8) 

Here the delay signal ( )i itλ τ− is approximated in its 

first-order as ( ) ( )i i i i it tλ τ λ τ λ− = − &  with iτ is unknown but 
constant delay coefficient. And assume that iτ is bounded 

as i idτ ≤ , ( )i tλ is second order derivable, iλ& is bounded 

as 1i iDλ ≤&  and iλ&& is bounded as 2i iDλ ≤&& . 

2

( ) ( ) ( )
( ) ( )

      ( ) ( ) ( ) ( )
( ) 1 ( ( ) 1)

d
i i i

di i
i i i i i

i i

t x t y t
x t x t

C t C t t y t
x t x t

σ

λ τ

= −

= − − + − −
+ +

&& && &&

&& & &&
 

(9) 
The Lyapunov function is chosen as 

2 21 1( , )
2 2i i i i i i iV σ σ ρ σ σ ε σ= + +& &            (10) 
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where  and i iρ ε are positive constant. 
The derivative of ( , )i iV σ σ&  is 

( , ) [ sgn( )]i i i i i i i iV σ σ σ ρ σ σ ε σ= + +& & & &&            (11) 

In order to guarantee the stability condition, choose  
sgn( )i i i i i i iσ γ σ ρ σ ε σ= − − −&& &                  (12) 

where iγ  is a positive constant. 

Then 2( , ) 0i i i iV σ σ γ σ= − ≤& & & .The second order surface is 
reachable and the auxiliary output system will be 
asymptotically stable in 0i iσ σ= =& , see [15]. 

According to (12), a second order sliding mode controller 
is designed as 

22( ) ( ) ( )1
( 1)( ) ,

sgn( )

p d
p P p p pp

pP
p

p p p p p p

x
t C t y t d Dx

xC t
x

λ

γ σ ρ σ ε σ

⎛ ⎞
− − −+ ⎜ ⎟+= ⎜ ⎟

⎜ ⎟+ + +⎝ ⎠

&
& &&

&

&

 (13) 

22( ) ( ) ( ) ( )
1( 1)

       sgn( )

dr r
r r r r r r

rr

r r r r r r

x x
t C t C t y t d D

xx
λ

γ σ ρ σ ε σ

= + + +
++

− − −

&& & &&

&

.   (14) 

B. Exponential reaching law SOSM controller design 
Choose a second-order sliding manifold as 

i i i iσ µ σΣ = +&                                (15) 
where 0iµ > . 
The derivative of iΣ is  

i i i iσ µ σΣ = +& && &  
and from (8) (9) we can get that 

2

2

( ) ( )
( ) ( ) ( ) ( )

( ) 1 ( ( ) 1)
( )

   [ ( ) ( ) ( )]
( ) 1

( ) ( ) ( )
   ( ) ( )[ ]

( ) 1 ( ) 1( ( ) 1)

   ( ) ( ) [ (

di i
i i i i i i

i i

di
i i i i i

i

i i i
i i i

i ii

d
i i i i i

x t x t
C t C t t y t

x t x t
x t

C t t y t
x t

x t x t x t
C t C t

x t x tx t

t y t t

λ τ

µ λ τ

µ

λ τ µ λ

Σ = − − + − −
+ +

+ − + − −
+

= − − +
+ ++

+ − − + −

&& && &&

&

&&

& && ) ( )]d
i iy tτ − &

(16) 

Then choose the exponential reaching law of sliding mode 
as in the conventional sliding mode control 

 1 2 sgn( )i i i i iω ωΣ = − Σ − Σ&                     (17) 

Because 0i iΣ Σ ≤& , the second-order sliding manifold is 
reachable. And in the sliding manifold 0i i i iσ µ σΣ = + =& , iσ  
is exponential stable. 

So we can get the control law as follows: 

2

2 1

1 2

1 ( ) ( )
( ) ( ( )[ ] ( )

( ) 1( ( ) 1)

        ( ) [ ( ) ( )]

        sgn( ))

p p p
P p p p

p pp

d d
p p p p p p p p

p p p p

x x t x t
C t C t t

x x tx t

d D y t t d D y t

µ λ

µ λ

ω ω

+
= − + +

++

− − + − −

+ Σ + Σ

&
& &

&& & (18) 

2

2 1

1 2

( ) ( ) ( )( ) ( ) ( )[ ]
( ) 1 ( ) 1( ( ) 1)

        ( ) [ ( ) ( )]
        sgn( )

r r r
r r r r

r rr
d d

r r r r r r r r

r r r r

x t x t x tt C t C t
x t x tx t

d D y t t d D y t

λ µ

µ λ
ω ω

= + +
+ ++

+ + − − −
− Σ − Σ

&& &

&& &  (19) 

C. A twisting SOSM controller design 
Consider sliding variable dynamics degree one system 

( , ) ( , )h t x g t x uσ = +&                         (20) 

with ,  0 m Mh C K g K≤ < ≤ ≤ . 
The ‘twisting’ algorithm is one of the first proposed 

algorithms belonging to the considered class of SOSMC. It is 
based on the knowledge of the sign of both σ  andσ& . 

Refer to [8], the controller which can establish and keep 
0σ ≡  is designed as follows: 

signu k σ= −                               (21) 
with the condition  

0mkK C− >                                (22) 
Consider u&  as a new control in order to overcome the 

chattering, differentiating (20) achieves 
1 1( , , ) ( , )h t x u g t x uσ = +&& &                      (23) 

where 1 t xh h h x′ ′ ′= + , 1 t xg g g x′ ′ ′= + . 
And define the function  

1/ 2 sgnσ β σ σΣ = +&                     (24) 
Let 

,            ,

- sign ,  .

u u k
u

u kα

⎧− >⎪= ⎨
∑ ≤⎪⎩

&                        (25) 

Then with sufficiently large α  controller (25) provides for 
the establishment of the finite time stable second order mode 

0σ ≡ . It is shown in the work [16] that the control law (21) 
and (25) stabilizing the nonlinear dynamic sliding variable to 
zero in finite time so that the SOSM-based control achieves 
desired finite time convergence of the sliding manifold.  

In a router buffer, all the signals are positive, and from 
system model (2), we can calculate the scope of the signals. 
Then the controller can be adopted for the buffer management. 
First choose a sliding variable (7) as conventional sliding 
mode control, and the sliding variable dynamics are derived 
as (8) and (9). 
Suppose the max of the arriving rate ( )i tλ is Γ and the queue 

length ( )ix t is at least 1, then we have 
( )1 1

2 ( ) 1
i

i

x t
x t

≤ ≤
+

. 

For the premium traffic  
( )

( ) ( ) ( ) ( )
( ) 1
pd

p p p p p
p

x t
t t y t C t

x t
σ λ τ= − − −

+
& & ,          (26) 

compare with (20), there are 

1( , ) ( ) ( ) ( )d d
p p p p rh t x t y t d D y tλ= − ≤ Γ − −& & , 

( )
( , )

( ) 1
p

p

x t
g x t

x t
=

+
. 

so we can get 1/ 2,  1m MK K= = .  
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The controller is designed as 
( ) signp p pC t k σ= ,                       (27) 

with 12( )d
p p p pk d D y> Γ − − & , 

and 

1/2

,                                       
( )

sign( + sign ),  

p p p

p
p p p p p p p

C C k
C t

C kα σ β σ σ

>⎧⎪= ⎨
≤⎪⎩

&
&

.  (28) 

For the ordinary traffic control,  
( )

( ) ( ) ( ) ( )
( ) 1

dr
r r r r r

r

x t
t C t y t t

x t
σ λ τ= − − + −

+
& & ,         (29) 

compare with (20),  

1

( )
( , ) ( ) ( )

( ) 1

          ( )

dr
r r r r

r

d
server p r r r

x t
h t x C t y t

x t

C C y t d D

τ λ= + +
+

< − + +

&&

&

, 

( , ) 1g t x = . 
The proposed controller is  

( ) signr r rt kλ σ= −                       (30) 
with 1( )d

r server p r r rk C C y t d D> − + +& . 
For the condition   r rkλ > does not exist, so we can get 

1/2( ) sign( + sign )r r r r r rtλ α σ β σ σ= −& & .          (31) 
For all the proposed controllers, the actual control is 

u vdt= ∫ , which can eliminate the chattering obviously. And 

the stability of the proposed second order sliding mode 
control system can be guaranteed on the sliding manifold 

0Σ = , and 0σ σ= =& . So it is true that 0d
p px y− →  and 

0d
r rx y− → , asymptotically. 

IV. SIMULATION RESULTS 
In this simulation, we will compare these three controllers 

in the same network condition. And the simulation results for 
premium buffer and ordinary buffer are showed separately. 

The router parameters are 4000serverC = , 400Γ = , 
0.05pd s= , 0.1rd s= , 1 1 100,p rD D= =  2 2 10,p rD D= = . During 

the simulation, 0.02 , 0.06p rs sτ τ= = , (0) 10px = , (0) 10rx = . 
To the Lyapunov based controller, 15, 80, 7i i iγ ρ ε= = = . To 
the exponential controller, 1 21, 50, 2iµ ω ω= = = . To the 
twisting SOSM, the controller parameters are set 
to 2000pk = , 4000rk = 3000p rα α= = , and 

p rβ β= = 150 .  
For premium buffer the desired reference queue length 
( )d

py t  is a constant 100, and the traffic incoming rate which is 
the disturbance is set to be a sine wave with amplitude=50 
and periods=0.1s. The desired and actual trajectories are 
shown in figure 2. It is showed that ( )px t converges to 

( ) 100d
py t =  very quickly, in which the twisting controller 

and the exponential controller are faster than the Lyapunov 

one to reach stable state. And the control signals ( )pC t for 
these three methods are presented in figure 3.  

For ordinary buffer the desired reference queue length 
( )d

ry t  is a sine wave showed in figure 4 in green. It is showed 

that the actual trajectories ( )rx t converge to ( )d
ry t  very 

quickly and the twisting controller has better transient 
performance than the other two. The control signal ( )tλ  is 
presented in figure 5. 

0 2 4 6 8 10
0

20

40

60

80

100

120

times(s)
pr

em
iu

m
 b

uf
fe

r q
ue

ue

Ly apunov
Exponential
twisting

 
Fig. 2. Buffer length of premium traffic ( ) and  ( )d

p px t y t  
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Fig. 3. Control signal for premium traffic 
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Fig. 4. Buffer length of ordinary traffic ( ) and  ( )d

r rx t y t  
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Fig. 5. Control signal for ordinary traffic 

0 2 4 6 8 10
20

40

60

80

100

120

140

160

180

times(s)

or
di

na
ry

 b
uf

fe
r q

ue
ue

Reference
Lyapunov
Exponential
Tw isting

 
Fig. 6. Ordinary buffer length with a disturbance 

Remark: In ordinary traffic a step disturbance is added 
when t=5s. Figure 6 shows that the queue length has no 
difficulty to trace the reference length. The tracking errors 
converge to zero as well. 

V. CONCLUSION 
This paper is concerned with the second order sliding mode 

controller design for DiffServ Network. The robustness of the 
proposed controller guarantees the regulation of the queue 
length with unknown model dynamics and uncertain external 
disturbances. In effect, the simulation results demonstrate that 
in both premium and ordinary buffer the proposed method 
can obtain faster transients and less oscillatory responses 
under dynamic network conditions, which translates into 
higher link utilization, low packet loss rate and small queue 
fluctuations. 
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