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Abstract— In this paper, the problem of precise relative
positioning using GPS (Global Positioning System) Carrier-
Phase (CP) information is addressed. The unknown cycle
ambiguity between GPS satellites and antennas at the moment
of receiving the CP signal should be resolved for precise
navigation. The sequential Monte Carlo filter approach, called
particle filter (PF), is applied to the relative positioning problem
which includes the ambiguity resolution problem for the CP
nonlinear observation and dynamic equations. The proposed
algorithm of GPS CP navigation is based on two main factors.
First, even though most existing GPS CP navigation algorithms
focus on obtaining the correct integer value among the integer
candidates, we directly sample from the three dimensional
position space and construct integers consistent with the PF.
This allows the PF position estimates to be insensitive to
changes of GPS satellites and cycle-slips. Second, the potential
large number of samples in position space is handled with
the resampling technique in the sequential particle filters. The
experimental results show the performance and the advantages
of the proposed approach compared to the existing methods.

I. INTRODUCTION

Nowadays, precise relative position estimation based on
GPS CP is used widely. We concentrate on the relative
position estimation problem where the relative position vec-
tor (or baseline vector) is determined with given GPS code
and CP measurements. In order to make use of CP in the
relative position estimation problem, the integer number of
wave lengths between antennas, called the integer ambiguity
problem, should be resolved. Many algorithms have been
introduced to solve this integer ambiguity resolution prob-
lem. These algorithms can be classified into three different
methods [1]: 1) direct estimation in measurement space, 2)
searching for the correct integer ambiguity among many
integer hypotheses, 3) searching for the correct position
among many position hypotheses.

The first method is straightforward and simple. The am-
biguity is estimated directly as a bias by comparing the
code measurements to the CP measurements [2]. Since the
code information is not accurate enough compared to the CP
measurements, direct estimation of the ambiguity from the
code can cause inaccurate position estimation.

Most ambiguity resolution techniques are classified by
the second method. These algorithms are based on search
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procedures that can distinguish a correct integer ambiguity
hypothesis from all other integer hypotheses. First, the real-
valued ambiguity, called the float ambiguity, is estimated,
and the search space of the integer ambiguity hypotheses
is constructed from integer values near the float value.
The volume of the integer ambiguity searching space is
usually limited by the uncertainty of measurements. Then,
the most likely correct integer ambiguity hypothesis is se-
lected. Typical methods, such as the Least Squares Am-
biguity Search Technique (LSAST) [3], the Least-squares
AMBiguity Decorrelation Approach (LAMBDA) [4] and re-
cently the MHWSPT (Multiple Hypotheses Wald Sequential
Probability Test) [5], have been used successfully to solve
the ambiguity resolution problem. However, the hypothesis
technique over the ambiguity candidates should be completed
before any change in the available GPS satellites, since these
algorithms have difficulty when the set of GPS satellites
change. Furthermore, after the integer ambiguity is found,
the system will lose accuracy when a cycle-slip can occur.
Methods are required to detect cycle-slip and resolve the
ambiguities again.

The Ambiguity Function Method (AFM) is a representa-
tive example of the third integer resolution method [6]. The
AFM selects its hypotheses in three dimensional position
space, instead of the ambiguity space. This particular aspect
makes the search process insensitive to changes in GPS
satellites and to cycle-slips. However, the AFM usually needs
a much larger number of hypotheses than the ambiguity-
search-based methods, and this disadvantages make this
technique unpopular.

Note that some methods use the float ambiguity estimate
directly without any effort being made to resolve the integer
ambiguity problem [7]. It is shown that the integer constraint
results in better precision than float ambiguity estimates
when the time span of the CP observation is short [8]. The
proposed algorithm is similar to the float ambiguity estimate
method in that an effort to search or to fix the integer
ambiguity is not made. However, the proposed algorithm can
preserve the precision of the position accuracy compared to
the position estimates of the fixed integer ambiguity methods
since the integer property of the ambiguity is taken into
account during the ambiguity resolving process.

In this paper, we propose an algorithm for the integer
ambiguity resolution problem that overcomes the main dis-
advantages of the existing methods: 1) the dependency of
the second method to changes in GPS satellites and 2) the
large number of candidates required in the third method. As
an alternative method for the integer ambiguity resolution

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA07.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4171



problem, the particle filter (PF) with the samples drawn from
the position space is proposed. The potential difficulty is
the large number of position samples which may produce
a heavy computational burden for real-time processing. To
circumvent this difficulty, the ”resampling” process [9] is
employed which keeps only the more-likely samples, and
eliminates the less-likely samples. As a result of sampling
from a position space and using the PF with resampling,
the proposed GPS CP positioning algorithm is shown to be
insensitive to changes in GPS satellites or cycle-slips.

The paper is organized as followings. Section II reviews
particle filtering. In Section III, we review the relative
position determination problem using GPS code and CP
information, and application of particle filters to the relative
positioning problem where the particle samples are obtained
in position space. The experimental results in Section IV
show the performance of the proposed technique for the
precise relative GPS CP position determination of satellites
in Low Earth Orbit (LEO).

II. SEQUENTIAL IMPORTANCE SAMPLING (SIS)
PARTICLE FILTER

To define the estimation problem, the state-space dynamics
and observation equations are,

xk = f(xk−1) + wk−1, zk = h(xk) + vk (1)

where k represents time index, f(·), h(·) are assumed to be
known nonlinear dynamic and measurement functions, and
wk and vk are associated noises. We use xk to represent both
the random variable and its realization.

For nonlinear functions and non-Gaussian noise processes,
an analytic calculation of the conditional density function is
impractical except for simple cases [10]. The Monte Carlo
method for non-linear estimation is based on the theory of
recursive Bayesian filters. The goal in the Bayesian filters
is to approximate the conditional posterior distribution of
the states at current time k, xk, recursively with a given
measurement history up to time k, z1:k = {z1, z2, · · · , zk}.

The approximation of the joint filtering density by the SIS
PF at time k − 1, is given as [11]

p(xk−1|z1:k−1) ≈
m∑
i=1

w̄ik−1δ(xk−1 − xik−1) (2)

where w̄ik−1 is the normalized weight, and xik−1 are drawn
from the known or chosen density q(xk−1|z1:k−1), the so-
called the importance density. The normalized weight at time
k − 1 is

w̄ik−1 ∝
p(xik−1|z1:k−1)
q(xik−1|z1:k−1)

. (3)

For a simple implementation [11], the importance density
is chosen as q(xk|xik−1, z1:k) , p(xk|xik−1), the sequential
update equation of normalized weight can be achieved as

w̄k(xik) =
p
(
zk|xik

)
w̄ik−1

m∑
i=1

p
(
zk|xik

)
w̄ik−1

(4)

Finally, the expectation of the bounded and continuous
function g(·) with the sequentially updated weights in (4) can

be obtained as Eq [g(xk)] =
m∑
i=1

g(xik)w̄ik with the updated

weights for the samples drawn from the importance density,
the algorithm can be implemented in real-time.

The disadvantage of the sequential importance sampling
method is that the variance of weights increases as time k
increases no matter what importance density is chosen. The
weight of the highly weighted particles have a tendency to
become larger and larger as time k increases, while that of
the low weighted particles become smaller. Therefore, the
weights of most samples become ignorable and the weight
of only one sample becomes dominant. This side effect,
the degeneracy problem, can be handled by a resampling
technique.

A. Resampling

The degeneracy problem makes it difficult to approximate
the filtering density as time k increases. As a remedy to
this problem, resampling techniques such as multinomial
sampling, residual resampling, systematic sampling, etc.,
have been introduced [12].

We will consider multinomial resampling in this paper,
since the multinomial distribution sampling is one of the
simplest and most fundamental resampling techniques. The
other versions of the resampling methods have somewhat
similar performance compared to the multinomial sampling
in practice. The idea of the multinomial resampling step
is simply to eliminate the low-weight samples, and then,
to select and copy the high-weight samples [13]. To be
precise, the sampling step involves selecting m̃ number of
new sample sets, {x̃jk; j = 1, · · · , m̃} from the existing
samples {xik, w̄ik; i = 1, · · · ,m}. The probability of being
selected is proportional to the weight w̄ik. In doing so, the
high weight particles are selected after resampling, and all
selected particles are assigned with uniform weights (i.e.
1/m̃). A subset of samples usually decrease. Another positive
effect of the resampling step is that by eliminating the low
weight particles and keeping the only high weight of the
samples, i.e. by keeping m̃ ≤ m number of samples, the
number of samples can be decreased through the resampling
step. Therefore, the number of samples can be adjusted for
real-time implementation without an excessive computational
burden.

III. RELATIVE POSITIONING USING PARTICLE FILTERING
WITH POSITION SPACE SAMPLES

A. GPS Measurements

Most GPS receivers provide two types of measurements,
a pseudo-range that is related to the measured travel time,
the Code measurement, and the Carrier-Phase (CP).

The code measurement contains the range between the
receiver and the i’th GPS satellites and several error factors

p
(i)
(1) =ρ(i)

(1) + δS(i) + c(t(1) − T (i)) + I
(i)
(1)

+ Tr
(i)
(1) +Mp

(i)
(1) + n

(i)
(1) (5)
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where p(i)
(1) is the measured code range, ρ(i)

(1) is the geometric
range, δS(i) is the ephemeris error, c is the velocity of light,
t(1) is the receiver clock error, T (i) is the GPS satellite
clock error, I(i)

(1) is the ionospheric delay error, Tr(i)
(1) is the

tropospheric delay error, Mp
(i)
(1) is the code multipath error,

n
(i)
(1) is the code noise error. In term (·)(i)

(1), the subscript (1)

represents a parameter about vehicle 1 and the superscript
(i) represents a parameter about GPS satellite i. Similarly,
the CP measurements can be represented with the error
components

φ
(i)
(1) =ρ(i)

(1) − λN
(i)
(1) + δS(i) + c(t(1) − T (i))

− I(i)
(1) + Tr

(i)
(1) +mp

(i)
(1) + η

(i)
(1) (6)

where φ
(i)
(1) is the measured CP range, λ is the CP wave

length, N (i)
(1) is the integer cycle ambiguity (cycle), mp(i)

(1) is

the CP multipath error, and η(i)
(1) is the CP noise.

The common errors in measurements are assumed to
be canceled out by differencing between the measurement
equations, but uncommon errors, such as noise and multipath
error, can not be canceled out. The noise errors of the code
and CP are assumed to be Gaussian with zero mean. We con-
sider two cases where the Root Mean Square (RMS) errors of
the code n(i)

(1) and CP noise η(i)
(1) are 3 m for the code, 3 cm for

the CP, and 30 cm for the code, 0.3 cm for CP, respectively.
The first case represents the RMS noise error for the usual
GPS RTK (Real time Kinematics) receivers, and the second
case represents a more accurate GPS receiver designed for
specific missions such as the precise orbit determination of
CHAMP (Challenging Minisatellite Payload), and GRACE
(Gravity Recovery and Climate Experiment).

The multipath error has a major effect on degrading the
accuracy in CP GPS position estimation and on the success
of finding the correct integer ambiguity from the integer
ambiguity search algorithms. The multipath error is usually
modeled as the sinusoidal oscillation with zero mean for a
stationary receiver. If the geometry between GPS satellites
and reflector does not change quickly, the multipath error
appears as a bias over the short term. In order to simulate
the effect of the multipath error on the PF estimates, we
introduce a bias to represent the multipath error (i.e. less
than 2 cm) in CP measurements used in the experiments
described in Section IV.

B. Differential Measurement

In short baseline case, many of errors such as
δS(i), c(t(1)−T (i)), I(i)

(1), T r
(i)
(1), in the observation in (5) and

(6) are considered as a common error for both antennas and
assumed to be eliminated or reduced by Double Difference
(DD) operation. The DD measurements for the code, and CP

between antenna 1, 2 and GPS satellites i, j are given as

∇∆p(ij)
(12) , (p(j)

(2) − p
(j)
(1))− (p(i)

(2) − p
(i)
(1))

≈ ∇∆ρ(ij)
(12) +∇∆Mp

(ij)
(12) +∇∆n(ij)

(12) (7)

∇∆φ(ij)
(12) ≈ ∇∆ρ(ij)

(12) −∇∆λN (ij)
(12) +∇∆mp(ij)

(12) +∇∆η(ij)
(12)

(8)

The measurements equation in the vector form for all
visible GPS satellites i and j in common can be rearranged
as

∇∆P =
[
∇∆p(12)

(12) ∇∆p(23)
(12) · · · ∇∆p(ns ns−1)

(12)

]T
,

∇∆Φ =
[
∇∆φ(12)

(12) ∇∆φ(23)
(12) · · · ∇∆φ(ns ns−1)

(12)

]T
(9)

where ns is a number of common visible GPS satellites.
Equation (8) contains the DD ambiguity term, ∇∆N (ij)

(12).
After the DD ambiguity is known, (8) can be used as much
more precise measurements than the code. However, this
unknown integer ambiguity can not be computed directly
in this form since the term ∇∆ρ(ij)

(12) is not known either.
Therefore, the hypothesis tests over the ambiguity hypotheses
are usually employed.

From this point, we only use ∇∆ symbols as a DD
value and omit (·)(ij)

(12) symbol, and readers can assume that
measurements are DD values in the sequel.

C. Initialization

The estimate of the absolute position of receiver 1, X1, can
be obtained by differencing between the code measurements
vector and the geometric range vector from a linearization
point X1o to all GPS satellites position

P(1) − %(1o) = AδX1 + e (10)

where

%(10) =
[
ρ

(1)
(10) ρ

(2)
(10) · · · ρ

(ns)
(10)

]T
,A =

[
HT

1 1
]

P(1) =
[
p

(1)
(1), p

(2)
(1), · · · , p

(ns)
(1)

]T
, ˜δX1 ,

[
δX1 c · t(1)

]T
,

δX1 is the difference between a linearization point X1o

and X1. ρ(i)
(10) is an geometric range from X1o to ith GPS

satellites. H(1)(ns)
1 = ∂%1o

∂X

∣∣∣
X1o

is the direction matrix to all
GPS satellites at X1o. e is the vector of error terms including
the common errors, multipath, and noise. The estimation of
δX̃1 can be obtained by the least square method as[

δX̂1 t̂(1)

]T
= (ATA)−1AT · (P(1) − %(1o)) (11)

For short baseline, the estimation, X̂1 = X1o + δX̂1, will
be taken as the true position of the receiver 1, X1, and the
relative positioning problem comes down to estimating the
relative position between X̂2 and X1. The initial estimation
of X̂2 is required as an initial condition for the Particle Filters
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(PF). The DD code information can be used for the initial
value of X̂2.

∇∆P −∇∆%2o = AdδX2 +∇∆nd

Ad =
[
H

(2)(ns)
2 −H(1)(ns−1)

2

]T
where δX2 is a relative position between X2 and X2o.
H

(2)(ns)
2 is the direction matrix at the linearized point X2o to

the GPS satellites i, i = 2, · · · , ns and H(1)(ns−1)
2 is the di-

rection matrix at the linearized point X2o to the GPS satellites
j, j = 1, · · · , ns − 1. ∇∆nd is the double differenced code
noise vector. X2o is an arbitrary linearization point for X2.
∇∆%2o is the DD vector of the geometric ranges between
X1,X2o and GPS satellites. Then, the estimation of position
of receiver 2 by DD Code is given by X̂2 = X2o + δX̂2

where

δX̂2 = (AT
dAd)−1AT

d · (∇∆P −∇∆%2o) (12)

D. Sampling Particles in Position Space

We denote the sampled particles from the initial pdf of
states at time k = 0 as xi0 ∼ p(x0|z0), i = 1, · · · ,m.
The superscript i represents ith sample. It is assumed that
p(x0|z0) = p(x0). Each sample xik represents a realization
of X2, the position of vehicle 2 in the ECEF coordinates.
Therefore, the samples xik, i = 1, · · · ,m can be obtained
by picking m number of independent points in three dimen-
sional position space. The distribution of samples is assumed
to be a Gaussian, or uniform where the mean and variance
are estimated by the code method given in Section III-C.

Building the likelihood pdf for the states, p(zk|xik) is
the essence of the proposed algorithm. In order to develop
the algorithm of the PF using the position space samples,
consider the DD CP measurements

∇∆% = ∇∆Φ + λ · ∇∆N +∇∆η (13)

where ∇∆% is the vector of the DD geometric range between
satellites and X1, X2. Equation (13) can be linearized around
X̂2 by using estimates in (12)

∇∆%o + AdδX2 = ∇∆Φ + λ · ∇∆N +∇∆η (14)

We use both of nonlinear measurements in (13) and lin-
earlized measurement in (14). The given position particles
will be applied to the nonlinear equation. First, we make an
estimate of the integer ambiguity, ∇∆N . Consider the left
null space of the direction matrix Ad, E = null(AT

d ) such
that ET · Ad = 0. This annihilator of Ad is not unique, but
exists when the number of visible satellites is greater than
five. Multiplying ET on both sides of (14) and rearranging
becomes

ET · ∇∆NL , ET(∇∆%0 −∇∆Φ−∇∆η)/λ (15)

Define NL as an ambiguity from the linearized measure-
ments from (15). From this point, we will omit the double
differencing operation symbol ∇∆ for simplicity. Since the
position dependent term is eliminated, (15) is independent

of the position samples. The ambiguity NL is not integer
valued because of η.

If we could find any integer ambiguity that when projected
by the left annihilator ET is close to ET · NL, then the
probability of being true integer ambiguity is high. From
(13), the integer ambiguity is computable if % is given. In
fact, each sample xi can be substitute for X2, and therefore,
basically m samples generate m number of %i in (13).

The float ambiguity estimates for each position samples xik
are computed from (13) as Ñ i , 1

λ (%i −Φ) where %i is the
DD range between X1 and each particles xik, i = 1, · · · ,m.
When the integer property of the ambiguity is applied, the
expected estimates of the integer ambiguities corresponding
to each sample can be obtained by rounding-off as

N̄ i ∆=
[
Ñ i
]

round−off
(16)

These integer valued ambiguities are compared with the
ambiguity estimate from the linearized equation in (15).
By the round-off operation, the integer ambiguity estimate
N̄ i for ith sample is independent of the noise under the
assumption that the summation of the DD noise η and a
portion of common error assumed to be eliminated in the DD
measurements is less than λ/2 (≈ 19/2 cm : L1 frequency
CP). Since the common errors are assumed to be ignorable
in the short baseline case, this assumption does hold as long
as the summation of the noise and the multipath does not
exceed λ/2 and each sample position provides an integer
ambiguity, but only one of the integer ambiguities is true
integer ambiguity, since the samples far from true position
provide a wrong integer value. However, it is not trivial to
check the magnitude of the noise and multipath in the DD
measurements. We take care of the effect of the noise and
multipath by simulating it in the experimental data.

If the noise in the measurements is modeled as a Gaussian,
the pdf p(zk|xik) can be modeled as

p(zk|xik) = C1 exp{−1
2

(ri)TQE−1(ri)}, (17)

where the residual ri = λET(N̄ i−NL), and QE = ETQE,
Q is the covariance of the estimated ambiguity.

Using the structure of likelihood density in (17), the pro-
posed PF algorithm is able to estimate the position without
knowing the true integer ambiguity. In fact, the ambiguity
NL from (15) is given as the true ambiguity, and is computed
based on the CP measurements of each epoch. Therefore, the
particle filters in this paper keeps evaluating NL internally
at every epoch, instead of using or testing the pre-computed
ambiguity hypotheses. In this way, the algorithm is able to
deal with cycle-slips, and the change of ambiguities caused
by the addition or loss of visible GPS satellites.

As we have remarked, the number of samples are an
important factor, since a small number of samples can
degrade the accuracy. Consider the samples xi, xj for i 6= j
and the corresponding float and integer ambiguities in (16),
Ñ i, Ñ j and N̄ i, N̄ j respectively. If two samples are close
to each other in distance, |xi − xj | � 1, then both samples
generate the same N̄ i. Indeed, multiple number of samples
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which are close to each other provide the same integer value
of N̄ i, as long as the associated Ñ i satisfies the condition
N̄ i − 0.5 6

∣∣∣Ñ i
∣∣∣
round−off

< N̄ i + 0.5. Since NL and

N̄ i are same in the residual computation for those nearby
samples, the samples within a certain bound in position
space have the same value of p(zk|xik) in (17). Therefore,
when the number of samples m is small, and the samples
are concentrated together, these samples may not accurately
approximate p(zk|xk). Thus, if the number of samples is too
small, then approximation of the pdf maybe come inaccurate.
A pictorial description of a one dimensional example is
shown in Fig. 1. The pdf p(zk|xik) is given as a Gaussian

Fig. 1. Ñ i and corresponding N̄ i

distribution consistent with a Gaussian noise assumption.
The density function is approximated by the discrete type
of density, pN̄ (z|x).

By substituting (17) into (4), the update of weight can be
expressed as

w̄ik =
w̄ik−1C1 exp{− 1

2 (ri)TQ−1
E (ri)}

m∑
j=1

w̄jk−1C1 exp{− 1
2 (rj)TQ−1

E (rj)}
(18)

Lastly, for the resampling step of the PF, samples
xik+1, drawn according to the importance density,
q(xk+1|xik, z1:k) = p(xk+1|xik), can be used for evaluating
the weight of particles at time k + 1 using (18).

Note that the objective of the PF is to approximate the
pdf of the states over the samples not the states itself, and
the estimation is made through the expectation over the
estimated pdf. Therefore, it is natural that not all particles
generates same ambiguity estimations Ñ i unless the par-
ticles are concentrated in very small position space. The
ambiguity estimation convergence can be monitored by an
weighted-average of the integer ambiguity at epoch k. The
weighted-average of the integer ambiguity can be obtained

by NAV R(k) =
m∑
i=1

(N̄ i × w̄ik).

IV. EXPERIMENTAL RESULTS

A. Precise Orbit Determination
A simulation was implemented for evaluating the estimates

of the relative position of satellites in LEO (Low Earth

orbit) for a cluster of spacecrafts [14]. The basis for our
experiments was a sequence of simulated GPS satellite posi-
tions and a sequence of simulated positions of two satellites
trailing each other in the same LEO. The parameters of
the LEO orbit is given as semimajor axis - 7054.1874 km,
Eccentricity - 0.0005414, Inclination -98.13 deg, R. A. of
ascending node - 81.107 deg, Argument of perigee - 270.357
deg, Mean anomaly - 179.839. An air drag perturbation
and acceleration perturbation accounting the Sun and moon
are included in the orbit equation. The gravitational model
included in the LEO orbit uses the zonal harmonics (J2 =
10.82625, J3 = −2.5326 × 10−6) and the 3 × 3 non zonal
harmonics (C21 = S21 = 0, C22 = 1.5747 × 10−6, C31 =
2.1908 × 10−6, C32 = 0.3097 × 10−6, C33 = 0.1001 ×
10−6, S22 = −0.9024×10−6, S31 = −0.2709×10−6, S32 =
−0.2212× 10−6, S33 = 0.1973× 10−6).

Both the positions of the GPS satellites and the mea-
surements of the satellites received by GPS receiver were
generated at a 2 Hz rate. The two LEO satellites have either a
baseline of 1) 3 km and 2) 30 km. The orbit tracks of the GPS
satellites were obtained from the International GNSS Service
(IGS) products of March 1, 2000. The simulation allowed
changes in the GPS satellite constellation, and introduced
the cycle-slip. Under these circumstances, the stability of
the converged relative position estimates was assessed. The
GPS receiver for the LEO satellites was developed by JPL
(Jet Propulsion Laboratory), ”Black-Jack” GPS receiver. The
Black-Jack receiver is designed for the high dynamics of
orbit application, and shows superior performance in terms of
the noise and multipath error level. For example, the Black-
Jack GPS receiver is mounted on-board of the satellites in
the CHAMP and GRACE projects. In this simulation, a high
performance receiver, like Black-Jack, is assumed to be used
for the spacecraft formation flight problem as well as the
ordinary RTK GPS receiver in order to assess the estimation
performance.

The generated data included the ionospheric delay error,
ephemeris error, and clock error. The tropospheric delay
effect on GPS measurements is ignorable in LEO where
an altitude is higher than 500 km. However, a signifi-
cant ionospheric delay exists at LEO altitudes. Ionospheric
distortion based on the Klobchar model was imposed on
the CP measurements with the total electron count (TEC)
experienced varied between a minimum of 4 × 1016 and a
maximum of 1.6 × 1017 [15]. Simulated trajectories of the
LEO satellites were computed by integrating the orbit equa-
tions using a Cowell method. With regard to the noise, the
range measurement accuracy for high performance receiver,
the Black-Jack, is assumed to be 30 cm, 0.3 cm in magnitude,
and for the normal geodetic GPS receiver, 3 m, and 3 cm for
the code and CP, respectively. The multipath error is treated
as an additional bias term whose size is 1-2 cm for both
cases, and corrupts the CP measurements in the simulation.

The Particle Filters (PF) introduced in Section II, is
applied to the estimation of the relative position of the
spacecrafts using GPS CP information. The sampling process
is implemented for obtaining the initial samples. A uniform
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distribution is used for the initial samples and the weights
{xi, w̄i, i = 1, · · · ,m}. The reason for choosing the uniform
distribution for initial sampling distribution is that if the
initialization process of the PF is made by a short time
of code measurements, then the initial pdf is not accurate
enough to use directly for the initial conditions for the CP-
based algorithm.

Fig. 2. # of Sat & Position Error (CP noise:3mm, Baseline:3 km)

1) Effect of GPS Satellite Change: Figure 2 shows the
number of visible GPS satellites changes, and the error and
standard deviation (std) of estimated relative position in three
directions (i.e. Radial; unit vector from the center of orbit
to the spacecraft, Along-track ; unit tangent vector to the
orbit, Cross-track : unit normal vector to the orbit) for the
3 km baseline case. The measurements have accuracies of
30 cm RMS error for the code, 0.3 cm RMS error for
the CP noise, i.e. the Black- Jack receiver. In this short
baseline case, most of the common errors can be eliminated
by the DD operation, although multipath error and noise error
persist. The multipath error and noise on CP are the dominant
factors in this case. The time required for the CP based GPS
navigation system to converge is about five epochs (1 epoch
= 1/2 seconds) excluding five epochs of initialization time by
with the code estimates. Note that there is no need to search
for the integer ambiguity and fix the integer ambiguity to
determine position. The number of initial samples is 10K,
and after first resampling step, the number of sample is
decreased to 1K.

The number of GPS satellites shows that two GPS satel-
lites went out of view at epoch 150 and 250, but no variation
in the relative position is observed as expected.

2) Accuracy Comparison with Fixed Integer Ambiguity
Case : The performance analysis of the proposed PF with
position-based samples are compared to the ambiguity-based

algorithm in two ways: 1) three dimensional relative position
error 2) convergence of ambiguity estimate.

The relative position accuracy is compared to the am-
biguity based case in the following way. For the position
estimates of the ambiguity based algorithm, the true integer
ambiguity is assumed to be fixed and known, and given in
the CP measurements equation (6). Then, a nonlinear filtering
technique, the Unscented Kalman Filter (UKF), is applied for
the nonlinear observation equations of (13). Therefore, this
is a situation after the ambiguity-based algorithm is assumed
to have succeeded in searching for the true integer ambiguity.
Since there is no change of the GPS satellites or the cycle-
slip occurring during this experiment, then only positioning
accuracy can be compared rather than the comparison of
the time required for searching for the integer ambiguity or
the success rate in obtaining the correct integer ambiguity.
The position accuracy between the UKF estimates with the
fixed-ambiguity and the PF with position-based samples are
compared where the Monte Carlo simulation is implemented
with 100 trials, with results given in Table I. The used data
is include two cases of CP noise RMS (i.e. 3 cm, 0.3 cm),
and the baseline length is 30 km. The results shows that the
proposed PF is comparable to the estimates of the UKF with
the fixed-ambiguity.

3) Cycle-Slip-free Carrier Phase positioning: There are
many factors causing cycle-slips, such as an obstruction
between antennas and the GPS satellites, or a high noisy
signal due to multipath. Once a cycle-slip occurs in the
integer-ambiguity searching-based algorithm, the estimation
error by the cycle-slip should be detected and fixed.

The remarkable merit of sampling from the position space
is that the GPS CP-based positioning algorithm is insensitive
to changes in the visible GPS satellite set and to cycle-slips.
For validating the impact of the cycle-slip, we simulate the
occurrence of a cycle-slip. The cycle-slip data is generated by
adding a random number, ranging from 100 to 1,000, to the
CP measurements of all GPS satellites at the same time. In
fact, even though a cycle-slip usually occurs in a particular
signal of GPS satellite, we are interested in the situation
where an object obstructs almost of all GPS signal at the
same time. Figure 3 (top) shows the jumps in the ambiguity
due to cycles-slip in every phase lock loop that is tracking the
GPS satellites, and the estimated relative position effected
by the cycle-slip are shown in Fig. 3 (bottom). Totally,
seven GPS satellites are visible during the experiment, and
cycles-slip occur in all the channels at epoch 330, such that
the ambiguities of each GPS CP measurement jumps. As
expected, the position estimation results support the claim
that the position sample PF is insensitive to the cycle-slip.

V. CONCLUSION

The GPS Carrier-Phase relative position estimation using
Particle Filters (PF) is addressed in this paper. In order to
handle the integer ambiguity problem in GPS CP relative
position estimation which is a nonlinear problem, the PF
is employed. Unlike the prior integer ambiguity resolution
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TABLE I
POSITION ACCURACY COMPARISON(100 MC TRIALS)

bPos. Mean (cm) bPos. RMS (cm) cPos. Mean (cm) cPos. RMS (cm)
aR A C R A C R A C R A C

Fixed Ambiguity (UKF) 0.03 -0.36 -0.07 1.73 3.58 1.75 -0.14 0.08 0.01 0.20 0.47 0.20
Position based samples (PF) -0.06 -0.33 -0.28 1.15 4.09 1.51 0.01 -0.03 -0.07 0.14 0.30 0.14

a R-Radial, A-Along, C-Cross b CP noise RMS 3 cm, c CP noise RMS 0.3 cm

Fig. 3. Ambiguity jumps (at 330 epoch) and Position Error

algorithms that begin with hypotheses of the integer am-
biguities and search for the true integer hypotheses, the
proposed PF makes use of samples drawn from the position
space in order to make the algorithm insensitive to changes
in a GPS satellite and the occurrence of a cycle-slip. The
PF algorithm employs a resampling technique to overcome
the large number of samples which can be problematic for
the position-hypotheses-based algorithms. The experimental
results are provided by simulating formation flight for the
LEO satellites. The position search method introduced in
Section I usually requires a much larger number of position
hypotheses, since the accuracy of the position results is ba-
sically determined by the density of the position hypotheses
in the position space. This problem is circumvented by the
multinomial resampling technique.

The prior integer ambiguity resolution algorithms have
nontrivial management issues for frequent GPS satellites
changes. Precise position estimates are not available be-
fore the ambiguity problem is resolved. Furthermore, it
is particularly difficult to estimate the precise position by
hypotheses methods when the system experiences a cycle-
slip. It is shown in simulation that the relative position
estimates obtained by the proposed approach is insensitive
to changes in GPS satellites as well as a cycle-slip. The
proposed algorithm does not need to take those effects (i.e.
ambiguity change, cycle-slip) into account, and still the

estimate remains accurate. Furthermore, the accuracy of the
relative position using the position-based approach of PF is
comparable to the Unscented Kalman Filter estimates of the
ambiguity-based approach when the true integer ambiguity
is given.

Therefore, it has been shown that the proposed position
sample based particle filters has good robustness and sta-
bility properties, and will be applicable to missions where
frequent changes of the available GPS satellites and cycle-
slips are expected, and the rapid relative position estimation
is essential.
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