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Abstract— The main goal of this work is to design a team
of agents that can accomplish consensus over a common value
for the agents’ output in a cooperative manner. First, a semi-
decentralized optimal control strategy introduced recently by
the authors is utilized which is based on minimization of
individual costs using local information. Cooperative game
theory is then used to ensure team cooperation by considering
a combination of individual costs as a team cost function. Min-
imization of this cost function results in a set of Pareto-efficient
solutions. The choice of Nash-bargaining solution among the set
of Pareto-efficient solutions guarantees the minimum individual
cost. The Nash-bargaining solution is obtained by maximizing
the product of the difference between the costs achieved through
the optimal control strategy and the one obtained through the
Pareto-efficient solution. The latter solution results in a lower
cost for each agent at the expense of requiring full information
set. To avoid this drawback additional constraints are added
to the structure of the controller by using the linear matrix
inequality (LMI) formulation of the minimization problem.
Consequently, although the controller is designed to minimize a
unique team cost function, it only uses the available information
set for each agent.

I. INTRODUCTION

Sensor networks (SN), and in general, unmanned system

networks (UMSN) are currently one of the strategic areas

of research in different disciplines, such as communications,

controls, and mechanics. The advantages of wireless UMSN

are significant and numerous applications in various fields of

research are being considered and developed. Some of these

applications are in home and building automation, intelli-

gent transportation systems, health monitoring and assisting,

space explorations, and commercial applications [1]. One of

the prerequisites for these networks intended to be deployed

in different missions is team cooperation and coordination for

accomplishing predefined goals and requirements. Coopera-

tion in a network of unmanned systems, known as formation,

network agreement, flocking, consensus, or swarming in

different contexts, has received extensive attention in the past

several years. Several approaches to this problem have been

investigated within different frameworks and by considering

different architectures [2]-[7].

An optimal approach to team cooperation problem is con-

sidered in [8], [9] for formation keeping and in [10], [11] for

consensus seeking. The approach in [9] is based on individual

cost optimization for sake of achieving team goals under the

assumption that the states of the other team members are
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constant. To solve an optimal consensus problem, the authors

in [10] have assumed individual costs for each team member.

In evaluating the minimum value of each individual cost, the

states of the other agents are assumed to be constant. The

work in [11] avoids the above restricting assumptions by

decomposing the control input of individual team members

into local and global components. In all the above referenced

work the optimal problem is based on the individual cost

definition for team members. However, to the best of the

authors’ knowledge, a single team cost function formulation

has been proposed in only a few work [8], [12], [13]. In [12],

optimal control strategy is applied for formation keeping and

a single team cost function is utilized. The authors in [8]

assumed a distributed optimization technique for formation

control in a leader-follower structure. The design is based

on dual decomposition of the local and global constraints.

In [13], a centralized solution is obtained by using a game

theoretic approach.

It is worth noting that a design-based approach for the

purpose of consensus seeking has not been investigated

extensively in the literature. In fact, many of the earlier work

have focused on only analysis, e.g. [5], [14]. However, the

main contribution of this paper is to introduce a novel design-

based approach to address the consensus control problem

using a single team cost function within a game theoretic

framework. The cooperative game theory framework has the

advantage of being a multi-objective design tool as well

as being able to guarantee a cooperative solution when

compared to other design tools. On the other hand, the

advantage of minimizing a team cost function is that it

can provide a better insight into performance of the entire

team when compared to individual performance indices.

However, the main disadvantage of this formulation is clearly

the requirement of availability of full information set for

control design purposes. In the present work this problem is

alleviated and the imposed information structure of the team

is respected by using linear matrix inequality formulation.

Toward this end, first a decentralized optimal control

strategy that was initially introduced in [11] is used to

design controllers based on minimization of individual costs.

Subsequently, the idea of the cooperative game theory is used

to minimize a team cost function, i.e. a linear combination

of the cost functions that are used in the optimal approach.

This will guarantee that individual cost functions have the

minimum possible values for a given team mission. To obtain

a solution that is subject to a given information structure as

well as to guarantee consensus achievement, a set of LMIs

is used to constrain the controller for the entire team.

The organization of the paper is as follows: In Section 2,
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background information is presented. In Section 3, design of

a semi-decentralized optimal control is formally presented

and in Section 4, the cooperative game theory is introduced.

Application of the game theory to the multi-agent team

problem is presented in Section 5. Finally, a comparative

study and the conclusions are stated in Sections 6 and 7,

respectively.

II. BACKGROUND

Multi-agent teams: Assume a set of agents Ω = {i =
1, . . . , N}, where N is the number of agents. Each member

of the team which is denoted by i is placed at a vertex of the

network information graph. It has a dynamical representation

that is governed by

Ẋi = AiXi + Biui, Xi ∈ Rn, ui ∈ Rm, (1)

Y i = CiXi, Y i ∈ Rq (2)

where Xi, ui, and Y i denote the state vector, the input

vector, and the output vector of the agent i, respectively,

and Ai, Bi and Ci are matrices of appropriate dimensions.

Information structure and neighboring sets: In order to en-

sure cooperation and coordination among team members,

each member has to know the status (output) of the other

members, and therefore members have to communicate with

each other. For a given agent i, the set of agents connected

to it via communication links is called a neighboring set

N i. The existence of a link between two agents in general

may refer to the availability of information of one agent

to the other one, in other words ∀ i = 1, . . . , N, N i =
{j = 1, . . . , N |(i, j) ∈ E}, where E is the edge set that

corresponds to the underlying graph of the network. It is

assumed that the graph describing the information structure

is connected.

A. Model of interaction between the team members

Assume that the dynamical model of each agent is given

by equations (1) and (2). This model defines an isolated agent

of the team, but in reality agents have some interactions

through the information flow that exists among the neigh-

boring agents. In [11], it was shown that each member’s

dynamics can be described by the following model that

incorporates the interaction terms, namely






Ẋi = AiXi + Biui

ui = ui
l + ui

g, ui
g =

∑

j∈Ni F ijY j

Y i = CiXi

(3)

where Ai, Bi and Ci are matrices and vectors of appropriate

dimensions, and ui
l, ui

g are the decompositions of the input

signal into the “local” and the “global” control terms. The

local term for each agent is designed by using the agents

own output vector whereas the global control utilizes the

information received from other agents in its neighboring

set. The “global” control term ui
g =

∑

j∈Ni F ijY j is also

denoted as the interaction term, where F ij is the interaction

matrix to ensure compatibility in the agent’s input and output

channels.

Our main goal in this paper is to ensure that the agents’

output, e.g. velocity, converge to the same value, i.e. Y i →
Y j , ∀i, j. In other words, we require that the team reaches

a consensus. For this purpose, we first apply the optimal

control strategy introduced in [11]. We then introduce a game

theoretic approach to provide a cooperative solution with

lower cost values for consensus seeking. A brief description

of the optimal control method is presented below as they

are needed for formulation of our proposed game theoretic

approach. The reader is referred to [11] for further details.

III. APPLICATION OF SEMI-DECENTRALIZED OPTIMAL

CONTROL TO A LEADERLESS MULTI-AGENT TEAM

A. Definition of a cost function

Let us define the following cost function for each agent,

J i =

∫ T

0

{
∑

j∈Ni

[(Y i − Y j)T Qij(Y i − Y j)]

+ (ui
l)

T Riui
l}dt, T > 0 (4)

where Qij , Ri are symmetric and positive definite (PD)

matrices. By minimizing the above cost function for a given

controllable and observable system, one may guarantee that

all the agents in a neighboring set will have the same output

vector in the steady state, i.e. consensus is achieved [11]. In

other words, the output vector Y will converge to a vector

in the subspace S spanned by the vector 1 = [1 1 . . . 1]T .

This vector is in fact an eigenvector of the Laplacian matrix

corresponding to the underlying graph.

B. The dynamical model

For sake of simplicity, and since the design approach based

on optimal control is used for comparison purposes only, we

assume that the dynamical equation of each agent is a simple

double integrator. However, the approach based on the game

theory is general enough for an arbitrary linear model of

agents. In other words, we assume that the dynamics of each

agent is governed by










ṙi = vi

v̇i = ui
l + ui

g

ui
g =

∑

j∈Ni F ijY j , Y i = vi, i = 1, . . . , N

(5)

in which ri, vi ∈ Rm are the position and the velocity

vectors, respectively.

Our proposed control strategy that results from the min-

imization of the cost function (4) subject to the above

dynamical model is provided in the following lemma.

Lemma 1 Assume a team of agents is given whose dynam-

ics are governed by the double integrator equations in (5)

and are embedded with interactions among the agents based

on the neighboring sets. Assume that the control input of

each agent is decomposed into the local and the global parts

as explained previously. Then, the global and local control

laws proposed below minimize the cost function (4) so that
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a consensus on the velocity value is guaranteed, where

ui
g =

∑

j∈Ni

F ijvj , F ij = 2Ki(t)
−1

Qij , ∀i, j (6)

ui
l = −

1

2
(Ri)−1Ki(t)vi, i = 1, . . . , N (7)

in which Ki satisfies the differential Riccati equation (DRE)

−K̇i = 2|N i|Qij− 1

2
Ki(Ri)−1Ki, Ki(T ) = 0. where |N i|

is the cardinality of the neighboring set defined previously.

Proof: The details may be found in [11].

The above lemma provides a control strategy for consensus

seeking using the individual cost function minimization. In

the following two sections, the individual cost of each agent

as defined in the present section is combined into a team

cost function and the cooperative game theory approach will

be utilized to “increase” the team cooperation and minimize

the individual costs. The cost values that are obtained in

the present section are referred to as the “non-cooperative”

outcomes in the context of the next two sections.

IV. COOPERATIVE GAME THEORY

In this section we give a general description of the

“cooperative game theory” and in the next section we modify

the formulation introduced here to make it compatible with

our specific problem, i.e. consensus seeking problem.

Assume a team of N players with the following dynamical

model

ẋ = Ax +
N

∑

i=1

Biui (8)

where the matrix A has an arbitrary structure. Each player

wants to optimize its own cost

J i =

∫ T

0

(xT Qix + (ui)T Riui)dt (9)

in which Qi and Ri are symmetric matrices and Ri is a PD

matrix.

If the players decide to minimize their cost in a non-

cooperative manner, a strategy (control input ui) chosen by

the ith player can increase the cost of other players through

dynamics of the system that relates different players together.

However, if the players decide to cooperate, the individual

costs may be minimized if the agents are aware of the others’

decisions and can reduce their team cost by selecting a

suitable cooperative strategy. Hence, in a cooperative strat-

egy depending on which agent requires more resource the

resulting minima can be different. The cooperation ensures

that the total cost of the team is less than any other non-

cooperative optimal solution.

In a cooperative approach there is no alternative strategy

that improves all the members’ cost simultaneously. This

property can be formally defined by the set of Pareto-efficient

solutions as follows.

Pareto efficient strategies [15]: A set of strategies U∗ =
[u1∗, . . . , uN∗] is Pareto-efficient if the set of inequalities

J i(U) � J i(U∗), i = 1, . . . , N with at least one strict

inequality does not have a solution for U . The point J∗ =
[J1(U∗), . . . , JN (U∗)] is called a Pareto solution. This so-

lution is never fully dominated by any other solution.

Now consider the following optimization problem and

assume that Qi ≥ 0, specifically

min
ui∈Ui

J i =

∫ T

0

(xT Qix + (ui)T Riui)dt

s.t. ẋ = Ax +

N
∑

i=1

Biui

The above is a convex optimization problem for which we

try to find a solution. It can be shown that the following set

of strategies results in a set of Pareto efficient solutions for

this problem. In other words, the solution to the following

minimization problem cannot be dominated by any other

solution

U∗(α) = arg min
U∈U

N
∑

i=1

αiJ i(U) (10)

where α ∈ A, A = {α = (α1, . . . , αN )|αi ≥
0 and

∑N

i=1
αi = 1}, U is the set of strategies and the cor-

responding cost values will be J1(U∗(α)), . . . , JN (U∗(α)).
It is worth mentioning that though this minimization is over

the set of strategies, the controller parameters (matrices)

are in fact optimized. In other words, the control strategies

are assumed to be in the form of the state feedback and

the coefficient matrices are obtained through the above

optimization problem.

The strategies obtained from the above minimization as

well as the optimal cost values are functions of the parameter

α. Therefore, the Pareto-efficient solution is in general not

unique and the set of these solutions, i.e. Pareto frontier,

is denoted by P which is an edge in the space of possible

solutions, i.e. Ξ. It can be shown that in both infinite horizon

and finite horizon cases, the Pareto frontier will be a smooth

function of α [15]. Due to the non-uniqueness of Pareto

solutions the next step is to decide how to choose one

solution from the set of Pareto solutions (or choose an

α from the set of α’s). This solution should be selected

according to a certain criterion as our final strategy for the

team cooperation problem. For this purpose we need to solve

the bargaining problem as defined below.

Bargaining problem [15]: In this problem two or more

players have to agree on the choice of some strategies from

a set of solutions while they may have conflicting interests

over this set. However, the players understand that better

outcomes may be achieved through cooperation when com-

pared to the non-cooperative outcome (called threat-point).

There are two different approaches to bargaining problem,

i.e. the axiomatic and the strategic approaches. Some of the

well-known axiomatic approaches to this problem are: Nash

bargaining, Kalai-Smorodinsky, and Egalitarian.

Applying any of the above mentioned methods to the

Pareto efficient solutions, will yield a unique cooperative

solution. Due to the interesting properties of the Nash-
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bargaining solution such as symmetry and Pareto optimality

[15], we invoke this method for obtaining a unique solution

among the set of Pareto-efficient solutions obtained previ-

ously.

Nash bargaining solution (NBS) [15]: In this method a

point in Ξ, denoted as ΞN , is selected such that the product

of the individual costs from d is maximal (d = [di]T is the

threat-point or the non-cooperative outcome of team agents),

namely

ΞN (Ξ, d) = arg max
J∈Ξ

N
∏

i=1

(di − J i), J ∈ Ξ with J≺d

in which di’s are the cost values calculated by using the non-

cooperative solution that is obtained by minimizing the cost

in (9) individually and constrained to (8) (the threat point). It

can be shown that the Nash bargaining solution is on Pareto

frontier and therefore the above maximization problem is

equivalent to the following problem

αN = arg max
α

N
∏

i=1

(di − J i(α,U∗)), J ∈ P, J≺d (11)

in which J = [J i]T , and where J i’s are calculated by

using the set of strategies given in (10). By solving the

maximization problem (11), a unique value for the coefficient

α can be found.

Remark 2 Theorem 6.10 in [15] can be used to deter-

mine the relationship that exists between the coefficients

αi, i = 1, . . . , N and the achievable improvements in

the individual costs due to cooperation in the team. Ac-

cording to this theorem the following relationship holds

between the value of the cost functions at the NBS,

(J1∗(α∗, U∗), . . . , JN∗(α∗, U∗)), the threat-point d, and the

optimal weight α∗ = (α1∗, . . . , αN∗), that is α1∗(d1 −
J1∗(α∗, U∗)) = . . . = αN∗(dN − JN∗(α∗, U∗)) or

αj∗ =

∏

i�=j (di − J i∗(α∗, U∗))
∑N

i=1

∏

k �=i (dk − Jk∗(α∗, U∗))
(12)

The expression in (12) describes the kind of cooperation

that exists among the players. It shows that if during the

team cooperation, i.e. minimization of the team cost, a

player has improved its cost more, it will receive a lower

weight in the minimization scheme (Pareto solution) whereas

the one who has not gained a great improvement as a

result of participation in the team cooperation receives a

greater weight. Therefore, all the players benefit from the

cooperation in almost a similar manner, and hence have the

incentive to participate in the team cooperation.

V. APPLICATION OF THE GAME THEORY TO CONSENSUS

SEEKING IN A MULTI-AGENT TEAM

According to the discussions in previous section, cooper-

ation in a team of N players, e.g. consensus seeking, can

be solved in the framework of cooperative games. Our goal

is to develop a cooperative solution that utilizes the semi-

decentralized cost functions and combine them in a team cost

function where improvements in minimizing these functions

can be achieved by utilizing the game-theoretic results. For

this purpose, we use the individual cost values calculated by

utilizing the semi-decentralized optimal control strategy that

was introduced in Section III. These values are considered

as the non-cooperative outcome of the team, referred to as

di’s in (11). We combine these individual cost functions into

a team cost function. Subsequently, we try to find a set of

Pareto optimal solutions for minimization of this team cost

function through solving (10). Then an NBS can be selected

among this set of Pareto-efficient solutions by solving (11).

In this section the above concepts of game theory are

applied to a team of agents as described in Section II. The

dynamical model of each agent and the related cost functions

are described in (3) and (4), respectively. To clearly describe

the method we combine the individual cost functions in (4)

as a team cost function

Jc =

N
∑

i=1

αiJ i(U) =

∫ T

0

[XT QX + UT RU ]dt (13)

in which α = (α1, . . . , αN ) ∈ A, J i(U) is the cost

function for the ith player that is defined in (4) and U(α) =
[(u1

l )
T . . . (uN

l )T ]T is the vector of all the agents’ local

input vectors and

R = Diag{α1R1, . . . , αNRN}, Q = CT [δhk]N×NC,

δhh =
∑

j∈Nh

αjQjh + αh
∑

k∈Nh

Qhk,

δhk =

{

−αhQhk − αkQkh for k ∈ Nh

0 otherwise

(14)

The corresponding dynamical model is given by

Ẋ = AX + BU, Y = CX (15)

in which X,Y and U are the state, input, and output vectors

of the entire team obtained from the concatenation of all the

agents’ state, output, and input vectors and are given by

X = [(X1)T . . . (XN )T ]T , U = [(u1

l )
T . . . (uN

l )T ]T ,

Y = [(Y 1)T . . . (Y N )T ]T

Furthermore, the matrices A,B and C are defined as

A =







A1, 0, . . . , B1F 1jCj , . . . , 0
...

0, . . . , BNFNjCj , . . . , 0, AN






,

B = Diag{B1, . . . , BN}, C = Diag{c1, . . . , cN}

(16)

where Ai, Bi, and Ci are defined in (3). The term BiF ijCj

represents the interaction terms that exist in the dynamical

model of each agent, and N h is the set of indices of the

neighboring clusters to which agent h belongs. Each agent

belongs to only those clusters in which at least one of the

agent’s neighbors exists. Therefore, the total number of these

clusters is the same as the number of neighbors of that agent,

i.e. N h = Nh.
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The Pareto efficient solution for minimizing this team cost

function is achieved through the following strategy

U∗(α) = arg min
U∈U

N
∑

i=1

αiJ i(U) = arg min
U∈U

Jc(α) (17)

in which U∗(α) = [(u1∗
l )T . . . (uN∗

l )T ]T is the vector of all

the agents’ local input vectors when the total cost function

(13) is minimized.

The set of solutions to the minimization problem (17)

is a function of the parameter α which provides a set of

Pareto-efficient solutions. Among these solutions, a unique

solution can be obtained by using one of the methods that

was mentioned earlier, e.g., the Nash bargaining solution.

Using this method the unique solution to the problem (a

unique α) is given by (11) in which J i’s are defined

in (4) and are calculated by applying the solution of the

minimization problem (17) to the system that is given in

(15) and hence are functions of parameter α. The terms di’s

are the values of the cost defined in (4) which is obtained

by applying the semi-decentralized solutions that are found

in (6)-(7) to the individual subsystems in (5). By solving

the maximization problem (11) the parameter α can be

found and substituted in the set of control strategies that are

obtained in (17). This solution guarantees that the product

of the distances between di’s (non-cooperative solution) and

J i’s (cooperative solution) is maximized, implying that the

individual costs in the latter case are minimized as much as

possible.

In order to solve the minimization problem (17), the cost

function (13) should be minimized subject to the dynamical

constraint (15). This is a standard linear quadratic regulator

(LQR) problem and its solution for an infinite horizon case

(i.e. T → ∞) will result in the following control law

U∗(α,X) = −R−1BT PX

Q − PBR−1BT PT + PA + AT P = 0 (18)

The control U∗ can be constructed if the above algebraic

Riccati equation (ARE) has a solution for P . Note that the

matrix P is not guaranteed to be block-diagonal and hence

the control signal U∗ yields a centralized strategy in the sense

that its components, i.e. ui∗
l , are dependent on information

from the entire team. Moreover, the solution suggested by

(18) does not guarantee consensus for an arbitrary parameter

selection. Hence, to ensure that a desirable consensus is

obtained that satisfies the constraints on the availability of

information, one needs to impose additional constraints on

the original minimization problem. For this purpose, the

optimization problem is formulated as an LMI problem so

that the constraints due to the consensus and the controller

structure are incorporated as convex constraints.

A. Solution of the minimization problem: an LMI formula-

tion

In [16], [17], [18], it is pointed out that the LQR problem

can be formulated as a maximization or a minimization

problem subject to a set of LMIs. In other words, instead

of solving the ARE (18), an LMI should be solved. The

following is one of the formulations that can be used for

this purpose using a semi-definite programming problem

framework [18], namely

max trace(P ) s.t.

R(P ) = PA + AT P − PBR−1BT P + Q ≥ 0, P ≥ 0
(19)

where the optimal control law is selected as

U∗ = −R−1BT PX . This formulation can be translated

into an LMI maximization problem by using the Schur

complement decomposition, and given that R > 0, it can be

stated as the following problem.

Problem A

The LQR problem can be formulated as a maximization

one subject to a set of LMIs, namely

max trace(P ) s.t.
[

PA + AT P + Q PB
BT P R

]

≥ 0, P ≥ 0
(20)

It can be shown that the above maximization problem has

a solution if and only if the following ARE has a solution

Q − PBR−1BT PT + PA + AT P = 0 (21)

Moreover, if R > 0 and Q ≥ 0, the unique optimal solution

to the maximization Problem A is the maximal solution to

the ARE in (21) [18].

1) Consensus seeking subject to a predefined information

structure:

In the above discussion the optimization problem was

formulated as a set of LMIs. However, the solutions

to this optimization problem does not necessarily

satisfy the consensus achieving goal. Therefore, the

condition for achieving consensus in the subspace S, i.e.

(A − BR−1BT P )S = 0 is now added to Problem A. Note

that S is the unity vector, i.e. S = 1. Consequently, the

solution to the following maximization problem results in

an optimal consensus algorithm.

Problem B

The minimization problem for consensus seeking can be

formulated as a maximization problem subject to a set of

LMIs, namely

max trace(P ) s.t.






1.

[

PA + AT P + Q PB
BT P R

]

≥ 0, P ≥ 0

2. (A − BR−1BT P )S = 0

(22)

where the optimal control law is selected as U∗ =
−R−1BT PX and P is obtained through solving the above

set of LMIs.

As discussed previously, the solution to the above

problem as well as the one given in (18) requires full

network information for each agent. However, each

agent has only access to its neighboring set information.
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Therefore, one needs to impose a constraint on the controller

structure in order to satisfy the limited agent availability

of information. For the sake of notational simplicity

assume that each agent has a one-dimensional state-space

representation, i.e. Ai in (3) is a scalar. The case of a

non-scalar system matrix can be treated similarly. The

controller coefficient, i.e. R−1BT P in Problem B should

have the same structure as the Laplacian matrix so that

the neighboring set constraint holds. However, due to their

definitions both R and B are block diagonal. Therefore,

it suffices to restrict P to have the same structure as the

Laplacian matrix, i.e. P (i, j) = 0 if L(i, j) = 0, where

L(i, j) designates the (i, j) entry of the Laplacian matrix

L. We may now solve the following problem to minimize

the cost function (13) while simultaneously satisfying all

the earlier constraints, namely we have,

Problem C

max trace(P ) s.t.














1.

[

PA + AT P + Q PB
BT P R

]

≥ 0, P ≥ 0

2. (A − BR−1BT P )S = 0
3. P (i, j) = 0 if L(i, j) = 0, ∀i, j = 1, . . . , N

(23)

This problem is an LMI problem in terms of P .

B. Algorithm for finding the Nash bargaining solution

Up to this point we have shown that for any given α > 0
the maximization Problem C should first be solved. We now

need an algorithm for solving the maximization problem (11)

over different values of α so that a suitable and unique α can

be found. In [15], two numerical algorithms for solving this

maximization problem are given. With minor modifications

made to one of these algorithms, the following algorithm

will be used in this paper. Namely, we have

Algorithm I

• Step 1 Start with an initial selection for α0 ∈ A (α0 =
[1/N, . . . , 1/N ] is a good choice).

• Step 2 Compute U∗(α0) =
arg minU∈U

∑N

i=1
αi

0
J i(U) by solving the

maximization Problem C.

• Step 3 Verify if J i(U∗) ≤ di, i = 1, . . . , N , where

di is the optimal value of (4) when the control laws

(6)-(7) are applied to the dynamical system (5). If this

condition is not satisfied, then there is at least one i0
for which J i0(U∗) > di0 . In that case, update αi0

0
=

αi0
0

+ 0.01, αi
0

= αi
0
− 0.01

N−1
, for i 	= i0 and return to

Step 2 (similarly extend the update rule for more than

one i0).

• Step 4 Calculate

α̃j =

∏

i �=j (di − J i(U∗(α0)))
∑N

i=1

∏

k �=i (dk − Jk(U∗(α0)))
, j = 1, . . . , N

• Step 5 Apply the update rule αi
0

= 0.9αi
0

+ 0.1α̃i. If

|α̃i − αi
0
| < 0.01, i = 1, . . . , N, then terminate the

algorithm and set α = α̃, else return to Step 2.

The above discussions are now summarized in the following

theorem.

Theorem 3 Consider a team of agents with individual dy-

namical representation (3) or the team dynamics (15), the

individual cost function (4), and the team cost function (13)

with the corresponding parameters (14) and (16). Further-

more, assume that the desirable value of the parameter α
is found by using Algorithm I and the control law U∗ is

designed as U∗ = −R−1BT PX . P is the solution to the

following optimization problem

max trace(P ) s.t.






















1.

[

PA + AT P + Q PB
BT P R

]

≥ 0, P ≥ 0

2. Ac = (A − BR−1BT P ), AcS = 0
3. P (i, j) = 0 if L(i, j) = 0, ∀i, j = 1, . . . , N
4. Ac(i, j) 	= 0 if Lsub(i, j) 	= 0, ∀i, j = 1, . . . , N

(24)

where S = 1 and Lsub denotes the Laplacian matrix of an

arbitrary selected connected subgraph of the original graph

describing the information structure. It then follows that

(a) In infinite horizon, i.e. T → ∞, the above controller

solves the following min-max problem

U∗ = arg min
U∈U

N
∑

i=1

αiJ i(U), α ∈ A,

A = {α = (α1, . . . , αN )|αi ≥ 0 and

N
∑

i=1

αi = 1}

α∗ = arg max
α

N
∏

i=1

(di − J i(α,U∗)), J≺d

(25)

(b) The optimal value of the cost function (13) has a finite

infimum of XT (0)PX(0) − ξ2
∑

i

∑

j P (i, j) where ξ is a

constant coefficient of the consensus value, i.e. Xss → ξ1.

(c) In addition, the suggested control law guarantees stable

consensus of agents output to a common value subject to the

dynamical and information structure constraints of the team

in a cooperative manner.

Proof: Omitted due to space limitations.

Using the above results, the team consensus goal can be

obtained in a cooperative manner and subject to the given

information constraints.

VI. COMPARISON STUDY

Due to space limitations the simulation results are omitted

and only a comparative table is included. This comparison

corresponds to a team of four agents that are controlled by

using two control strategies, namely a semi-decentralized op-

timal control law given by Lemma 1 versus a game theoretic-

based control law given by Theorem 3. The simulation

parameters for both approaches are selected as follows: Ai =

02×2, Ri = I2×2, Ci = I2×2, Bi =

(

4 −3
−2 3

)

, and
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Qij =

(

10 3
3 4

)

. In the second control strategy the initial

value for the parameter α is selected as α0 = [1/4, . . . , 1/4]
and its optimal value α = [.1589 .1229 0.263 0.4552]
is obtained by using the procedure in Algorithm I. The

interaction gains are selected as F ij = 1.6I2×2. Table I

compares the cost obtained for the four agents under the

two proposed control approaches for a period of 10 sec. As

expected the cost values for the game theory approach are

less than those obtained from the optimal control approach.

However, it should be noted that this is achieved at the ex-

pense of an increased computational complexity in the game-

theoretic approach. In fact, in this method two optimization

problems, i.e. a maximization and a minimization problem

should be solved as compared to the semi-decentralized

approach where only a single minimization problem needs

to be solved. Therefore, there is a tradeoff between the

control computational complexity and the achievable control

performance.

VII. CONCLUSIONS

A control strategy based on cooperative game theory is

applied to the problem of cooperation in a team of unmanned

systems. The main goal of the team is to reach at a common

output, i.e. to have consensus. To achieve this goal, first

a semi-decentralized optimal control strategy is designed

following the results that the authors have recently developed

in [11] for a team of agents with individual cost functions.

Next, cooperative game theory approach is applied to the

cooperation problem where linear combination of locally

defined cost functions is considered as the team cost function.

The Nash bargaining solution is chosen as “the best solution”

among the Pareto efficient ones found by optimizing the team

cost function. Unfortunately, to implement this strategy one

requires to have access to full team information measure-

ments. To remedy this major obstacle and shortcoming the

corresponding optimization problem is formulated as a set

of LMIs where the available information structure is en-

forced onto the control structure. Consequently, one can now

guarantee consensus achievement with minimum individual

cost by maximizing the difference between the cost obtained

through cooperative and non-cooperative (that is, the semi-

decentralized optimal controller) approaches. Moreover, the

consensus achievement condition is added as a constraint

to the set of LMIs. By performing a comparative study

between the game theory and the optimal control strategies,

TABLE I

A COMPARATIVE EVALUATION OF THE PERFORMANCE INDEX

CORRESPONDING TO THE TWO CONTROL DESIGN STRATEGIES.

Performance Index

Control Scheme Agent

1

Agent

2

Agent

3

Agent

4

Optimal control 24,996 17,597 14,624 29,513

Game theory 19,838 10,868 11,805 27,855

it is concluded that the former approach results in lower

individual as well as team cost values as predicted. Moreover,

the game theory approach results in a global optimal solution

that is subject to the imposed constraints. In future work,

a quantified index will be presented to measure the effects

of decentralization of information on the increase of the

team cost. This quantization may provide an insight into the

tradeoffs that exist between the availability of information

and team cost based on the two proposed methods.
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