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Abstract— In this paper we present a new continuous-time
recurrent neurofuzzy network structure for modeling and
identification of a class of nonlinear systems, using a training
algorithm motivated from previous works in adaptive observers.
Using only output measurements and the knowledge of an
excitation input signal, the proposed network is trained by
generating estimates of an ideal network and jointly identifying
its parameters. The objective is to make the network to dynam-
ically behave as the plant. The stability of the network and the
convergence of the training algorithm are established based
on the Lyapunov stability theory. Two numerical examples
and an experimental result are included to demonstrate the
effectiveness of the proposed method.

Keywords: System Identification, Nonlinear Systems, Neu-
ral Networks, Lyapunov stability.

I. INTRODUCTION

Neurofuzzy networks have been used for modeling and
designing control systems for their enhanced learning and
function approximation capabilities by combining the advan-
tages of both of them [1], [2], [3]. These structures have
been used not only as static input-output functions, but also
as dynamic models. These latter are known as recurrent or
dynamic networks, where feedback connections in some or
all layers within the network are present. They have been
used to model and identify dynamic systems. One of the
very first approaches was given by [4], used to learn the
dynamic behavior of certain computational systems.

The structure of neural networks is defined according
to the problem in which they are used. For example, [2]
proposed networks with feedback within the internal layers
for identification and control of nonlinear systems, [5] used
time-delay networks and [6] proposed fully recurrent single-
hidden layer networks, where all layers are considered to
be inputs. Networks such as globally static-locally recurrent
structures have been proposed by [5], [7], [8], using neurons
with linear filters in the synapsis.

As pointed out by [9], these structures do not imply
stability in the training algorithms. Common approaches,
such as Backpropagation-Trough-Time [10] and Real-time
recurrent learning [6], have been used for network training;
but these algorithms tend to be slow and lack stability
analysis. So, linear approximations such as recursive-least-
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of Marcos A. González Olvera is supported by CONACyT.

Marcos A. Gonzalez-Olvera and Yu Tang (corresponding author) are
with Faculty of Electrical Engineering, National Autonomous University of
Mexico, Mexico City, Mexico. mangel@verona.fi-p.unam.mx,
tang@servidor.unam.mx. Tel (52)-55-56234142

squares [11], [12] and Kalman filters [13] have been reported
and successfully applied.

Low convergence speed and parameter number explosion
(the curse of dimensionality) are challenges to be faced
during training. Some research works have proposed simpler
structures by focusing on the specific task to be analyzed:
on control and identification tasks, [14], [15] proposed exter-
nally recurrent networks; while [16] studied structures with
internal feedback via fuzzy systems and [9] proposed input-
output neurofuzzy networks where the consequent part of
each rule is itself a neural network function. However, many
of these structures do need the direct measurement of the
actual states of the system, which may not be available in a
practical situation.

State-space representations are preferred in some situa-
tions for control design. In this sense, internal states to model
the dynamics have been considered. For example, [17], [18]
have presented stable training algorithms that require the
direct measurement of the states of the plant to be identified.
In a different approach, [3] required only the information of
the output of the plant, thus generating internal state variables
(not related to those of the system), but stable training is not
guaranteed.

In a previous work [19], we have focused on a
Controllable-Form Recurrent NeuroFuzzy Network
(CReNN) in discrete-time, using the delayed outputs
as state variables of the network with a Least-Squares-based
training. In this paper, we continue this research line by
presenting a continuous-time neurofuzzy network that
identifies the input/output dynamics of a plant based on
a state-space model, and keeps the convergence of the
parameters and the ultimate boundness of the identification
error when the persistent excitation condition is fulfilled.
The novelty of the presented structure relies on both the
structure and the training algorithm. The network considers
an output feedback into the state equation, and the training
is based in the work on adaptive observer design [20],
[21], [22]. So, the proposed network can identify a class
of nonlinear systems using only output measurements,
while the training algorithm estimates the states of an ideal
network such that minimizes the identification error, jointly
with parametric identification.

The rest of the paper is organized in the following sections:
in Section II the identification problem is analyzed, and
a proposed identifier structure is presented in Section III,
where also the boundedness and convergence of the training
algorithm are discussed. Examples of the performance of the
neural identifier are shown in Section IV by identifying a
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pair of nonlinear systems, including an experiment in a real
system with nonlinearities. Finally, conclusions and future
work are drawn in Section V.

II. PROBLEM STATEMENT

Consider the following single-input-single-output system

ẋ(t) = f(x, u),
y(t) = h(x), (1)

where u(t) and y(t) are the input and the output, respectively,
and x ∈ <n is the state of the system, f : <n × < → <n,
h : <n → <, are smooth functions. We assume that (1) is
observable in the region on interest [21].

We consider the class of nonlinear systems transformable
to

ż = Az + f̄(y, u),
y = Cz, (2)

with (A,C) observable, and f̄(y, u) smooth.
In [21], the sufficient and necessary conditions are given

in order to transform (1) through a local diffeomorphism z =
Φ(x) into the system (2). We assume that these conditions
are fulfilled here. The objective is to find a continuous-time
recurrent neural network described by

η̇ = Aη + ϕ(y, u)θη,
y = Cη, (3)

such that, by using only the input signal u(t) and output
measurement y(t), can generate a dynamic mapping u →
ŷ, such that supt≥0 |ŷ(t) − y(t)| is minimized tuning the
network parameter θη , as illustrated in Fig. 1.

Fig. 1. Identification objective

Notice that the function ϕ(y, u)θη is intended to approxi-
mate f̄ in (2). We will approach this problem by borrowing
ideas from adaptive observer design [20], [21], [22], where
under observability conditions of (A,C) and a persistent
excitation for ϕ(y, u), an adaptive observer can be designed
such that jointly estimates η̂ and θη via a decoupled algorithm
[22].

III. PROPOSED RECURRENT NEUROFUZZY NETWORK
AND TRAINING ALGORITHM

A. Network structure

We propose the following neurofuzzy network, described
by the r fuzzy rules, with r = n

R1 : If y is F y1 AND u is Fu1 then

η̇1 = Aη +
[
θ11 + θ12u+ θ13ρ(y)

0r−1×1

]
,

...
Ri : If y is F yi AND u is Fui then

η̇i = Aη +

 0(i−1)×1

θi1 + θi2u+ θi3ρ(y)
0r−i×1

 ,
...

Rr : If y is F yr AND u is Fur then

η̇r = Aη +
[

0(r−1)×1

θr1 + θr2u+ θr3ρ(y)

]
,

(4)

where A is a Hurwitz matrix and ρ(y) is a monotonic
increasing sigmoid function, such that limy→±∞ ρ(y) = ±1,
ρ(0) = 0. The fuzzy sets for u and y are characterized
the membership functions F yi = exp(−σ2

yi(y − µyi)2),
Fui = exp(−σ2

ui(y − µui)2), so the activation value of each
rule is Fi = F yi F

u
i = exp(−σ2

yi(y−µyi)2− σ2
ui(y−µui)2)

[23]. If the defuzzification is defined as η̇ =
∑r
i=1 Fiη̇

i, the
regressor can be expressed as

ϕ(y, u) =
[
diag(F ) diag(F )u diag(F )ρ(y)

]
∈ <n×3r,

(5)
where F =

[
F1 . . . Fr

]
∈ <r. Consequently, θη ∈

<3r×1.
Remark 1: It can be noticed that through the transforma-

tion from (1) to (2), the regressor is a function of the plant
input and output. The consequent part in the above fuzzy
rules is designed in such a way to avoid parameter explosion
and to meet the persistent excitation condition (see below).
However, other type of fuzzy rules may be considered, as
long as they comply with the persistent excitation condition.

B. Training algorithm

Let the network defined by (3) to work as a parallel model
for (2). The problem is then to jointly estimate η and θη .
As the pair (A,C) is observable, a vector K ∈ <n can
be found such that the eigenvalues of A − KC are in any
desired position in the complex plane. Following this, an
output injection is considered for the state equation of (3) in
the form

η̇ = (A−KC)η + ϕθη +Ky.

Following a similar treatment as [22], the states of this ideal
network can be decomposed in

η = ηy + ηϕ, (6)
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where

η̇y = (A−KC)ηy +Ky, (7)
η̇ϕ = (A−KC)ηϕ + ϕθη. (8)

Clearly, an estimator for ηy can be easily obtained by

˙̂ηy = (A−KC)η̂y +Ky, (9)

and an estimator for ηϕ is proposed to have the form

˙̂ηϕ = (A−KC)η̂ϕ + ϕθ̂η + Υ(t) ˙̂
θη, (10)

where Υ defines a dynamic transformation η̂ϕ = Υ(t)θ̂η . By
developing the derivative of η̂ϕ,

dη̂ϕ
dt

= Υ̇θ̂η + Υ ˙̂
θη, (11)

= (A−KC)Υθ̂η + ϕθ̂η + Υ ˙̂
θη. (12)

we have that

Υ̇θ̂η = (A−KC)Υθ̂η + ϕθ̂η, (13)(
Υ̇− (A−KC) Υ− ϕ

)
θ̂η = 0. (14)

This last equation gives

Υ̇ = (A−KC) Υ + ϕ, (15)

which describes a filtered matrix of ϕ.
Since the regressor ϕ is bounded, so is Υ because A−KC

a Hurwitz matrix. The training algorithm is proposed to be

˙̂
θη = ΓΥTCT (y − Cη̂), (16)

where Γ is a positive definite constant gain matrix. The
stability and convergence of the proposed network and the
training algorithm are summarized in the following theorem.

Theorem 1: Consider the system (1). Assume that it is ob-
servable in the region of interest, and transformable through a
diffeomorphism into the equivalent system (2). The following
neurofuzzy network

˙̂η = Aη̂ + ϕ(u, y)θ̂η +
(
K + ΥΓΥTCT

)
(y − Cη̂) , (17)

with the training algorithm

˙̂
θη = ΓΥTCT (y − Cη̂), (18)

where (A,C) is observable, Γ > 0, the gain matrix K ∈ <n
is such that A−KC is Hurwitz, and

Υ̇ = (A−KC) Υ + ϕ, (19)

the filtered version of ϕ, guarantees that all signals are
bounded, and the state estimation error z̃ = η̂ − z and
parameter error θ̃ = θ̂η−θη are ultimately bounded, provided
that the regressor matrix is persistently exciting, i.e.,∫ t+T

t

ΥT (τ)CTCΥ(τ)dτ ∈ [αI, βI]. (20)

for some 0 < α ≤ β, and T > 0.
Proof: Following the Stone-Weierstrass Theorem, the

smooth function f̄(y, u) can be approximated by ϕ(y, u)θη

with arbitrary precision in a compact set contained in the
region of interest, and then f̄(y, u)−ϕ(y, u)θη = ε(t), where
ε(t) is the approximation error for the set of optimal param-
eters θη (depending on the minimizing criteria considered).
In this sense, the system (2) can be represented as

ż = Az + ϕ(y, u)θη + ε(t), (21)
y = Cz, (22)

Now, considering a network (3) such that η is meant to be
an estimate of z, and defining the error signals

θ̃ = θ − θ̂, z̃ = z− ẑ, ξ(t) = z̃−Υθ̃, (23)

the derivative of the previous equation represents the error
signal dynamics, which are

ξ̇(t) = (A−KC)ξ − ε, (24)
˙̃
θ = −ΓΥTCTC(ξ + Υθ̃). (25)

It follows that, while ε is bounded, ξ is bounded, as the
matrix A − KC is designed to be Hurwitz. Moreover, Υ
must be bounded as it is obtained from a stable filtering of
ϕ, that is also bounded.

Now, it can be proven [22] that under a persistent excita-
tion condition (20) the origin of the system

χ̇ = −ΓϕTϕχ (26)

is exponentially stable. It follows that the homogeneous part
of (25) is also exponentially stable. Therefore, the equation
(25) is exponentially stable with a bounded perturbation,
which implies the boundness and the ultimate boundness of
θ̃.

IV. EXAMPLES

In order to validate the proposed recurrent network and
illustrate its performance, two simulation examples and an
experimental result are presented. In the first one, we identify
a nonlinear system that is another recurrent network, which
represents an ideal plant with no model mismatching. In
the second example, a nonlinear system in the form of (2)
was considered, where the same set of parameters used in
the first example was employed. The third example consists
on the identification of the dynamics of a DC motor with
associated nonlinearities. In general, a sigmoid function
ρ(y) = tanh(y) was used, and the antecedent part only
depends on y.

A. Example 1: Identification of a recurrent neural network

The system to be identified is a network of the form (3)
with three states (n = 3). The main objective in this example
is to show the performance of the training algorithm under
no model mismatch present. The membership functions with
σyi = 0.2, i = 1, 2, 3, and µy1 = −1, µy2 = 0 and µy3 = 1.
The vector θη was

θη = [3.495 1.881 0.2252 1.055 − 2.090 5.088...
0.1772 5.391 0.7922]T .
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The vector K was chosen such that the eigenvalues of A−
KC were {−40,−50,−60}, and Γ = 107I3r×3r. The input
signal u was a bounded random signal with zero mean an
unitary variance, that changed each 5 seconds. In Fig. 2 it
can be seen how the parameters of the proposed recurrent
network evolve during training. In Fig. 3 it is shown the
performance of the network states running in parallel with
the original network, while Fig. 4 depicts the output of both
networks. After training, it was obtained that

θ̂η = [3.604 2.038 0.2770 1.055 − 2.087 5.093...
0.1756 5.389 0.7874]T .

Note that the parameter estimates, the state estimate and the
output estimate follow closely to their true values; and more
importantly, that the input-output dynamics are identified.

Fig. 2. Parameter evolution for Example I

ee

Fig. 3. State evolution for Example I

Fig. 4. Output evolution for Example I

B. Example 2: Identification of a nonlinear system

The nonlinear system is already transformed into the form
of (2), given by

ż =

 0 0 −8
1 0 −12
0 1 −5

 z +

 0.1
0

−0.1 sin(1
2y)

 , (27)

+

 0.1 sin( 1
2y) + 0.2
0.1
0

u.
y =

[
1 0 0

]
z

The main objective here is to show the performance of the
network where theoretical model mismatch is present. The
pair (A,C) is observable, and the network was chosen with
dim{η} = 3 = n. For this simulation, we chose the same
parameters and input as in the previous example. So, the
membership functions have parameters σyi = 0.2, i = 1, 2, 3,
and µy1 = −1, µy2 = 0 and µy3 = 1. In particular, after
some iterations, these parameters were found to converge.
The vector K was chosen such that the eigenvalues of
A − KC were {−40,−50,−60}, and Γ = 107I3r×3r. In
Fig. 5 it can be seen how the parameters of the proposed
recurrent network evolve during training. In Fig. 6 it is shown
the performance of the network running in parallel with the
original system comparing their states, and in Fig. 7 is shown
the output of both systems.

In the proposed network, the antecedent part of the fuzzy
rules are fixed. In some situations, it would be desirable
to get an a priori estimate of these parameters, or tune
them on-line. If the membership functions are not well
chosen, the performance can deteriorate. In this case it can
be seen that using the mentioned membership functions, the
network can follow closely the dynamics of the system,
with a small modeling error. For future work, we plan to
adapt the nonlinear parameters in the antecedent part of the
rules in order to improve the identification and modeling
performance of the network.
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Fig. 5. Parameter evolution for Example II

Fig. 6. State evolution for Example II

To see how these parameters affect the performance of the
network, several simulations were done with different widths
of the membership functions, and it was observed that, for
σyi between 0.2 and 0.1 the results did not have a strong
variation. When σyi = 0.5 and higher were considered, the
performance of the network deteriorated. Fig.9 shows the
results with σyi = 0.5. As can be noticed in this figure,
the performance of the network in producing the dynamic
mapping u→ ŷ is degenerated, though still is acceptable in
parameter boundness (shown in Fig.8). This indicates that a
careful selection of the space partition of (y) must be made
prior to training. This is also shown in the next example.

C. Example 3: Identification of a real nonlinear physical
system

For this example, experimental data were obtained from
a DC motor that has associated nonlinearities, such as
Coulomb friction and nonlinear inertia was added.

This motor is controlled by voltage, with a range of
±5[V ], and 400s of input-output signals were used for
this experiment, with a sample time of 20ms. For training
purposes, the input and output signals were normalized to
their maximum values. A sample of these normalized training
signals is depicted in Fig. 10. For the network, it was chosen
dim{η} = 3 = n, σyi = 2, i = 1, 2, 3, and the centers of the

Fig. 7. Output evolution for Example II

Fig. 8. Parameter evolution for Example II with σi = 0.5

membership functions were obtained using a Fuzzy C-Means
[24] algorithm on output data y, resulting on µy1 = −0.3180,
µy2 = 0.3047 and µy3 = −0.0129. The eigenvalues of
A were chosen such that λ{A} = {−0.1, −0.2, −0.3},
and vector K was chosen via a LQR algorithm that the
weighting matrices were QLQR = I3×3 and R = 1. The
training algorithm was run for 7 epochs, and Γ = 13r×3r. In
Fig. 11 it can be seen how the parameters of the proposed
recurrent network evolve during training and in Fig. 12 is
shown the output of both systems.

V. CONCLUSIONS

In this paper we have presented a new recurrent neuro-
fuzzy network for modeling and identification a class of
nonlinear systems using only input and output measurements.
It gives both the state and parameter estimates of the plant. It
was shown that the algorithm results in bounded identifica-
tion error as well as bounded parametric error, that will de-
pend on the approximation capabilities of the network. Two
numerical examples and an two experimental results were
presented in order to show the identification effectiveness of
this network. It was observed that approximation capabilities
vary depending on how the antecedent parameters of the
network are selected, so we propose for future work that
space-partition schemes (such as Fuzzy C-means or other
types of unsupervised techniques) could be used to improve
the performance of the network by, either choosing the
antecedent parameters prior to training, or modify them into
the algorithm. Also, for future work we consider to train
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Fig. 9. Output evolution for Example II with σi = 0.5

Fig. 10. Training signals for Example III

also the antecedent parameters to improve the quality of the
identification.
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