
 
 

 

  

Abstract—This paper deals with the exponential 
synchronization problem for a class of dynamical delayed 
complex networks with each node being a general Lur’e system. 
The network model considered can represent both the directed 
and undirected weighted networks. Based on the Lyapunov 
stability theory and property of the coupling matrix, the 
delay-dependent linear controllers are designed and the 
controlled networks are globally exponentially synchronized 
with a given convergence rate. A dynamical delayed complex 
network composed of identical Chua’s circuits is adopted as a 
numerical example to demonstrate the effectiveness of the 
proposed results. 

I. INTRODUCTION 
YNAMICAL complex networks are becoming 
increasingly important in contemporary society both in 

science and technology. A complex network is a large set of 
interconnected communicating and interacting nodes where a 
node is a fundamental unit having specific contents and 
exhibiting dynamical behavior, typically. In fact, many 
systems in science and technology can be modeled as 
complex networks, and most well-known examples are: 
power grids, communication networks, internet, World Wide 
Web, metabolic systems, food webs, etc [1]. 

Synchronization of complex networks, one of the most 
important controlling activities to excite the collective 
behavior of complex dynamical networks, has attracted a lot 
of attentions of the researchers [2]-[9]. Recently, 
synchronization of dynamical complex networks consisting 
of Lur’e systems has become a topic of great interest 
[10]-[13]. The main reason for this is that in theory and 
engineering applications, a large class of systems can be 
expressed as Lur’e form such as E. coli cell [14], genetic 
oscillator [15], Goodwin model [16], repressilator [17], 
toggle switch [18], swarm model [19]-[21], Chua’s circuit 
[22], [23], etc. In addition, different from general dynamical 
complex networks, synchronization for dynamical complex 
networks composed of Lur’e systems can be derived by using 
Lur’e system method. 

In [10], the authors discuss the synchronization problem 
for a class of dynamical complex networks with each node 
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being a general Lur’e system and the network is assumed to 
be weighed and undirected. However, most of the real-world 
networks, such as the World Wide Web, metabolic and 
citation networks, are all directed. With regard to the 
structural features of the real-world networks, our study is 
aimed at exponentially synchronizing dynamical delayed 
complex networks with general coupling topology and each 
node being a general Lur’e system via designing 
decentralized delay-dependent linear controllers. The 
network model considered is quite general. It covers the 
weighted and directed network model and can be linearly 
coupled or nonlinearly coupled. 

The rest of this paper is organized as follows. In Section 2, 
a more general model of dynamical delayed complex 
networks composed of Lur’e systems is introduced. In 
Section 3, based on the properties of the coupling matrix and 
the Lur’e system, the decentralized delay-dependent linear 
controllers are given. A numerical example is provided to 
illustrate the efficiency of the given results in Section 4 and 
concluding remarks are given in Section 5. 

II. DYNAMICAL DELAYED COMPLEX NETWORK MODEL 
Consider the dynamical delayed complex network with 

general coupling topology that is proposed in [1]. The 
network is composed of N nonlinearly and diffusively 
coupled identical nodes. Here each of the nodes is a general 
Lur’e system. The state equations of the entire network are 
given below 

1,

( ) ( ( ( )) ( ( ))),
N

i i i ij j i
j j i

x Ax Bf y g h x t h x tτ τ
= ≠

= + + − − −∑  

,    1, 2, ,  ,i iy Cx i N= =                                              (1) 

where ,  ,  ,  ,  ,   n m n n n m m n
i ix R y R A R B R C R f× × ×∈ ∈ ∈ ∈ ∈ is a 

memoryless, possibly time-varying nonlinear function, 0τ ≥  
is an arbitrary but bounded constant representing the time 
delay and function ( ) nh R⋅ ∈  is assumed sufficiently smooth 
nonlinear vector field. Matrix ( ) N N

ijG g R ×= ∈  is the coupling 
configuration matrix representing the coupling strength and 
topology structure of the network; if there is a connection 
between node i  and node ( )j i j≠ , then 0ijg > ; and 0ijg =  
if otherwise. The diagonal elements of matrix G  are defined 
as 

1,
.

N

ii ij
j j i

g g
= ≠

= − ∑                                     (2) 
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where ( ),  1, , ,  1, ,l ilf y i N l m= = satisfy the following 
inequalities 

20 ( ) ,  1, 2, , ,  1, 2, ,  ,l il il l ilf y y y i N l mδ≤ ≤ = =  
for all ily R∈ and 0lδ ≥ . Taking 1 2( , , , )mdiag δ δ δΔ = , it 
can be easily seen that 

( )( ( ) ) 0T
i i if y f y y− Δ ≤                           (3) 

for all m
iy R∈ . 

Suppose that we want to stabilize network (1) onto a 
homogenous state defined by 

1 2 ,  ( ),Nx x x s s As Bf Cs= = = = = +               (4) 

where ns R∈  could be an equilibrium point, a limit cycle or a 
chaotic orbit. 

Let 0( ; ; ) nNX t t Rφ ∈  be a solution of delayed dynamical 
network (1), where 1( , , ) , ( )T T T

N i iφ φ φ φ φ θ= =  are initial 

conditions of node i . : nh R R×Ω →  is continuously 
differentiable on nRΩ ⊆ . 
Definition 1. The nonlinearity ( )if y  is said to be in the 
sector [0, ]Δ  if it satisfies (3). 
Definition 2. If there exist constants 0,  0α λ> >  and a 

nonempty subset Λ ⊆ Ω  with ,  1, 2, ,i i Nφ ∈ Λ = , such 

that 0( ; ; )X t t φ ∈ Ω× ×Ω  for all 0t t≥ , and  

0 0 0 0
0

( ; ; ) ( ; ; ) sup ( ) .tX t t S t t s e Sλ

τ θ
φ α φ θ−

− ≤ ≤
− ≤ −       (5) 

where 0 1 0 2 0 0( ; ; ) ( ( ; ; ),  ( ; ; ),  ,  ( ; ; ))T T T T
NX t t x t t x t t x t tφ φ φ φ= ,

0 0 0 0 0 0 0 0 0( ; ; ) ( ( ; ; ),  ,  ( ; ; )) , ( , , ) ,T T T T T TS t t s s t t s s t t s S s s= =

0 0( ; ; )s t t s  is a solution of the system (4) with the initial 

condition 0s ∈ Ω , then the delayed dynamical network (1) is 

said to realize exponential synchronization such that λ  is the 
exponential rate and Λ× × Λ  is called the region of 
synchrony of the delayed network (1). 

III. MAIN RESULTS 
In this section, we study the global exponential 

synchronization of delayed network (1) by designing linear 
controllers for each node. The controlled network can be 
described as 

1
( ) ( ( ( )) ( ( ))) ,

N

i i i ij j i i
j
j i

x Ax Bf y g h x t h x t uτ τ
=
≠

= + + − − − +∑  (6) 

where ,  1, 2 ,n
iu R i N∈ =  are the input variables of node i . 

Letting ( ) ( ) ( ), 1, ,i ie t x t s t i N= − = , the error dynamical 
system has the following form 

( ( ) ( ))i i i ie Ae B f Cx f Cs u= + − +  

1
      ( ( ( )) ( ( ))) ,

N

ij j i
j
j i

g g e t g e tτ τ
=
≠

+ − − −∑          (7) 

where ( ( )) ( ( )) ( ( )),  1, 2, ,i ig e t h x t h s t i Nτ τ τ− = − − − = .  
Then the global exponential synchronization problem of 

the dynamical network (6) is equivalent to the problem of 
global exponential stabilization of the error dynamical system 
(7). 

In the sequel, we need Assumption 1 in order to obtain our 
main results. 
Assumption 1. Suppose there exists a positive constant L , 
such that 

( ) ( ) ,i ih x h s L e− ≤                             (8) 
hold for 1, 2, ,i N= . 
Theorem 1. Suppose Assumption 1 holds and the time 
invariant delay (0, ]τ ρ∈  for some 0ρ > . Then the error 
system (7) is exponentially stable with respect to the 
sector [ ]0,Δ  and the controlled network (6) is globally 
exponentially synchronized for any fixed time delay 

(0, ]τ ρ∈  under the set of controllers 

1 2 ,  1, 2, , ,i i iu u u i N= + =                        (9) 

where 1 max max( ( ) ( )) ,T T T
i iu A B B C C eμ μ= − − Δ Δ  

2 21
2 2( ( )) ,i ii i ii iu g e L g g eλρλ= − + + +  

1,
0,  0,  1, 2, , ,N

i ji iij j i
g g g i N

= ≠
= − < < =∑  

max ( )Mμ denotes the maximum eigenvalue of the matrix M , 
L  is defined in Assumption 1, and 0λ >  is the exponential 
rate available to be designed. 

Proof. Select the following Lyapunov functional candidate 
2

1
( ) ( ) ( )

N
T
i i

i
V t e e t e tλρ−

=

= ∑  

2 ( )

1
        ( ) ( ( )) ( ( ))d ,

N t t T
i ii i it

i
g g e g e g eλ η

τ
η η η−

−
=

− +∑ ∫    (10) 

and denote 
2 ( )

1
( ) ( ( )) ( ( ))d .

N t t T
i ii i it

i
W g g e g e g eλ η

τ
η η η−

−
=

= +∑ ∫  

Then the time derivative of ( )V t along the solution of the 
error system (7) is given as follows: 
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Denote ( ) ( ),i if Cx f Csφ = −  and we can deduce that the 
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nonlinearities ,  1,  2,  ,  i i Nφ = belong to the sector [ ]0,  Δ , 

i.e., ( ) 0T
i i iCeφ φ − Δ ≤ . Substituting the controllers (9) into 

previous equation and considering (8) in Assumption 1, we 
have 

22
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2

1 1

2 22

1

22

1

( ) 2 ( ) ( ) 2

         2 ( )( ( ( )) ( ( )))

        ( )( ( ) ( ( )) )
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N

ii i
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ij i j i
i j

j i

N

i ii i i
i

N

i ii i
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V t e g e t W

e g e t g e t g e t

g g L e t g e t

e g g g e t

λρ

λρ

λτ

λ λ

τ τ

τ

−

=

−

= =
≠

=

−

=

≤ − + +

+ − − −

+ + −

+ + −

∑

∑∑

∑

∑

 

From Assumption 1, we have 
( ) ( ) ( ) ,i i i ig e h x h s L x s L e= − ≤ − =  

and this is to say 
2 22

1 1

( ) ( ) ( ) ( ( )) .
N N

i ii i i ii i
i i

g g L e t g g g e t
= =

+ ≤ +∑ ∑  

Hence we have 
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1 1
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i j
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It is obvious that 
22

1 1 1 1
( ( )) ( ( )) .

N N N N

ji i ij j
i j i j

j i j i

g g e t g g e tτ τ
= = = =
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Therefore, it follows that 
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It is readily seen that 
2 2

1 1 1 1

( ) ( ( )) ( ) ( ( ))

0 .

N N N N

ij i j ij i i
i j i j

j i j i

g e t g e t g e t g e tτ τ
= = = =

≠ ≠

− − − − + −

≤

∑∑ ∑∑  

Thus, we have 
2

1

2 ( )

1

( ) 2 ( ) ( )

     2 ( ) ( ( )) ( ( ))d

      2 ( ).

N
T
i i

i
N t t T

i ii i it
i

V t e e t e t

g g e g e g e

V t

λρ

λ η

τ

λ

λ η η η

λ

−

=

−

−
=

≤ −

+ +

= −

∑

∑ ∫   (11) 

By calculating integration on both sides of inequality (11), 
we get 

02 ( )
0( ) ( ).t tV t e V tλ− −≤                            (12) 

Further, it is readily inferred 
2 2

0( ) ( ) ,ta e t V t b e≤ ≤                        (13) 

where 2 2
1 2( , , , ) ,  ,  T T T T

Ne e e e a e b e cλρ λρ ρ− −= = = + , 

{ }0 0 0 1 11sup ( ) , max , , , , , .t N NNe e t c c c c cτ θ θ− ≤ ≤= + =

With regard to (12) and (13), finally we obtain 

0

0

( )( ) .t t
t

be t e e
a

λ− −≤  

Therefore, under the controllers (9), the error dynamical 
system (7) is globally exponentially stable with exponential 
rate λ . Consequently, the controlled network (6) is globally 
exponentially stabilized onto s . Thus, the proof is completed. 

IV. NUMERICAL EXAMPLES 
To test the effectiveness of our results, we consider a 

dynamical delayed network with 10 nonlinearly coupled 
unified Chua’s oscillators, each of which can be described by 
the following equation [10] 

( ),   ,x Ax Bf y y Cx= + =                        (14) 
where

1

2

3

1.2628 9.1241 0 9.1241
, 1 1 1 , 0 ,

0 14.7059 0.0162 0

x
x x A B

x

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

[ ] 1 11 0 0 ,  ( ) 0.2080( 1 1).C f y x x= = − + − −  
The entire network is described by the following equations 

10

1
( ) ( ( ( )) ( ( )))i i i ij j i i

j
j i

x Ax Bf y g h x t h x t uτ τ
=
≠

= + + − − − +∑  (15) 

where 1 2 3( ( )) (2 ( ), ( ),0.1 ( ))T
i i i ih x t x t x t x tτ τ τ τ− = − − − and

0.1τ = . 
We simulate the above delayed network with weighted and 

directed coupling topology structure, where 1 ,  ij ij i
i

g l k
k β=  is 

the out-degree of node ,  i β  is a tunable weighted parameter. 
In this example, let 0.1β = . Select the asymmetric coupling 
matrix L  as follows 
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1 0 0 0 1 0 0 0 0 0
0 3 0 1 0 0 1 0 0 1
0 0 5 1 1 1 1 0 0 1
1 1 1 8 1 1 0 1 1 1
0 0 1 1 3 0 0 1 0 0

.
0 1 1 1 0 6 1 1 1 0
0 1 0 0 0 1 3 0 1 0
0 0 0 1 1 0 0 2 0 0
0 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1

L

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥
⎢ ⎥−
⎢ ⎥=

−⎢ ⎥
⎢ ⎥−⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 

According to Theorem 1, one can synchronization the 
network (15) by the linear controllers ,  1, 2, ,10iu i = , 

where 0.1,  0.1,  0.15.λ τ ρ= = =  

Fig.1-Fig.3 show the synchronous errors 1 2 3,  ,  i i ie e e  of the 

network (15). We can observe that all the synchronization 
errors do globally converge to zero. 

V. CONCLUSIONS 
In this paper, we focus on the exponential synchronization 

for a class of dynamical delayed complex network with 
general coupling topology and each node of the network is a 
general Lur’e system. The exponential synchronization 
problem is converted into an equivalent exponential stability 
problem of corresponding error system. An adequate 
Lyapunov function is constructed to guarantee the 
exponential stability of the error system. With the topology of 
the network and the property of the Lur’e system, 
decentralized delay-dependent linear controllers are designed 
such that the global exponential synchronization for the 
delayed network is solved. A numerical example of delayed 
network demonstrates the effectiveness of the proposed 
results. 
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Fig. 1. Synchronization errors 1ie  of the network 
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Fig. 2. Synchronization errors 2ie  of the network 
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Fig. 3. Synchronization errors 3ie  of the network 
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