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Abstract— We present a numerically efficient scheme to gen-
erate a family of path primitives that can be used to construct
paths that take into consideration point-wise constraints on both
the curvature and its derivative. The statement of the problem
is a generalization of the Dubins problem to account for more
realistic vehicle dynamics. The problem is solved by appropriate
concatenations of line segments, circular arcs and pieces of
clothoids, which are the path primitives in our scheme. Our
analysis reveals that the use of clothoid segments, in addition to
line segments and circular arcs, for path generation introduces
significant changes on issues such as path admissibility and
length minimality, when compared with the standard Dubins
problem.

I. INTRODUCTION

A path generation scheme for a vehicle operating in an
obstacle-free environment has to meet two basic objectives.
First, the generated path should be compatible to the vehicle
dynamics, and second, the path should minimize an appro-
priate objective function. Typically, the objective function
to be minimized is the total length of the path, whereas
the vehicle’s dynamics may be incorporated into the path
generation scheme by considering point-wise constraints over
the curvature of the path. In particular, curvature-constrained
planar paths of minimal length, and with prescribed initial
and final positions and tangents, for a vehicle that travels only
forward, have been characterized by Dubins [1], and for a
vehicle that moves both forward and backwards by Reeds and
Shepp [2]. Sussmann and Tang [3] and Boissonnat et al [4]
treated the same problem and provided more general and
rigorous proofs using Pontryagin’s Maximum Principle. The
path synthesis problem for the Dubins vehicle was studied
by Bui et al in [5] and for the Reeds-Shepp vehicle was
addressed by Souères and Laumond in [6].

One drawback of the aforementioned path planning
schemes is the discontinuous curvature profiles of the paths
they typically generate. In practice, discontinuous curvature
profiles induce poor tracking performance [7]. The main
source of this poor performance is the latency associated to
the steering command inputs of typical ground vehicles [8].
Boissonnat et al in [9], and Sussmann in [10] investigated the
continuous-curvature, shortest path problem with a constraint
on the derivative of the curvature of the path using optimal
control techniques. Constraints on both the curvature and the
derivative of the curvature of the path were taken into account

E. Bakolas is a Ph.D. candidate at the School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0150, USA, Email:
gth714d@mail.gatech.edu

P. Tsiotras is a Professor at the School of Aerospace Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0150, USA, Email:
tsiotras@gatech.edu

for the continuous curvature extension of the Dubins vehicle
in [11] and the Reeds-Shepp vehicle in [12]. A recent result
for planar shortest paths with free terminal position under
acceleration constraints is given in [13].

In this paper, we present a scheme to generate a suffi-
ciently rich family of path primitives that can be used to
synthesize near length-optimal paths with bounded curvature
and bounded derivative of the curvature when the vehicle can
move only forward. The developments in the paper are sim-
ilar to those of Scheuer and Laugier [11], where the authors
investigated the problem of a forward-only moving vehicle
on curvature-constrained paths. In contrast to the approach
of [11], however, the path concatenation scheme proposed
in this paper is based on some recent analytic/computational
geometry techniques on clothoid construction and, in par-
ticular, the work by Meek and Walton [14]. The use of
these computational techniques results in a numerically more
efficient scheme for constructing the concatenated path. In
particular, it is reminded that a concatenation of a circular arc
and a clothoid segment requires the solution of a nonlinear
algebraic equation involving a Fresnel integral. The work
of [14] provides a numerical technique to solve this algebraic
equation with strong convergence properties. Furthermore,
the analytic/computational geometry approach we adopt in
this paper allows us to associate the path planning problem
with the standard Dubins problem by means of a family
of geometric transformations. This provides a natural and
straightforward manner to construct feasible (albeit length-
suboptimal) paths from the initial to the final configura-
tion. Finally, we investigate the implications of imposing
constraints on both the curvature and its derivative over
the admissibility and length minimality of the path. Our
analysis illustrates the intrinsic difficulties of the shortest
path problem with curvature and curvature gradient bounds
when compared with the standard Dubins problem.

We need to point out that the–much more interesting–
synthesis problem for arbitrary initial and final conditions is
not addressed in this paper and is left for future investigation.
As far as we know this is still an open problem. Given the
complexity of the synthesis problem even for the case of the
standard Dubins vehicle [5] it is expected that the solution
to the synthesis problem of the path planning problem
addressed in this paper will most likely turn out to be rather
involved.

II. KINEMATIC MODEL AND PROBLEM FORMULATION

In this paper we are interested in the solution of the
planar, shortest-path problem with prescribed initial and final
positions, tangents and curvatures, when both the curvature
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of the path and its derivative are bounded by explicit bounds
known a priori. To address this problem, we employ a
continuous curvature extension of the Dubins vehicle, which
is described by the following set of equations [9]

ẋ(t) = cos θ(t), (1)

ẏ(t) = sin θ(t), (2)

θ̇(t) = κ(t), (3)

κ̇(t) = u(t), (4)

where x, y are the cartesian coordinates of a reference point
of the vehicle, θ is the vehicle’s orientation (always tangent
to the ensuing path), κ is the curvature of the ensuing path,
and u (steering acceleration) is the control input. We assume
that the set of admissible control inputs is given by

U �
= {u ∈ U : u(t) ∈ U, t ∈ [0, Tf ]} , (5)

where U is the set of all measurable functions defined over
the interval [0, Tf ], U

�
= [−γmax, γmax], and γmax is the

maximum curvature gradient. We assume furthermore that
the curvature κ satisfies the following constraint

|κ| ≤ κmax. (6)

To this end, we formulate the shortest path problem as a
minimum-time control problem.

Problem 1: Given the system described by equations (1)-
(4) and the cost functional

J(u) =
∫ Tf

0

1 dt = Tf , (7)

where Tf is the free final time, determine the control input
u∗ ∈ U , with u∗ : [0, Tf ] �→ U , such that

1) The trajectory x∗ : [0, Tf ] �→ R
2×S

1×R, with x∗(t) =
(x∗(t), y∗(t), θ∗(t), κ∗(t)), generated by the control u∗

satisfies
a) The boundary conditions

x∗(0) = (x0, y0, θ0, κ0), (8)

x∗(Tf ) = (xf , yf , θf , κf ). (9)

b) The global point-wise state constraint (6).
2) The control u∗ minimizes the cost functional J(u)

given in (7).

III. GENERATION OF G2 CONTINUOUS PATHS USING

PATH PRIMITIVES

Boissonnat et al [9] and Sussmann [10] have examined
Problem 1 when the state constraint (6) is not taken into
account. In this special case, as shown in [9], [10], the
problem is always feasible; however, when a line segment
is part of the optimal path, then the corresponding optimal
control u∗ may switch infinitely fast (chattering). Therefore,
the solution of Problem 1 is likely to be irregular as well.
Chattering optimal controllers cannot be implemented easily
in practice, only their approximations are possible [12].

If the bound on the derivative of the curvature is not
necessarily finite, then as γmax → ∞, Problem 1 reduces to
the Dubins problem, the solution of which is characterized

in [1]. For many applications, however, Dubins paths are not
suited for path tracking since their discontinuous curvature
profile induces an offset tracking error [7]. In this work, we
use pieces of clothoid curves to allow smooth transitions be-
tween path arcs of different curvature. Clothoids are curves,
whose curvature is an affine function of the arc length s,
i.e., κ(s) = κ0 ± κ1s, where κ0 and κ1 are non-negative
constants.

In this section we demonstrate a geometric approach
to deal with Problem 1. The key idea of our approach
is to associate the G2 path generation problem with the
standard Dubins problem by means of a family of geometric
transformations. This approach allows us to characterize in
closed form the paths that solve Problem 1 in a near-optimal
fashion. To this end, we first present some of the basic
properties of clothoids that we will use later on.

A. Clothoid Curves

The standard clothoid with scaling factor σ is expressed
naturally in terms of the angle of its tangent ϑ. In particular,
for ϑ > 0 the coordinates of the standard clothoid curve are
given by [14]

x(ϑ) = σ

∫ ϑ

0

cos τ√
τ

dτ, y(ϑ) = σ

∫ ϑ

0

sin τ√
τ

dτ. (10)

The curvature and the arc length of the clothoid as a function
of the angle ϑ are given by

κ(ϑ) =

√
ϑ

σ
, ds =

σ√
ϑ

dϑ. (11)

It follows from (11) that |dκ/ds| = 1/2σ2.

B. Family of Admissible Paths

In this section we examine the admissible paths of our
scheme. First, we consider the problem of driving a vehicle
whose kinematics are described by equations (1)-(4) from
the initial configuration x0 = (x0, y0, 0, 0) to the terminal
configuration xf = (xf , yf , θf , 1/ρ1) as shown in Fig. 1.
This problem is equivalent to driving the vehicle traversing
a line segment ε2 to a circle C1(ρ1) of radius ρ1 in finite
time. The vehicle is initially located at (x0, y0) ∈ ε2 with
orientation θ0 = 0 and the final position is (xf , yf ) ∈ C1(ρ1)
with orientation θf . The line segment ε2 and the circle C1(ρ1)
are connected with the clothoid K1. The line segment ε2 is
assumed to be parallel to a line segment ε1 that is tangent to
the circle C1(ρ1) at some point A ∈ C1(ρ1). Let δs > 0 be
the distance between the lines ε1 and ε2 as shown in Fig. 1.

Given the radius of the circle ρ1, the angle ϑ1 of the
tangent at the intersection point B of the clothoid K1 with
C1(ρ1) and the scaling factor σ1 of K1 are given by the
following equations [14]

σ1 − ρ1

√
ϑ1 = 0, (12)√

ϑ1

∫ ϑ1

0

sin τ√
τ

dτ + cos ϑ1 −
(

1 +
δs

ρ1

)
= 0. (13)

In this work we confine ourselves to the case when ϑ1 ∈
(0, π/2] for reasons that will become clear later on. Further-
more, we take δs to be a design parameter. In particular,
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the larger the value of δs the smaller the maximum value of
|dκ/ds| along the path from x0 to xf , hence the less stringent
the condition on the gradient of the curvature. Once δs is
given, σ1 and ϑ1 are derived uniquely from (12) and (13),
as shown in the following proposition.

Proposition 1: Given ρ1 > 0, the system of equations
(12)-(13) has a unique solution (σ, ϑ1) ∈ (0, ρ1

√
2π/2] ×

[0, π/2], provided that

δs ∈ Iδ
�
=

(
0, ρ1

(√
2π

2

∫ π/2

0

sin τ√
τ

dτ − 1

))
. (14)

Proof: Consider the function f : [0, π/2] �→ R, where

f(ϑ) = ρ1

(√
ϑ

∫ ϑ

0

sin τ√
τ

dτ + cos ϑ − 1

)
. (15)

It follows from Bolzano’s intermediate value theorem [15],
that for ϑ ∈ [0, π/2] the function f(ϑ) takes all the values be-

tween f(0) = 0 and f(π/2) = ρ1

(√
2π
2

∫ π/2

0
sin τdτ√

τ
− 1
)
.

Thus, for δs ∈
(
0, ρ1

(√
2π
2

∫ π/2

0
sin τdτ√

τ
− 1
))

, the equation

(13) has at least one solution in [0, π/2]. Furthermore, the
function f is monotonically increasing since f ′(ϑ) > 0 for
all ϑ ∈ (0, π/2). Thus, f is injective and the solution of the
system of equations (12)-(13) is unique.

O1

A

B

K1

ϑ1
ρ1

ε1
ε2

δs

(0, 0)

x1 = σ
∫ ϑ1

0
cos τdτ√

τ

ρ1 sin ϑ1

i

j(x0, y0)

(xf , yf )

θf

C1(ρ1)

Fig. 1. Interconnecting a piece of clothoid with a line segment
(SC+(ρ1, δs) path). The path that corresponds to the near optimal
solution to the steering Problem 1 is composed of a line segment,
a piece of clothoid and a circular arc.

We write SC+(ρ1, δs)
�
= ε2◦K1◦C1, where ◦ denotes con-

catenation of curves, to denote the G2 continuous path shown

in Fig. 1, and SC+(ρ1)
�
= ε1◦C1 to denote the corresponding

Dubins path. This path constitutes a G2 continuous half turn
that plays the role of the archetype that we use to devise the
rest of the admissible paths of our scheme. Throughout the
sequel, the superscripts + and − denote arcs of positive and
negative curvature respectively.

Let us now consider the path planning problem from the
initial configuration x0 = (x0, y0, θ0,−1/ρ1) to the terminal

configuration xf = (xf , yf , θf , 1/ρ2) as shown in Fig. 2.
The ensuing path is assumed to be the concatenation of two
circles C1(ρ1) and C2(ρ2) and the interconnected composite
curve, which is composed, in turn, of a piece of a clothoid
curve K1, a piece of the line segment ε2 and a piece of a
second clothoid curve K2. Let ε1 = {(x, y)| A1x + B1y +
C = 0} be the common tangent line of C1(ρ1) and C2(ρ2)
that is part of the Dubins path from x0 to xf as shown in
Fig. 2. Let also ε2 = {(x, y)| A2x+B2y+C = 0} be the line
obtained after rotating ε1 about the point P at an angle δr,
where the pivot point P is the intersection of the line ε1 and
the line segment O1O2. The minimum distances δs,1 and δs,2

of the line ε2 from the circles C1(ρ1) and C2(ρ2) are given
by δs,i = |A2Xi + B2Yi + C2|/

√
A2

2 + B2
2 − ρi, i = 1, 2,

where (X1, Y1) and (X2, Y2) are the coordinates of the
centers of C1(ρ1) and C2(ρ2) respectively. The composite
curve that connects the two circles is the concatenation
of a G2 continuous SC− and SC+ path, as demonstrated
in Fig. 1, with δs replaced by δs,1 and δs,2, respectively,
where δs,1/δs,2 = ρ1/ρ2. The scaling factors σ1 and σ2 of
the clothoid curves K1 and K2 are specified by algebraic
equations similar to those given in (12) and (13). We write

C−SC+(ρ1, ρ2, δr)
�
= C1 ◦ K1 ◦ ε2 ◦ K2 ◦ C2, to denote this

G2 continuous path, and C−SC+(ρ1, ρ2) = C1 ◦ ε1 ◦ C2 to
denote the corresponding Dubins path.

Let us now consider the path planning problem from the
initial configuration x0 = (x0, y0, θ0,−1/ρ1) to the terminal
configuration xf = (xf , yf , θf ,−1/ρ2) as depicted in Fig. 3.
The line ε1 = {(x, y)| A1x + B1y + C1 = 0} is tangent to
both C1(ρ1) and C2(ρ2) and the line ε2 = {(x, y)| A2x +
B2y +C2 = 0} is parallel to ε1 at a distance δs that is given
by δs = |C1 −C2|/

√
A2

1 + B2
1 . The composite curve in this

case is the concatenation of two G2 continuous SC− paths.

We write C−SC−(ρ1, ρ2, δs)
�
= C1◦K1◦ε2◦K2◦C2, to denote

the G2 continuous path, and C−SC−(ρ1, ρ2) = C1 ◦ ε1 ◦ C2

to denote the corresponding Dubins path.
Finally, in Fig. 4 three circles, namely C1(ρ1), C2(ρ2)

and C3(ρ3), which are located at points O1,O2 and O3

respectively, are interconnected by means of a C−SC+

or a C+SC− path. The corresponding Dubins path is the
concatenation of C1(ρ1) and C3(ρ1) with the common tangent
circle C2(ρ2) located at O′

2, where ρ2 = min{ρ1, ρ3}. By
construction, the straight line passing through O′

2 and O2

bisects the line segment O1O3 at point A. Let δc denote
the length of the segment O′

2O2. For δc > 0 the circles
C1(ρ1) and C2(ρ2) can be interconnected by means of a
C−SC+ path whereas the circles C2(ρ2) and C3(ρ3) can
be interconnected by means of a C+SC− path. We write
C−C+C−(ρ1, ρ2, ρ3, δC) = C−SC+(ρ1, ρ2, δr,12)
◦ C+SC−(ρ2, ρ3, δr,23). Finally, we write
C−C+C−(ρ1, ρ2, ρ3) = C1 ◦ C2 ◦ C3 to denote the
corresponding Dubins path.

IV. PATH ADMISSIBILITY AND LENGTH MINIMALITY

The issue of admissibility of each element of the family
of admissible paths introduced in Section III for different
boundary configurations requires special attention. For sim-
plicity, in this section we analyze in detail only the admis-
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O1

O2

ϑ1

ϑ1

ϑ2

ϑ2

ρ1

ρ2

ε2

ε1

ε4

ε3

δs,2δs,1

δr

PA

B

ϕ

(x0, y0)

(xf , yf )

θ0

θf

C1

C2

Fig. 2. Interconnecting two circles using clothoids traversed at
opposite clock-wise orientation via a C−SC+(ρ1, ρ2, δr) path.

O1

O2

ϑ1

ϑ1 ϑ2

ϑ2

ρ1 ρ2

ε1
ε2δs

D E

(x0, y0)
(xf , yf )

θ0
θf

C1

C2

Fig. 3. Interconnecting two circles using clothoids traversed at the
same clock-wise orientation via a C−SC−(ρ1, ϑ1, ρ2, ϑ2, δ) path.

sibility of C−SC− paths. After the necessary modifications,
similar results can be derived mutatis mutandis for the rest
of the path primitives introduced in Section III.

The path admissibility is mainly related to the G2 continu-
ity requirement, which, in turn, reflects the smooth, forward-
only motion requirement for the vehicle (paths with cusps
or corners fail to satisfy the G2 continuity requirement). In
particular, we characterize any steering problem in which
the two pieces of clothoids of the C−SC− path intersect
as inadmissible. Note that if we do allow an intersection
between the two clothoid curves to take place, then the
vehicle would have to track either a curve with a corner,
something that would result to a violation of the kinematic
equations (1)-(3), or a path with an arc of backward motion
along the line ε2 and between the endpoints D and E of the
two clothoid curves, where D is now aft of E compared to the
situation depicted in Fig. 2. Before analyzing the connection
between the G2 continuity condition and the admissibility of
the C−SC− path, we introduce the following lemma.

Lemma 1: For ϑ ∈ [0, π/2] we have that

ϑ − ϑ3

5
≤

√
ϑ

∫ ϑ

0

sin τ

τ
3
2

dτ ≤ ϑ +
ϑ3

6
. (16)

Proof: The result follows readily by integrating by parts∫ ϑ

0

sin τ

τ
3
2

dτ , and by virtue of the Taylor expansion theorem

for the cosine and sine functions in [0, π/2].
Proposition 2: The C−SC− path is admissible only if the

O1
O3

O′
2

O2

ρ1

ρ2

ρ3

C2(ρ2)

θ0,a

θf,a
A

δC
θ0,b

θf,b

C1(ρ1)
C3(ρ3)

Fig. 4. Each C−C+C− path is a concatenation of a C−SC+ and a
C+SC− path. The C−C+C− path that solves the steering problem
from θ0,a to θf,a and θ0,b and θf,b corresponds to an optimal and
suboptimal Dubins path respectively.

distance L between the centers of C1(ρ1) and C2(ρ2) satisfy
the following condition

L ≥

√√√√(ρ1 − ρ2)2 +
1
4

(
2∑

i=1

ρi

(
ϑi − (ϑi)3

5

))2

. (17)

Proof: With the aid of Fig. 5 we observe that the
two pieces of clothoids do not intersect only if Δx1 +
Δx2 ≤ √

L2 − (ρ1 − ρ2)2, where Δxi = σi

∫ ϑi

0
cos τ√

τ
dτ −

ρi sin ϑi, (i = 1, 2). After integrating by parts the integral
the result follows by virtue of Lemma 1.

O1
O2

ϑ1

ϑ1 ϑ2

ϑ2

ρ1 ρ2

ε1

ε2
δs

Δx1
Δx2√

L2 − (ρ1 − ρ2)2

L

ΔS1 ΔS2

(x0, y0) (xf , yf )

θ0
θf

C1 C2

Fig. 5. Total length of a composite curve containing two pieces of
clothoids.

It is important to examine how the use of clothoids affects
the length minimality of a G2 continuous C−SC− path
compared with its corresponding Dubins path. In particular,
equations (5) and (12) place a restriction over the minimum
allowable value of the tangent angles ϑi as follows

ϑi ≥ ϑi,min
�
=

1
2γmaxρ2

i

, i = 1, 2. (18)

The constraint (18), in turn, restricts the set of initial configu-
rations x0 associated to C1(ρ1) and/or terminal configurations
xf associated to C2(ρ2) for which a nearly optimal, admis-
sible C−SC− path exists. Before we address this problem in
more detail we need the following definitions.
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Definition 1: A path from x0 to xf is defined as a weakly
admissible C−SC− path if and only if the difference between
the total length of this path and the corresponding Dubins
path is bounded from below by a strictly positive quantity
that does not depend on neither ϑ1,min nor ϑ2,min. It is
defined as strongly admissible otherwise.

In Fig. 6 we consider the steering problem from x0 =
(x0, y0, θ0,−1/ρ1) to xf = (xf , yf , θf ,−1/ρ2). We observe
that if θ0 ∈ [0, ϑ1,min) and θf ∈ [0, 2π], or θ0 ∈ [0, 2π] and
θf ∈ (2π − ϑ2,min, 2π], then x0 and xf can be connected by
means of weakly admissible C−SC− paths only. However,
there always exists a strongly admissible C−SC− path if θ0 ∈
[ϑ1,min, 2π) and θf ∈ (0, 2π − ϑ2,min]. It is possible that a
set of boundary conditions that cannot be connected by a
strongly admissible C−SC− path may admit , for example,
a strongly admissible C−C+C− path.

The characterization of the type of admissible paths that
solves a given steering problem in a nearly optimal fashion,
if such a path exists, constitutes the synthesis problem. In
this paper we do not address this problem.

The above observations reveal the intrinsic difficulties
associated with the curvature-constrained, shortest path prob-
lem when one takes into account a constraint over the
curvature derivative for a vehicle allowed to move only
forward. Next, we compare the total length of a Dubins path
and the corresponding G2 continuous path in case the latter
path is strongly admissible.

O1

O2

ϑ1 ϑ2

ρ1 ρ2

ε1
ε2δs

C1 C2

Fig. 6. A G2 continuous path is not necessarily associated to a
Dubins path in a near optimal fashion.

V. COMPARISON OF STRONGLY ADMISSIBLE G2

CONTINUOUS PATHS AND THE CORRESPONDING DUBINS

PATHS

A question that naturally rises from the previous analysis
is how suboptimal, in terms of total length, is each of the G2

continuous paths that we introduced in Section III, compared
to the corresponding minimum-length Dubins path, in case
the G2 continuous path is strongly admissible. For the
C−SC− paths, and with the aid of Fig. 5, we can easily
show that

S = ρ1θ0 + ρ2(2π − θf ) +
√

L2 − (ρ1 − ρ2)2, (19)

S′ = S + (ρ1ϑ1 + ρ2ϑ2) − 1
2

2∑
i=1

ρi

√
ϑi

∫ ϑi

0

sin τ

τ
3
2

dτ,

(20)

where S and S′ denotes the total length of the Dubins
path and the corresponding composite G2 continuous path
respectively.

We next investigate whether a Dubins path c∗ =
C−SC−(ρ, ρ) can be approximated as the limit of a sequence
of strongly admissible C−SC−(ρ, ρ, δs) paths. The analysis
for the other admissible paths follow similarly. Note that for
ρ1 = ρ2 = ρ and for given δs, equations (12)-(13) imply
that σ1 = σ2 = σ and ϑ1 = ϑ2 = ϑ. Thus, the two pieces
of the clothoid curves K1 and K2 differ only in terms of a
plane isometry.

Proposition 2 implies that, given the distance L between C1

and C2, the G2 continuity condition places a restriction over
the maximum allowable value of ϑ, i.e., ϑ ≤ ϑmax, where
ϑmax ∈ (0, π/2]. The previous inequality, in conjunction
with inequality (18), characterize the set of admissible values
of ϑ. This set, in turn, characterizes uniquely, via equation
(13), the set of admissible values for the parameter δs of
the path C−SC−, i.e., δs ∈ (δs,min, δs,max) ⊂ Iδ, where
δs,j = f(ϑj), j ∈ {min,max} and Iδ and the function f
are defined as in (14) and (15) respectively. To this end, let us
consider the sequence

{
δ0
s , δ1

s , . . .
} ∈ (δs,min, δs,max) and

the corresponding sequence {ϑ0, ϑ1, . . . } ∈ (ϑmin, ϑmax) ,
where, for each n = 0, 1, . . ., the terms ϑn, δn

s of the two
sequences are uniquely related by equation (13).

Proposition 3: The sequence
{
δ0
s , δ1

s , . . .
}

is non-
increasing if and only if the corresponding sequence
{ϑ0, ϑ1, . . . } is non-increasing.

Proof: The proof follows easily from the continuous
function f being monotonically increasing.

To investigate the relation between the G2 continuous path
C−SC−(ρ, ρ, δs) with the corresponding Dubins path c∗, we
relax the constraint over the maximum allowable curvature
gradient by letting δs,min = ϑmin = 0. The following result
is evident from the continuity of f along with the continuity
of its inverse.

Proposition 4: Let
{
δ0
s , δ1

s , . . .
}

be a non-increasing se-
quence of positive real numbers. Then limn→∞ δn

s = 0 if
and only if limn→∞ ϑn = 0.

Given ρ > 0, the sequence
{
δ0
s , δ1

s , . . .
}

induces through
equations (12)-(13) a sequence of G2 continuous, strongly
admissible paths {c0, c1, . . .}, where cn = C−SC−(ρ, ρ, δn

s ).
Proposition 5: Let

{
δ0
s , δ1

s , . . .
}

be a non-increasing se-
quence of positive real numbers, with limn→∞ δn

s = 0.
Then the sequence of G2 continuous, strongly admissible
paths {c0, c1, . . .} converges uniformly to the Dubins path
c∗ = C−SC−(ρ, ρ).

Proof: Since θn ∈ (0, π/2) the path segments
from (x0, y0, θ0,−1/ρ) to (x′

0, y
′
0, π/2,−1/ρ) and from

(x′
f , y′

f , 3π/2,−1/ρ) to (xf , yf , θf ,−1/ρ) for c∗ and cn

coincide for all n = 1, 2, . . . , as shown in Fig. 7. Thus,
without loss of generality we consider the steering prob-
lem from (x′

0, y
′
0, π/2,−1/ρ) to (x′

f , y′
f , 3π/2,−1/ρ). Let

d(z, y) = supI
∣∣‖z(t)‖ − ‖y(t)‖∣∣ be the metric function of

the space G2(I) induced by the uniform norm. It follows
that

sup
Ix

∣∣‖cn(x)‖ − ‖c∗(x)‖∣∣ = δn
s , (21)

where Ix is the subinterval of the real line that corresponds to
the projection of c∗ on the x-axis. It follows that d(cn, c∗) =
δn
s . Therefore, limn→∞ d(cn, c∗) = 0.
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Thus, by constructing a non-increasing sequence{
δ0
s , δ1

s , . . .
}

we can approximate the Dubins curve
c∗ = C−SC−(ρ, ρ) by a sequence of G2 continuous,
strongly admissible paths {c0, c1, . . . }. Furthermore,
equation (21) implies that the rate of convergence of
{c0, c1, . . . } to c∗ is exactly the rate of convergence of the
sequence

{
δ0
s , δ1

s , . . .
}

to zero. The situation is depicted
Fig. 7.

O1 O2
ρ

δs,max
δs,min

(x0, y0) (xf , yf )

(x′
0, y

′
0)

(x′
f , y′

f )

C1 C2

θ0

θf

Fig. 7. Approximating a Dubins path by a sequence of G2

continuous curves.

Equation (20) gives the total length of each curve in
{c0, c1, . . . }. In particular,

S′
n−S = 2ρϑn−ρ

√
ϑn

∫ ϑn

0

sin τ

τ
3
2

dτ, n = 0, 1, . . . (22)

Proposition 6: The sequence {S′
0, S

′
1, . . . } converges to

S. Furthermore, ρm(ϑN ) ≤ S′
N − S ≤ ρM(ϑN ), where

m(ϑN ) = ϑN − ϑ3
N

6
, M(ϑN ) = ϑN +

ϑ3
N

5
. (23)

Proof: For any N ∈ {0, 1, . . . } it follows by (22) and
Proposition 1 that ρm(ϑN ) ≤ S′

N −S∗ ≤ ρM(ϑN ). Finally,
as N → ∞ both m(ϑN ) and M(ϑN ) go to zero. Thus,
S′

N → S as N → ∞.
Given ρ, L > 0, Proposition 6 implies that for large values

of ϑN , or equivalently of δN
s , the relative error between the

total length of cN and the Dubins curve c∗ increases rapidly.

VI. CONCLUSIONS

In this paper we present a path-planning scheme for the
generation of smooth, continuous curvature, planar paths
composed of line segments, pieces of clothoids, and circular
arcs that have bounded curvature and bounded curvature
gradient. Our analysis has revealed that the introduction of
the constraint over the curvature gradient in conjunction
with forward motion requirement increases the complexity of
the shortest-path problem. The synthesis of nearly optimal,
G2 continuous paths for arbitrary boundary configurations,
requires further and more thorough analysis, and shall be the
focus of future research.
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