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Abstract— This paper develops an algorithm for estimating
the minimum initial marking based on the observation of a
sequence of labels that is produced by underlying transition
activity in a given labeled Petri net. We assume that the
structure of the net is completely known while the initial
marking of the net is unknown. Given the observation of the
sequence of labels, we aim to estimate the minimum initial
marking of the net, i.e., an initial marking that (i) allows
for the firing of at least one sequence of transitions that is
consistent with both the observed sequence of labels and the
net structure; and (ii) has the least total number of tokens (i.e.,
the minimum number of tokens summed over all places). We
develop a recursive algorithm that can be used online to find the
minimum initial marking with complexity that is polynomial in
the length of the observed label sequence. Such minimum initial
markings are useful for characterizing the minimum number
of resources required at initialization for a variety of systems.

Index terms: Labeled Petri nets, Initial marking estimation,
Observed label sequence.

I. INTRODUCTION

Petri nets are a graphical and mathematical tool that can be
used to model a variety of dynamical systems [1], [2]. As the
size and complexity of practical systems increase, significant
attention is devoted to problems of state/event estimation us-
ing Petri net models. One of the most well-studied estimation
problems in Petri nets is that of estimating the marking (state)
of a given Petri net based on the observation of its event
sequence. For instance, in [3], [4] the authors present an
algorithm for obtaining an estimate (and a corresponding
error bound) for the marking of a given Petri net based
on complete knowledge of the observed firing sequence but
without knowledge of the initial state; these works also
discuss how this marking estimate may be used to design
a controller. In [5], the authors consider the problem of
marking estimation based on the observation of a sequence of
labels in a given labeled Petri net with known initial marking.
They show that, under some conditions on the structure of
the Petri net, the set of markings consistent with the observed
label sequence can be captured by a linear system whose size
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does not depend on the length of the observed label sequence.
This approach was further extended in [6] to handle nets
with silent transitions (i.e., transitions whose firing cannot
be observed). Generalizations and analyses of these ideas
to arbitrary labeled Petri nets were developed in [7], [8]
where the authors showed that the number of markings (and
firing vectors) that are consistent with a sequence of labels
of length k is bounded by a polynomial function in k.

In this paper, we consider a setting where we have
complete knowledge of the structure of a labeled Petri net but
no information about its initial marking. Given an observed
sequence of labels (that is generated by unknown underlying
transition activity in the net), we aim at finding the minimum
initial marking, i.e., an initial marking that (i) allows for the
firing of at least one sequence of transitions that is consistent
with both the observed sequence of labels and the Petri net
structure, and (ii) has the minimum total number of tokens
(the total number of tokens of a particular marking is taken
to be the sum of the number of tokens at each place in the
net). We obtain a solution to this problem by developing a
dynamic programming algorithm that is able to find the min-
imum initial marking with complexity that is polynomial1 in
the length of the observed label sequence. Note that finding
an initial marking that satisfies constraint (i) becomes trivial
if constraint (ii) is removed; however, constraint (ii) makes
the solution of this problem important for minimum resource
allocation problems in manufacturing systems. For example,
in part production settings, minimum resource allocation
involves the determination of the least resources required
to complete pre-specified machine operations, e.g., in order
to make a part (a final functional workpiece) from raw
materials [9]. In our setup, the given sequence of labels
could represent a sequence of (possibly different) tasks,
each of which may be accomplished via a sequence of
transitions (different alternatives for finishing a specific task).
The structure of the given labeled Petri net represents the
ways in which different tasks can be accomplished and
the interactions/constraints among them (as imposed by the
given manufacturing system). The recursive algorithm that
we develop resembles the one in [10] but is based on different
principles. Our problem formulation generalizes the work in
[3], [4] where the authors consider initial marking estimation
given a known transition firing sequence. In our setup, the
observed sequence of labels may correspond to multiple
transition firing sequences whose number will in general be

1The complexity of our dynamic programming algorithm will in general
be exponential in certain parameters of the Petri net; nevertheless, our focus
on the growth of algorithmic complexity with respect to the length of the
observation sequence is justified because the size of the net is fixed.
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exponential in the length of the label sequence. Using the
recursive algorithm that we develop, we are able to avoid the
explicit calculation of the initial markings that correspond
to each possible transition firing sequence, and keep the
complexity of the algorithm polynomial in the length of the
label sequence.

Crucial to our algorithmic complexity analysis is the fact
that the number of firing vectors that correspond to valid
sequences of transitions (i.e., sequences of transitions that
are consistent with the observed sequence of labels) is
upper bounded by a polynomial function in the length of
the observed sequence of labels [7], [8]. Our techniques,
however, are quite distinct from the ones in [7], [8] since
what constraints the number of possible initial markings is
the minimality requirement imposed by constraint (ii) and not
the number of firing vectors (indeed there could be multiple
minimal initial markings associated with each firing vector—
because each such firing vector could correspond to multiple
transition firing sequences).

II. PETRI NET NOTATION

In this section, we review basic definitions and terminol-
ogy that will be used throughout the paper. More details
about Petri nets can be found in [1], [2].

A Petri net structure is a directed weighted bipartite graph
N = (P,T,A,W ) where P = {p1, p2, . . . , pn} is a finite set of
places (drawn as circles), T = {t1, t2, . . . , tm} is a finite set
of transitions (drawn as bars), A ⊆ (P× T )∪ (T ×P) is a
set of arcs (from places to transitions and from transitions to
places), and W : A → {1,2,3, . . .} is the weight function on
the arcs.

Let b−i j denote the integer weight of the arc from place pi

to transition t j, and b+
i j denote the integer weight of the arc

from transition t j to place pi (1≤ i≤ n, 1≤ j ≤m). Note that
b−i j (or b+

i j ) is taken to be zero if there is no arc from place pi
to transition t j (or vice versa). We define the input incident
matrix B− = [b−i j ] (respectively the output incident matrix
B+ = [b+

i j ]) to be the n×m matrix with b−i j (respectively b+
i j)

at its ith row, jth column position. The incident matrix of the
Petri net is defined to be B ≡ B+−B−.

A marking is a vector M : P → (Z+
0 )n that assigns to each

place in the Petri net a nonnegative integer number of tokens
(drawn as black dots). We use M(p) to denote the marking
of place p (i.e., the number of tokens in place p). We also
use |M| to denote the total number of tokens summed over
all places of marking M (i.e., |M|= ∑n

i=1 M(pi)). A transition
t is said to be enabled if each of its input places has at least
B−(p, t) tokens, where B−(p, t) is the weight of the arc from
an input place p to transition t. We use M[t〉 to denote the
fact that transition t is enabled at marking M. An enabled
transition t may fire and, if it fires, it removes B−(pin, t)
tokens from each input place pin of t, and deposits B+(pout , t)
tokens to each output place pout of t to yield a new marking
M′ = M +B(:, t), where B(:, t) denotes the column of B that
corresponds to t. This is also denoted by M[t〉M′, and we
say marking M′ is reachable from marking M via the firing
of transition t.

Let σ = ti1ti2 . . . tik (ti j ∈ T ) be a transition firing sequence
of length k. We say σ is enabled with respect to M if
M[ti1〉M1[ti2〉 . . . [tik〉; this is denoted by M[σ〉. The set of
all transition firing sequences enabled under marking M
of a net N is denoted by E(N,M). Let M[σ〉M′ denote
that M′ is reachable via the firing of transition sequence σ
from M and let σ(t) be the total number of occurrences of
transition t in σ . More specifically, σ = [σ(t1) . . .σ(tm)]T

is the firing vector that corresponds to σ . For a transition
firing sequence that contains a single transition t, we use
t to denote its firing vector. Note that if M[σ〉M′, we can
express M′ as M′ = M + Bσ . Furthermore, we use |σ | to
denote the total number of transition firings in sequence σ
(i.e., |σ | = ∑m

i=1 σ(ti), which is equal to k in this case).
In a labeled Petri net structure NL = (P,T,A,W,L,Σ) (refer

to Fig. 1), N = (P,T,A,W ) is a Petri net structure and the
labeling function L : T → Σ∪{λ} assigns to each transition
in the net a label from a given alphabet Σ, or the empty
label λ if the transition is unobservable. Note that two or
more transitions may correspond to the same label. For a
label l ∈ Σ∪{λ}, we use Tl to denote the set of transitions
with label l, and |Tl | to denote cardinality of set Tl . In this
paper, we assume that the labeled Petri net is λ -free, i.e., all
transitions are observable (Tλ = /0). Thus, given a transition
firing sequence σ = ti1ti2 . . . tik of length k, the observed label
sequence is ω = L(σ) = L(ti1)L(ti2) . . .L(tik), i.e., a string
in Σk.

We use ~1n (respectively ~0n) to denote the n×1 vector of
all ones (respectively zeros). If A and B are two sets, we use
A−B to denote the set of elements that are in A but not in B.

III. PROBLEM FORMULATION

The problem we deal with in this paper is the follow-
ing. Consider a λ -free labeled Petri net structure NL =
(P,T,A,W,L,Σ). Given an observed label sequence ω =
l1l2 . . . lk (where l j ∈ Σ, j ∈ {1,2, . . . ,k}) that has been gener-
ated by an underlying (unknown) firing sequence ti1ti2 . . . tik
(i.e., l j = L(ti j)), we need to find the (set of) initial mark-
ing(s) that: (i) allows (allow) for the firing of at least one
sequence of transitions that is consistent with both ω and
the structure of the net, and (ii) is (are) minimum (i.e., the
marking(s) has (have) the minimum total number of tokens).

Clearly, the set of minimum initial markings Zminimum(ω)
is the set of solutions to the following problem:

Zminimum(ω) = argmin
M

|M| s.t. M[σ〉 & L(σ) = ω . (1)

Definition 1 Given a set of distinct markings S =
{M1,M2, . . . ,Mq}, marking Mi ∈ S is said to be a minimal
marking of S if @M j such that M j ≤ Mi where i, j ∈
{1,2,3, . . . ,q}, i 6= j, and the inequality is taken element-
wise. In other words, there is no other (distinct) marking M j
that has token numbers smaller than or equal to those of Mi
at all places.

In general, given a set of markings, the minimal marking
of the set is not necessarily unique because the ordering
relation is only partial.
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Definition 2 Given an observed sequence of labels ω , the
set of initial marking estimates with respect to ω is given
by Z(ω) = {M′ ∈ (Z+

0 )n | ∃σ ∈ T ∗ : M′[σ〉 and L(σ) = ω}.

Definition 3 Given an observed sequence of labels ω , the
set of minimal initial marking estimates with respect to ω
is given by Zminimal(ω) = {M ∈ Z(ω) | @M′ ∈ Z(ω) : M′ ≤
M and M′ 6= M}.

Definition 4 Given an observed sequence of labels ω , the
set of minimum initial marking estimates with respect to ω
is given by Zminimum(ω) = {M ∈ Z(ω) | |M| ≤ |M′| for all
M′ ∈ Z(ω)}.

Remark 1 It is not hard to argue that Zminimum(ω) = {M ∈
Zminimal(ω) | |M| ≤ |M′| for all M′ ∈ Zminimal(ω)}.

Definition 5 Given an observed label sequence ω = l1l2 . . . lk
(l j ∈ Σ, j ∈ {1,2, . . . ,k}), ωk−1 = l1l2 . . . lk−1 is the prefix of ω
with length k−1. Similarly, given a transition firing sequence
σ = ti1ti2 . . . tik, the prefix of σ with length k−1 is given by
σk−1 = ti1ti2 . . . ti(k−1).

Definition 6 Given two markings M ∈ (Z+
0 )n and M′ ∈

(Z+
0 )n, we say M′ is comparable with M if either M′ ≤ M,

M′ = M, or M′ ≥ M.

Example 1 Consider the λ -free labeled Petri net structure
shown in Fig. 1 with places P = {p1, p2, p3, p4}; transitions
T = {t1, t2, t3, t4}; labels Σ = {a,b,c}; labeling function de-
fined as L(t1) = L(t2) = a, L(t3) = b, L(t4) = c; and unknown
initial marking. Given the label sequence ω = aabc as our
observation, we see that there are four valid transition firing
sequences {t1t1t3t4, t1t2t3t4, t2t1t3t4, t2t2t3t4} corresponding to
ω . The minimal initial marking estimate with respect to each
of these four transition firing sequences can be found by
adding the tokens that are strictly necessary to enable this
transition firing sequence (this is essentially the approach
of [3], [4]). Thus, it is not difficult to argue that the cor-
responding (individually) minimal initial marking estimates
(each corresponding to one of the transition firing sequences
above) are given by [2 0 1 0]T , [1 0 0 0]T , [1 1 0 0]T , [0 2 0 0]T

respectively; therefore, the set of minimal initial marking
estimates with respect to ω is given by Zminimal(ω) =
{[1 0 0 0]T , [0 2 0 0]T}. Clearly, the set of minimum
initial marking estimates with respect to ω is Zminimum(ω) =
{[1 0 0 0]T} since marking [1 0 0 0]T has the smallest total
number of tokens. �

From Example 1, it is not difficult to see that, given a
transition firing sequence σ = ti1ti2 . . . tik (where ti j ∈ T for
j ∈ {1,2, . . . ,k}), there is a unique minimal initial marking
estimate corresponding to it; this is also essentially estab-
lished by the analysis in [3], [4]. In particular, the authors
of [3], [4] show that this unique minimal initial marking
estimate can be obtained recursively via

M j
0 = max{M j−1

0 +B · y j−1, B−(:, ti j)}−B · y j−1 (2)

for j ∈ {1,2, . . . ,k}, where max is taken element-wise,
M0

0 =~0n, and y j−1 is the firing vector of transition firing

Fig. 1. Labeled Petri net structure for Example 1.

sequence ti1ti2 . . . ti( j−1) (initially, y0 =~0m is taken to be an
m-dimensional vector of zeros). Note that M j−1

0 is the initial
marking estimate before transition ti j fires and M j

0 is the
initial marking estimate after transition ti j fires. Intuitively,
this estimate is obtained by adding (each time a transition in
σ fires) the smallest number of tokens to places, such that
the prefix of σ seen so far is enabled (i.e., the initial marking
estimate M j

0 has just enough tokens so as to enable the prefix
of σ of length j).

The difficulty in our setup arises due to the fact that
an observed sequence of labels may correspond to a set
of transition firing sequences. Therefore, given an observed
sequence of labels, we have a set of (possibly minimal)
initial marking estimates (instead of a single estimate). In
order to solve the problem in (1), a straightforward approach
would be to enumerate each possible sequence of length k,
evaluate for each sequence σ whether it satisfies L(σ) = ω ,
and if so compute its corresponding minimal initial marking
estimate. Then, one would have to choose, among all these
(individually minimal) initial marking estimates, the one(s)
that has (have) the minimum total number of tokens.

The problem with the above approach is that, in the worst
case, the number of sequences considered is exponential
in the length k of the observed sequence of labels (more
precisely, the number of sequences corresponding to the
sequence of labels ω = l1l2 . . . lk is given by ∏k

i=1 |Tli |).
Instead of enumerating all such transition firing sequences,
we will employ a trellis diagram and use a dynamic pro-
gramming approach [12] to estimate the set of minimum
initial markings more efficiently in a recursive manner.
This approach will take advantage of the fact that several
of these transition firing sequences correspond to identical
firing vectors2 and satisfy the following property (which we
formally establish later): when identical firing vectors are
reached with comparable minimal initial marking estimates
at identical points in time, the corresponding initial marking

2As shown in [7], [8], the number of different such firing vectors is
polynomial in the length of the observed label sequence.
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estimates need not be explored separately. In fact, among
these multiple initial marking estimates we only need to
retain the minimal one(s).

Observed label sequence

Pairs of firing vector and its 
corresponding set of minimal 
initial marking estimates

Fig. 2. Trellis diagram capturing the evolution of minimal initial marking
estimates.

We start with an overview of our approach in this section
and describe its crucial steps in more detail in the next
section. In Fig. 2, we illustrate how a trellis diagram can
be used to capture the evolution of minimal initial marking
estimates as the number of observed labels increases. In
particular, ω = l1l2 . . . lk denotes the observed sequence of
labels, with time epochs (stages) {1,2, . . . ,k} corresponding
to the instants each label is observed. Each node in the
trellis diagram (drawn as a big black dot) denotes a pair
in the form of (y ji,{M0

ji}) such that: for j ∈ {1,2, . . . ,k},
y ji is a firing vector that is consistent with l1l2 . . . l j and
{M0

ji} is the set of minimal initial marking estimates that
correspond to transition firing sequences σ j = ti1ti2 . . . ti j that
satisfy L(ti1) = l1, L(ti2) = l2, . . . , L(ti j) = l j and σ j = y ji
(non-minimal markings are removed from {M0

ji}). We refer
to {M0

ji} as the set of minimal initial marking estimates for
firing vector y ji. Recall that each transition firing sequence
has a unique minimal initial marking estimate associated
with it; therefore, given a firing vector, we need to capture
a set of minimal initial marking estimates {M0

ji} in our
trellis diagram (because a particular firing vector will in
general correspond to multiple transition firing sequences).
Arcs between nodes in the trellis diagram in Fig. 2 represent
transitions whose firings will lead from one firing vector
to another. Note that from each minimal initial marking
estimate in the trellis diagram, we can easily compute the
corresponding current marking estimate (obtained through
the firing of the corresponding sequence of transitions)
because we capture the firing vector that is associated with
these transition firings in the algorithm that we formally
describe in the next section.

IV. OBTAINING MINIMUM INITIAL MARKING(S)
A. Algorithm Description

In this section, we describe a recursive algorithm to
estimate the set of minimum initial markings based on an
observed label sequence ω = l1l2 . . . lk of length k. We use a
data structure C = (y,{M0

initial}) to capture the information
we need to store for each node in the trellis diagram. More
specifically, at time epoch j, each node in the trellis diagram
captures: (i) the firing vector y associated with sequences
of transitions that are consistent with both the sequence of
labels observed so far and the net structure (and have firing
vector y); and (ii) the set of minimal initial marking estimates
{M0

initial} associated with y (i.e., associated with at least one
consistent firing sequence with firing vector y).

We describe the algorithm in detail below.

Algorithm 1
Input: A labeled Petri net structure NL = (P,T,A,W,L,Σ)
and an observed label sequence ω = l1l2 . . . lk of length k.
1. C (0) = {(~0m, ~0n)}.
2. Let j = 1.
3. Consider the label ω j.
4. Set C ( j) = /0.
5. For all R ∈ C ( j−1) do

For all t such that L(t) = l j and all markings
M0 ∈ R.M0

initial
compute M′0 = max{M0 +B ·R.y , B−(:, t)}−B ·R.y
compute y′ = R.y+ t
If y′ has not appeared in C ( j)

C ( j) = C ( j)
⋃

(y′,{M′0})
Else

y′ has appeared in R′ ∈ C ( j)
Set Flag = True
For all markings M0

ex ∈ R′.M0
initial

If M0
ex ≤ M′0

Flag = False; exit for loop
Else If M′0 ≤ M0

ex and M′0 6= M0
ex

R′ = (y′,{{R′.M0
initial}−{M0

ex}})
End If

End For
If Flag == True

R′.M0
initial = R′.M0

initial
⋃

{M′0}

End If
End If

End For
End For

6. j = j +1.
7. If j = k +1, Goto 8; else Goto 3.
8. For all R∈C (k), search among all minimal initial marking
estimates stored in {R.M0

initial} and output the one(s) that has
(have) the minimum number of tokens over all places. �

Remark 2 At Step 5 of Algorithm 1, after we obtain
(y,{M0

initial}) at each time epoch, we can compute the current
marking estimate corresponding to each initial marking esti-
mate M0 ∈ {M0

initial} (that is required to update the minimal
initial marking estimate at next time epoch) as M0 +B · y.
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Remark 3 At Step 5 of Algorithm 1, when the same firing
vector y′ is obtained and is associated with multiple minimal
initial marking estimates, we only retain for further consid-
eration those estimate(s) that is (are) minimal among that
set of estimates. The Flag is used to keep track of whether
the new initial marking estimate is “covered” by a “smaller”
existing minimal initial marking estimate or not.

B. Algorithm Analysis

Note that at Step 5 of Algorithm 1, when multiple mini-
mal initial marking estimates are computed (by considering
different consistent transition firing sequences that are never-
theless associated with the same firing vector), Algorithm 1
retains for further consideration only those estimates that are
minimal (among all estimates). To guarantee the optimality
of the algorithm, we need to ensure that the minimal initial
marking estimates that are retained will always result in
smaller initial marking estimates at later stages; this is
established in the lemma below.

Lemma 1 Given two initial marking estimates M0, j and M′
0, j

that satisfy M0, j ≤ M′
0, j and are associated with the same fir-

ing vector y at the jth (1≤ j ≤ k) stage of the trellis diagram,
the initial marking estimates M0, j′ and M′

0, j′ obtained from
markings M0, j and M′

0, j respectively via identical transition
firing sequences (and thus identical firing vectors) satisfy
M0, j′ ≤ M′

0, j′ for all stages j′ ∈ { j +1, j +2, . . .,k}.

Proof: Without loss of generality, assume transition t
is associated with the label observed at ( j+1)st stage. Using
Eq. (2), we can calculate the associated minimal initial
marking estimates M0, j+1 and M′

0, j+1 at the ( j + 1)st stage
as

M0, j+1 = max{M0, j +By,B−(:, t)}−By,

M′
0, j+1 = max{M′

0, j +By,B−(:, t)}−By.

Clearly, since M0, j ≤ M′
0, j, we have

M0, j +By ≤ M′
0, j +By.

For places p such that M′
0, j(p)+(By)(p)≤B−(p, t), we have

M′
0, j+1(p) = B−(p, t)− (By)(p) = M0, j+1(p);

for places p such that M′
0, j(p)+(By)(p) > B−(p, t), we have

M′
0, j+1(p) = M′

0, j(p)+(By)(p)− (By)(p) (3)

= M′
0, j(p)

≥ max{M0, j(p)+(By)(p),B−(p, t)}− (By)(p)

= M0, j+1(p)

since M′
0, j + By ≥ M0, j + By and M′

0, j(p) +
(By)(p) > B−(p, t).

Therefore, we have M0, j+1 ≤ M′
0, j+1. Using induction on

the number of stages (and employing similar analysis as
above), the result follows.

Example 2 Recall the labeled Petri net structure shown in
Fig. 1. If the observed label sequence is given by ω = aabc,
the corresponding trellis diagram after running Algorithm 1

is shown in Fig. 3. Each node is associated with a pair of
a firing vector and its corresponding set of minimal initial
marking estimates. In particular, after considering all four
labels the possible firing vectors (associated with the firing
sequences from the initial marking estimate) are [2 0 1 1]T ,
[1 1 1 1]T , and [0 2 1 1]T , with corresponding minimal initial
marking estimates {[2 0 1 0]T}, {[1 0 0 0]T}, and {[0 2 0 0]T}
respectively. Clearly, the minimum initial marking estimate
is given by [1 0 0 0]T since it has the minimum total number
of tokens over all places. Note that at stage 2 of the trellis
diagram, after considering both transition firing sequences
t1t2 and t2t1, we have the common firing vector [1 1 0 0]T that
is associated with two (individually) minimal initial marking
estimates [1 0 0 0]T and [1 1 0 0]T . We only retain marking
[1 0 0 0]T because it is minimal (i.e., we discard marking
[1 1 0 0]T from further consideration). �

t1

t2

t3 t4
t1

t2

t2

t3

t3 t4

t4

t1

Fig. 3. Trellis diagram of minimal initial marking estimates after running
Algorithm 1 for Example 1.

C. Complexity Analysis

To analyze the complexity of Algorithm 1, we use the
results established in [7], [8] for state estimation in a labeled
Petri net. Specifically, we use the fact that given an observed
sequence of labels ω of length k, the total number of possible
firing vectors at each time epoch is upper bounded by a
polynomial function in k (i.e., O(kb) where b is a parameter
that depends on the structure and the labeling function of
the net3). This implies that the number of nodes at the jth

stage of the trellis diagram is upper bounded by O( jb). Note,
however, that a node (i.e., a firing vector) may be associated
with multiple minimal initial marking estimates (depending
on the order of transitions in different firing sequences that
are consistent with the observed sequence of labels and share
the same firing vector, as seen in Example 2). We now
establish that for a given labeled Petri net structure with

3More precisely, in [7] it is argued that b = c(d−1) where c is the number
of nondeterministic labels (i.e., labels l ∈ Σ such that |Tl | ≥ 2) in the net
and d is the maximum number of transitions corresponding to a label in the
net (i.e., d = maxl∈Σ{|Tl |}).
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n places and m transitions, and an observed sequence of
labels of length k, the number of minimal initial marking
estimates we retain for each firing vector is upper bounded
by a polynomial function in k.

Definition 7 We say a marking M = [M(p1) M(p2) . . .

M(pn)]
T ∈ (Z+

0 )n is K − bounded if M(pi) ≤ K for all
i ∈ {1,2, . . . ,n}.

Denote the maximum entry in the input incident matrix
B− by c (i.e., c = max B−

i j for i ∈ {1,2, . . .n} and j ∈
{1,2, . . . ,m}). In Algorithm 1, after each label is observed,
the number of tokens we need to add for each place in order
to enable any transition is clearly upper bounded by c (also
refer to Eq. (2)). Therefore, given an observed sequence of
labels of length k, the maximum number of tokens we need
to add in each place is upper bounded by ck. Therefore, each
minimal initial marking estimate is ck−bounded.

Lemma 2 Given a ck − bounded minimal initial marking
estimate M = [M(p1) M(p2) . . . M(pn)]

T ∈ (Z+
0 )n where 0≤

M(pi)≤ ck for i ∈ {1,2, . . . ,n}, the total number of minimal
initial marking estimates that are not comparable with M is
given by (ck +1)n − (∏n

i=1(M(pi)+1)+∏n
i=1(ck−M(pi)+

1))+1.

Proof: Clearly, the total number of ck − bounded
markings is (ck + 1)n. The total number of ck − bounded
markings M′ such that M′ ≤ M is ∏n

i=1(M(pi)+1) whereas
the total number of ck − bounded markings M′ such that
M′ ≥M is ∏n

i=1(ck−M(pi)+1). Since marking M is counted
in both cases, it follows that the total number of ck−bounded
markings that are not comparable with M is given by
(ck + 1)n − (∏n

i=1(M(pi) + 1) + ∏n
i=1(ck −M(pi) + 1)) + 1.

It follows from Lemma 2 that the number of minimal
marking estimates we might consider for each node (i.e.,
each firing vector) at stage j of the trellis diagram is upper
bounded by a polynomial function in j, i.e., O( jn). With
this observation in hand, the complexity of Algorithm 1 can
be obtained as follows. First, regarding space complexity,
the storage needed is proportional to the product of the
number of firing vectors and the number of corresponding
minimal initial marking estimates. Since the number of
minimal initial marking estimates at the jth stage of the
trellis diagram is upper bounded by O( jn · jb), the total
space needed to store all marking estimates is ∑k

j=1 O( jn+b)

which can be simplified as O(k ·kn+b) = O(kn+b+1), i.e., the
storage required is polynomial in the length k of the observed
sequence of labels.

Using an analysis similar to the above for the case of space
complexity, we can establish that the computational complex-
ity of Algorithm 1 is O(kn+2b+1), which is polynomial in the
length k of the observed sequence of labels.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of estimating
the set of minimum initial markings that can explain a
given observed sequence of labels in a labeled Petri net.
Specifically, given the observation of a sequence of labels
(and assuming complete knowledge of the net structure), we
aimed at estimating the set of minimum initial markings of
the net that (i) allow for the firing of at least one sequence of
transitions that is consistent with both the observed sequence
of labels and the net structure; (ii) have the least total number
of tokens summed over all places. We developed a recursive
algorithm that is able to find the set of minimum initial
markings with complexity that is polynomial in the length of
the observed label sequence. This algorithm can be used for
minimum resource allocation in manufacturing systems that
are modeled as labeled Petri nets and for online estimation
and supervision.

One interesting direction for future work is to investigate
subclasses of net structures to further reduce the complexity
of the algorithm. Another possible extension is to consider
scenarios where unobservable transitions may be present in
the net.
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