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Abstract— Fractional calculus is a generalization of the integration
and differentiation to the fractional (non-integer) order. In this paper,
we devised a fractional-order periodic adaptive learning compensation
(FO-PALC) method for cogging effect minimization for permanent
magnetic synchronous motors (PMSM) position and velocity servo
system. Cogging effect is a major disadvantage of PMSM. In fact, the
cogging force in PMSM is a position-dependent periodic disturbance.
In our FO-PALC scheme, in the first trajectory period, a fractional
order adaptive compensator for cogging effect is designed to guarantee
the boundedness of all signals. From the second repetitive trajectory
period and onward, one period previously stored information along
the state axis is used in the current adaptation law together with a
fractional order low pass filter. Both stability analysis and experimental
illustrations are presented to show the benefits from using fractional
calculus in periodic adaptive learning compensation for cogging effects
in PMSM servo systems.

Index Terms— Fractional calculus, cogging force, permanent mag-
net synchronous motor (PMSM), adaptive control, periodic adaptive
learning control, state-dependent disturbance.

I. INTRODUCTION

Fractional calculus is a generalization of the integration and

differentiation to the fractional (non-integer) order. This conception

of extending classical integer order calculus to non-integer order

case has a firm and long-standing theoretical foundation. The

interest of this subject has been known since of the development

of the classical (integer-order) calculus, the first reference may be

associated with the correspondence between Leibniz and L’Hospital

in 1695 [1]. However, the fractional calculus concept was not widely

applied into control engineering for hundreds of years, because of

the unfamiliar idea and the realization limitation of fractional order,

few application literatures were available at that time [2]. In the last

several decades, as better understanding of the potential of fractional

calculus, it is being accepted that fractional order calculus will be

more and more useful in various sciences and engineering areas. For

example, in motion control, a benchmark study on fractional order

PID control of DC-motor with elastic shaft was presented in [3].

Some other example applications can be found in [4] [5] [6] [7].

In motion control areas, permanent magnet synchronous motor

(PMSM) has received widespread acceptance in high performance

industrial servo applications of accurate speed and position control

with its many excellent features [8] [9]. However, as a major

disadvantage of PMSM, the cogging effect degrades the servo con-

trol performance, especially in low-speed applications. Therefore,
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cogging effect minimization techniques have been proposed in, e.g.,

[10] [11] [12] [13]. The cogging force as a position-dependent

periodic disturbance [14] can be well compensated by using the so-

called learning control method [15] [16]. In our previous work [17],

an adaptive learning compensator for compensating cogging and

coulomb friction in permanent-magnet linear motors is designed and

in [18], a periodic adaptive learning compensation (PALC) method

is suggested for PMSM servo systems.

In the present paper, we devised a fractional-order periodic

adaptive learning compensation (FO-PALC) method for cogging

effect minimization in PMSM position and velocity servo system.

In our FO-PALC scheme, in the first trajectory period, a frac-

tional order adaptive compensator for cogging effect is designed

to guarantee the boundedness of all signals. From the second

repetitive trajectory period and onward, one period previously stored

information along the state axis is used in the current adaptation

law together with a fractional order low pass filter. Both stability

analysis and numerical and experimental illustrations are presented

to show the benefits from using fractional calculus in periodic

adaptive learning compensation for cogging effects in PMSM servo

systems.

The major contributions of this paper include: 1) A new fractional

order periodic adaptive learning compensation for cogging effect;

2) Stability proof of the system with the proposed fractional order

adaptive compensation method; 3) Experiment verification of FO-

PALC for cogging-like disturbance on the real-time dynamometer

position control system; 4) Demonstration of the advantage of

the FO-PALC for cogging effect by performing the experimental

comparisons with the traditional integer order PALC.

II. PMSM POSITION SERVO SYSTEM AND COGGING EFFECT

A. PMSM Position Servo System Simulation Model

Under the assumption that the saturation, eddy currents and

hysteresis losses are negligible in a permanent magnetic (PM)

synchronous motor [19], the mechanical equations and electrical

equations of a PMSM in the synchronous rotating reference frame

are given by

dθ

dt
= ω,

dω

dt
=

1

J
(Tm − Tl −Bω), (1)

did
dt

=
1

Ld
(Vd + ωLqiq −Rid − ωψqm), (2)

diq
dt

=
1

Lq
(Vq − ωLdid −Riq − ωψdm), (3)

where (1) represents the mechanical subsystem, and equations (2)

and (3) represent the electrical subsystem. θ and ω are motor

rotor angular position and speed, respectively; B is the friction

coefficient; J is the moment of inertia of the rotor; Tm is the motor

electromagnetic torque generated, and Tl is the load torque applied;

id and iq are stator currents along the d and q axes, respectively; Vd

and Vq are the voltages along d and q axes, respectively; R is the

stator resistance; Ld and Lq are the stator self-inductances in the

d and q axes, respectively, it has been assumed that as the surface
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mounted PMSM is non-salient, Ld and Lq are the same denoted

by L.

Our simulation model of PMSM position servo system consists

of three closed-loops for position, speed and current, respectively.

More details about these three closed-loops, and the SVPWM

algorithm are introduced in [18].

B. Cogging Effect

Cogging force is produced by the magnetic attraction between

the rotor mounted permanent magnets and the stator [18]. It is

the circumferential component of attractive force that attempts to

maintain the alignment between the stator teeth and the permanent

magnets. the cogging force spectrum depends only on the geometry

and number of the stator slots, cogging force harmonics appear at

frequencies that are multiple of the Nslot−ppfs, where Nslot−pp is

the number of slots per pole pair and fs is the electrical frequency

of the rotor. Analytical modeling of the cogging force is changing

since its production mechanism involves complex field distribution

around state slots [20].

By using the concept of field oriented control of the PMSM,

the d-axis current is controlled to be zero to maximize the output

torque. Under this assumption, Tm is the motor electromagnetic

torque, in the ideal case, is given by the following

Tm = Ktiqs =
3

2

P

2
ψdmiq, (4)

where Kt is the actually torque coefficient and P is the number of

poles in the motor. However, in practice the motor torque can be

expressed as

Tm =
3

2

P

2
ψdmiq + Fcogging, (5)

where Fcogging is the periodic torque pulsation due to cogging.

In this paper, we also consider the cogging force as the general

multi-harmonic form as considered in [18]

Fcogging =

∞
∑

i=1

Ai sin(ωix+ ϕi). (6)

where Ai is the amplitude, ωi is the state-dependent cogging force

frequency, and ϕi is the phase angle. In order to compensate the

cogging force of general signal shape, it is suggested to make use

of the periodicity of the position-dependent cogging disturbance.

III. FRACTIONAL ORDER PERIODIC ADAPTIVE LEARNING

COMPENSATION FOR COGGING EFFECT

A. Problem Formulation

In this section, a fractional order state-dependent periodic adap-

tive learning compensator for cogging is designed. The cogging

force of (6) can be written as: −a(θ), where a(θ) is the function

of θ. In this paper, to present our ideas clearly, without loss of

generality, The motion control system is modeled as follows

θ̇(t) = v(t), (7)

v̇(t) = u−
a(θ)

J
− Tl′ −B1v, (8)

u =
1

J
Tm, Tl′ =

1

J
Tl, B1 =

B

J

where θ is the periodic rotor angle position; v is the velocity; u
is the control input and a(θ) is the unknown position-dependent

cogging disturbance which repeats every pole-pitch, at the same

time a(θ) should be bounded and denoting

|a(θ)| ≤ b0, ∀θ. (9)

In this section, to avoid text repetition yet to be as self-containing

as possible, the notations not explained in the text can be found in

[21].

Let us define

ea(s(t)) = a(s(t)) − â(s(t)), (10)

where â(s(t)) = â(t) (note: t is the current time corresponding to

the current total passed trajectory s(t)). Here, let us change (10)

into time-domain such as:

ea(s(t)) = a(s(t)) − â(s(t)) = a(t) − â(t) = ea(t). (11)

In the same way, the following relationships are true:

vd(s(t)) = vd(t), v(s(t)) = v(t),

and the following notations are also defined

eθ(t) = θd(t) − θ(t), ev(t) = vd(t) − v(t). (12)

The control objective is to track or servo the given desired

position θd(t) and the corresponding desired velocity vd(t) with

tracking errors as small as possible. In practice, it is reasonable to

assume that θd(t) and vd(t) are both bounded signals.

The feedback controller is designed as:

u(t) = v̇d(t) + Tl′ +
â(t)

J
+ αm(t) + γev(t), (13)

with

m(t) := γeθ(t) + ev(t), (14)

where α and γ are positive gains; â(t) is an estimated cogging

force from an adaptation mechanism to be specified later; v̇d(t) is

the desired acceleration.

Our fractional order adaptive control law in the first trajectory

period and the periodic adaptive learning control law after the first

trajectory period are designed as follows:

â(t) =

{

−ε0
dβ

dtβ â(t) + δâ1(t) + K
J
m1(t) if s ≥ sp

z − µv if s < sp
(15)

where

â1(t) =: â(t− Pk),

m1(t) =: m(t− Pk),

where ε0 ≥ 0, β ∈ (0, 1] and 0 < δ < 1; Pk is the trajectory cycle

and K is a positive design parameter called the periodic adaptation

gain; µ is also a positive design parameter. In our analysis part, the

following tuning mechanism is designed for z:

0D
ν
t z(t) = µ[v̇d(t) + αm(t) + γev(t)] +

ev(t)

J
, (16)

where

ν ∈ (0, 1], z(t)|t=0 = 0.

In this paper, the following Caputo definition for fractional

derivative is used, which allows utilization of initial values of clas-

sical integer-order derivatives with known physical interpretations

[22]
dαf(t)

dtα
=

1

Γ(α− n)

∫ t

0

f (n)(τ )dτ

(t− τ )α+1−n
, (17)

where n is an integer satisfying n− 1 < α ≤ n.

Remark 3.1: If ν ∈ (0, 1) or ε0 > 0 and β 6= 1, our designed

control law (15) is the new fractional order periodic adaptive

learning compensation scheme; if ν = 1 and ε0 = 0, our designed

control law (15) is the integer order PALC scheme [21]. The main

purpose of this paper is to illustrate how the non-integers α and ν
can benefit the learning controller.
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B. Stability Analysis

Now, based on the above discussions, the following stability

analysis of the proposed fractional order adaptive compensation

method in the first period and the periodic adaptive learning

compensation scheme after the first period are presented respec-

tively. Our fractional order periodic adaptive learning compensation

approach is summarized as follows:

• When s(t)<sp, the system under fractional order adaptive

control is bounded input bounded output.

• When s(t)≥sp, the system is stabilized to follow the desired

speed at the desired position. By trajectory periodic adaptation,

the unknown cogging is estimated.

Consider two cases: 1) when 0 ≤ t < P1 (0 ≤ s < sp) and

2) when t ≥ P1 (s ≥ sp). The key idea is that, for case 1), it is

required to show the finite time boundedness of all signals; for case

2), it is necessary to show the asymptotic stability of equilibrium

points.

First, let us consider the case 1) when t < P1 (s < sp).
If choosing ν = 1, the control law â = z − µv in (15) is the

integer order adaptive control scheme. We have the theorem below.

Theorem 3.1: If |∂a(θ)/∂θ| < ba (bound of changes in a(θ)),

µ > 1
4
J(1 + b2a) and (α+ γ) > 1, the equilibrium points of eθ(t)

and ev(t) are bounded, when t < P1 (s < sp).

For a proof of Theorem 3.1, see [21].

If choosing 0 < ν < 1, the control law â = z − µv in (15) is

the new fractional order adaptive compensation scheme.

Firstly, the following lemma is needed for the proof of Theorem

3.2.

Lemma 3.1: An ordinary input/output relation (with only integer

derivatives) can be written in a polynomial representation

P (σ)ξ = Q(σ)u, (18)

y = R(σ)ξ.

where u ∈ ℜm̄ is the control signal, ξ ∈ ℜn̄ is the intermediate

signal, and the y ∈ ℜp̄ is the output signal; P , Q, R are polynomial

matrices in the variable σ of dimensions n̄ × n̄, n̄ × m̄ and p̄ ×
n̄ respectively; σ can be seen either as the symbol for the usual

derivative dν or sν , the complex function in Laplace variable s,

when all initial conditions are zero.

If the triplet (P,Q,R) of polynomial matrices is minimal, we

have the equivalence: system (18) is bounded-input bounded-output

iff det(P (σ)) 6= 0 ∀σ with |arg(σ)| < ν π
2

.

For a proof of Lemma 3.1, see [23].

Theorem 3.2: If choosing proper parameters α, γ and µ to ensure

|arg(wi)| > ν
π

2
,

where wi are the solutions of equation (19),

w2pq+p2

+ awpq+p2

+ bwpq + dwp2

+ c = 0, (19)

where ν = p/q, p and q are integers,

a = α+ γ +
1

J
µ+B1,

b =
1

J
µ(α+ γ) +

1

J2
,

c =
1

J
µαγ,

d = αγ.

then eθ(t) and ev(t) are bounded, when t < P1 (s < sp).

For a proof of Theorem 3.2, see [21].

Now, let us investigate the case 2) when t ≥ P1 (s ≥ sp). We

have the following stability result:

Theorem 3.3: When t ≥ P1 (s ≥ sp), the control law (13) and

the periodic adaptation law (15) guarantee that eθ(t), ev(t) and

ea(t) all approach 0 as t→ ∞ (s→ ∞).

To simplify the presentation of our proof, let us make the

following notation:

ηi(t) = η(t−

i
∑

j=1

Pk+1−j), i = 1, 2, ..., N,

η ∈ {θd, θ, vd, v, a, â, eθ, ev, ea,m, S}.

Proof: First of all, to avoid confusion in the beginning, let us

first consider the integer order case by setting ε0 = 0 in (15).

From now on, denoting t′ = t− P1. So, when t = P1, t′ = 0.

From (8) and (13),

v̇(t′) = v̇d(t′) + Tl′ +
1

J
â(t′) + (α+ γ)ev(t

′)

+αγeθ(t
′) −

1

J
a(t′) − Tl′ −B1(vd(t

′) − ev(t
′))

= v̇d(t′) +
1

J
â(t′) + αγeθ(t

′) + (α+ γ)ev(t′)

−
1

J
a(t′) −B1(vd(t

′) − ev(t
′)), (20)

and from (12),

ėv = v̇d(t
′) − v̇(t′)

= −αγeθ(t
′) − (α+ γ +B1)ev(t

′)

+
1

J
a(t′) −

1

J
â(t′) +B1vd(t′). (21)

Then, from (7),

ėθ = θ̇d(t
′) − θ̇(t′)

= vd(t
′) − v(t′)

= ev(t′), (22)

and substituting (22) into (21) yields

ëθ(t
′) = −αγeθ(t

′) − (α+ γ +B1)ėθ(t
′)

+
1

J
a(t′) −

1

J
â(t′) +B1vd(t′). (23)

So, we have

ëθ(t
′) + (α+ γ +B1)ėθ(t

′) + αγeθ(t
′)

=
1

J
a(t′) −

1

J
â(t′) +B1vd(t

′). (24)

From Theorem 3.1, when t = P1, eθ(t
′) and ev(t

′) are bounded

and denoting

eθ(t
′)|t=P1

= eθ(t
′)|t′=0 ≤ bθ, (25)

ėθ(t
′)|t=P1

= ev(t′)|t=P1
= ev(t′)|t′=0 ≤ bv, (26)

â(t′)|t=P1
= â(t′)|t′=0 ≤ bâ. (27)

Performing the Laplace transform of (24) with operator s′ leads

to

s′2Eθ(s
′) + (α+ γ +B1)s

′Eθ(s
′) + αγEθ(s

′)

= F (s′) −
1

J
Â(s′) + ev(t′)|t′=0

+(s′ + α+ γ +B1)eθ(t
′)|t′=0, (28)

where

F (s′) = L{f(t′)}

= L{
1

J
a(t′) +B1vd(t′)}, (29)

Â(s′) = L{â(t′)}, (30)
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From our adaptation law (15) as s ≥ sp, and

m1(t) = γeθ(t− Pk) + ev(t− Pk), (31)

eθ(t)|t=0 = θd(t)|t=0 − θ(t)|t=0 = 0, (32)

so we can obtain the Laplace transforms

L{eθ(t− Pk)} = e−Pks′Eθ(s
′), (33)

L{ev(t− Pk)} = L{ėθ(t− Pk)}

= (s′Eθ(s
′) − eθ(t)|t=0)e

−Pks′

= s′Eθ(s
′)e−Pks′ , (34)

then we have

Â(s′) = L{â(t′)}

= δe−Pks′ Â(s′) +
K

J
e−Pks′(γEθ(s

′) + s′Eθ(s
′)),

(35)

we have

Â(s′) =
K
J

(s′ + γ)e−Pks′

1 − δe−Pks′
Eθ(s

′). (36)

Then from (28) and (36), we can get

G(s′) =
Eθ(s

′)

H(s′)

=
1

s′2 + as′ + b+
K

J2
(s′+γ)e−Pks′

1−δe−Pks′

=
1 − δe−Pks′

(1 − δe−Pks′)(s′2 + as′ + b) + K
J2 (s′ + γ)e−Pks′

=

1
s′2+as′+b

(1 − δe−Pks′)

1 − [1 −
K

J2
(s′+γ)

s′2+as′+b
]e−Pks′

, (37)

where

H(s′) = F (s′) + ev(t
′)|t′=0

+(s′ + α+ γ +B1)eθ(t
′)|t′=0, (38)

a = α+ γ +B1,

b = αγ.

Equation (37) can be treated as the transfer function of the system

in Fig. 1. Once the equivalence has been shown, in order to

guarantee the stability of the system (37), one must establish under

which conditions each block in Fig. 1 is stable. The first block

is 1
s′2+as′+b

, which should be stable if all its characteristic roots

have negative real parts. The second block is nothing more than a

time delay, so it is always stable. Finally, the third block can be

described as a positive-feedback closed-loop system with the term

(1 −
K

J2
(s′+γ)

s′2+as′+b
)e−Pks′ in the feedback path.

According to the Small Gain Theorem, the sufficient condition

for the stability of the system (37) can be split into two conditions.

First stability condition:

ℜ(λ) < 0, ∀λ ∈ {λi|λ
2
i + aλi + b = 0}. (39)

Second stability condition:

|1 −
K
J2 (s′ + γ)

s′2 + as′ + b
|s′=jω < 1, ∀ω. (40)

These two stability conditions are easy to satisfy when designing

the proposed learning control systems. There exists a choice of K,

γ, a and b which can satisfy the second stability condition (40).

For example, when ω = 0, |1 − Kγ/J2

b
| < 1. From Theorem 3.1,

2

1
1 ke

k-P s
e2

2

(         )

1

K
s

J
s  + as +b

+
+

( )E  s

( )F s
-P s

s + as +b

Fig. 1. Alternative block diagram for the closed-loop control system (37)

Theorem 3.2, and equations (9) (29), the input signal f(t′) in sys-

tem (37) is bounded. So, under the above two stability conditions,

the output signal eθ(t
′) in system (37) is also bounded. In order

to establish eθ(t
′) = 0 as t → ∞, let us apply the Final Value

Theorem with the condition H(0) 6= ∞ from (38),

lim
t→∞

eθ(t
′) = lim

s′→0
s′H(s′)G(s′) = 0. (41)

where we used the obvious fact that G(0) = 0 in (37).

Now, let us turn to the case when ε0 > 0 in (15). In this case,

then, equation (37) becomes

G(s′) =
Eθ(s

′)

H(s′)

=

1
s′2+as′+b

(1 − δe−Pks′ + ε0s
′β)

1 − [1 −
K

J2
(s′+γ)

s′2+as′+b
− ε0s′β

e−Pks′
]e−Pks′

. (42)

where

H(s′) = F (s′) + (s′ + α+ γ +B1)eθ(t
′)|t′=0

+ev(t′)|t′=0 +
ε0â(t

′)|t′=0

1 − δe−Pks′ + ε0s′β
. (43)

Following the same reasoning shown in the case of ε0 = 0, we can

similarly conclude that eθ(t
′) = 0 as t→ ∞.

Remark 3.2: ε0 and β in (15) can be perceived as a fractional

order low pass filter 1
1+ε0s′β

. This will offer potential benefits

in achieving better performance in the periodic learning control

in terms of “long-term stability” as addressed in [24] where an

integer order first order low-pass filter is proposed under the term

of “dynamic PALC.”

Finally, from (22), we have

Ev(s′) = s′Eθ(s
′) − eθ(t

′)|t′=0 = s′G(s′)H(s′) − eθ(t
′)|t′=0.

(44)

So, similarly, as eθ(t
′)|t′=0 is finite, we can conclude from (44)

that the error signal ev(t
′) also approaches 0 as t→ ∞ since

ev(∞) = lim
s′→0

s′Ev(s′) = 0.

IV. EXPERIMENTS

A. Introduction to the Experiment Platform

A fractional horsepower dynamometer was developed as a gen-

eral purpose experiment platform to emulate mechanical nonlinear-

ities such as frictions, state-dependent disturbances, etc. This lab

system can be used as a research platform to test various advantage

control schemes [25].

The architecture of the dynamometer control system is shown

in Fig. 2. The Dynamometer includes the DC motor to be tested,
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Fig. 2. The dynamometer setup used in PALC experiments

a hysteresis brake for applying load to the motor, a load cell to

provide force feedback, an optical encoder for position feedback and

a tachometer for velocity feedback. The dynamometer was modified

to connect to a Quanser MultiQ4 terminal board in order to control

the system through Matlab/Simulink Real-Time Workshop (RTW)

based software. This terminal board connects with the Quanser

MultiQ4 data acquisition card. Then, using the Matlab/Simulink

environment, which uses the WinCon application, from Quanser,

to communicate with the data acquisition card. This brings rapid

prototyping and experimental platform.

Without loss of generality, consider a servo control system

modeled by:

ẋ(t′) = v(t′), (45)

v̇(t′) = u(t′) − f(t, x) −
Bd

Jd
v. (46)

where x is the position or displacement, v is the velocity, f(t, x) is

the unknown disturbance, which may be state-dependent or time-

dependent, Bd and Jd are the frictional coefficient and moment

of inertia of the dynamometer respectively, and u is the control

input. The system under consideration, i.e. the DC motor in the

dynamometer, has a transfer function 1.52/(1.01s+ 1). Moreover,

the presence of the hysteresis brake allows us to add a time-

dependent or statedependent disturbance (load) to the motor. These

factors combined can emulate a system similar to the one given by

(45) and (46). A controller can be designed for such a problem and

can be tested in the presence of the real disturbance as introduced

through the hysteresis brake.

B. Experiments on the Dynamometer

The proposed method is verified on the real-time dynamometer

position control system. The hysteresis brake force is designed as

multi-harmonics cogging-like disturbance

f(t, x) =
Td

Jd
+
a(t′)

Jd
=
Td

Jd
+ Fditurbance, (47)

where

Td

Jd
= 1,

Fditurbance = 10 cos(x) + 5 cos(2x) + 2.5 cos(3x).

when x is replaced by θ, then the system (45) and (46) is the

same format with (7) and (8). As mentioned in [18], after using

vector control (control id to 0), it will make the nonlinear and

coupling characteristics of PMSM become decoupled. Thus, the

torque magnitude control of PMSM is only need to control the

current in the direction of q-axis, thus we can control a PMSM

as easy as to control a DC motor. So, we can testify the periodic

adaptive learning compensation methods for cogging effect on the
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DC
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Input

( , )f t T�

Fig. 3. Block diagram of the cogging-like disturbance PALC in the
Dynamometer position control system

dynamometer platform, Fig. 3 shows the block diagram. The control

gains in (13) and (15) were selected as: α = 20, γ = 10 and

µ = 0.5, the periodic adaptation gain K was selected as 0.01, and

δ is also chosen as 1 in (15).

As an illustration, two experimental cases are performed.

• Case-1e: Integer order periodic adaptive learning compensation

for cogging-like disturbance;

• Case-2e: Fractional order periodic adaptive learning compen-

sation for cogging-like disturbance;

In both of the two experimental cases, the following reference

trajectory and velocity signals are used:

sd(t
′) = 5t (rad),

vd(t′) = 5 (rad/s).

Case-1e: Integer order periodic adaptive learning compensation

for cogging-like disturbance: For this case, choosing ν = 1 in

adaptive law (15) as integer order PALC for cogging-like effect.

Figures 5(a) and 5(b) show the position/speed tracking errors us-

ing integer order periodic adaptive learning compensation method.

We can observe that, the integer order periodic adaptive learning

compensation method works efficiently comparing with the tracking

errors without compensation in Figures 4(a) and 4(b).

Case-2e: Fractional order periodic adaptive learning compen-

sation for cogging-like disturbance: For this case of experimental

test, choosing ν = 0.5 in adaptive law (15), fractional order PALC

is used for cogging-like effect. Figures 6(a) and 6(b) show the

position/speed tracking errors using fractional order periodic adap-

tive learning compensation method. Comparing with figures 5(a)

and 5(b), we can clearly observe that the performance of using

fractional order periodic adaptive learning compensation method

is much better than that of using integer order periodic adaptive

learning compensation method for cogging-like disturbance in real-

time position control platform.

(a) Position (b) Velocity

Fig. 4. Experiment. Tracking errors without compensation.
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(a) Position (b) Velocity

Fig. 5. Experiment. Tracking errors with integer order periodic adaptive
learning compensation.

(a) Position (b) Velocity

Fig. 6. Experiment. Tracking errors with fractional order periodic adaptive
learning compensation.

Note again that, the final version of this paper will include the

case of fractional order low pass filter in the PALC scheme for

better maintaining the long-term stability.

V. CONCLUSION

In this paper, a new fractional order periodic adaptive learning

compensation method is proposed to compensate the cogging effect

in PMSM position and velocity servo system. In our FO-PALC

scheme, in the first trajectory period, a fractional order adaptive

compensator for cogging effect is designed to guarantee the bound-

edness of all signals. From the second repetitive trajectory period

and onward, one period previously stored information along the

state axis is used in the current adaptation law together with a

fractional order low pass filter. Both stability analysis and experi-

mental illustrations are presented to show the benefits from using

fractional calculus in periodic adaptive learning compensation for

cogging effects in PMSM servo systems. We believe, the basic ideas

of using fractional calculus in this paper are applicable to iterative

learning control as well as repetitive control.
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