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Abstract— This paper studies a theoretical problem of
whether continuous state feedback and affine feedback are
equivalent from the point of view of making an affine system
defined on a simplex reach a prespecified facet in finite time.
We show that the two classes of feedbacks are equivalent. As
a byproduct, new necessary and sufficient conditions for solv-
ability based more directly on the problem data are obtained.

I. INTRODUCTION

This paper studies a theoretical problem of whether contin-

uous state feedback and affine feedback are equivalent from

the point of view of making an affine system defined on a

simplex reach a prespecified facet in finite time. In general,

such problems have been overlooked in the literature on

reachability problems via feedback control. This contrasts

with the situation for stabilization, where it has long been

known that linear state feedback is the largest class of

feedbacks needed to stabilize a linear system.

The problem studied is for an affine system to reach a

prespecified facet of a simplex in finite time and is taken

from [8], [13]. Facet reachability problems on simplices and

polytopes, with minor variations in assumptions, were first

introduced in [6] and further studied in [7], [10], [11]. In

[8], [13], two sets of conditions called invariance conditions

and a flow condition were given as necessary and sufficient

conditions for existence of an affine feedback to solve the

problem of reaching a facet of a simplex in finite time.

The invariance conditions can be shown to be necessary

for continuous state feedback [7]. The necessity of the flow

condition is tied to its direct link to existence of closed-loop

equilibria, assuming the closed-loop vector field is convex.

Once one relaxes the class of controls to continuous state

feedback, convexity is lost, and the necessity of the flow

condition becomes problematic to establish.

Therefore, it is the flow condition which is the focus of

attention. A key observation is that the flow condition can

be bypassed if we triangulate the polytopic state space in

a manner adapted to the system dynamics. Since typically

triangulations are performed by standalone software libraries

that are not taylored to control problems, our requirement for

a proper triangulation is no loss of generality.

Our results have implications for the study of piecewise

linear and piecewise affine feedbacks to solve more general

reachability problems on polytopes and unions of polytopes.

See, for example, [5], [1], [4], [15].
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Notation 1: For a vector x ∈ R
n, the notation x ≻ 0

(x � 0) means xi > 0 (xi ≥ 0) for 1 ≤ i ≤ n. The notation

x ≺ 0 (x � 0) means −x ≻ 0 (−x � 0). For a matrix

A ∈ R
n×n, the notation A ≻ 0 (A � 0) means aij > 0

(aij ≥ 0) for 1 ≤ i, j ≤ n.

II. PROBLEM STATEMENT AND BACKGROUND

Consider an n-dimensional simplex S with vertices

v0, v1, . . . , vn and facets F0, . . . ,Fn such that the index of

each facet is determined by the vertex it does not contain.

Let hi, i = 0, . . . , n be the unit normal vector to each facet

Fi pointing outside of the simplex. Let F0 be the target set

in S.

We consider the following affine control system on S:

ẋ = Ax + a + Bu =: f(x, u), x ∈ S, (1)

where A ∈ R
n×n, a ∈ R

n, and B ∈ R
n×m with rank(B) =

m. Let φu(t, x0) be the trajectory of (1) under a control u
starting from x0 ∈ S and evaluated at time t.

We are interested in studying reachability of the target F0

from S by way of feedback control. A number of results

on finding feedbacks to solve reachability specifications

on simplices have already appeared in the literature. In

particular, the following problem was proposed in [8], [13].

Problem 1: Consider system (1) defined on S. Find an

affine feedback control u = Kx + g such that for every

x0 ∈ S there exist T ≥ 0 and ǫ > 0 satisfying:

(i) φu(t, x0) ∈ S for all t ∈ [0, T ];
(ii) φu(T, x0) ∈ F0;

(iii) φu(t, x0) /∈ S for all t ∈ (T, T + ǫ).

Condition (iii) is interpreted to mean that the closed-loop

dynamics on S are extended to a neighborhood of S. In this

paper, we extend Problem 1 to continuous state feedback.

This is termed the reach control problem.

The following notation will be used. Define the set of

vertices of S to be V . Define the index sets I := {1, . . . , n}
and Ii := I \ {i}. Define the closed, convex cones

Ci :=
{

y ∈ R
n : hj · y ≤ 0, j ∈ Ii

}

.

cone(S) := C0 = cone{v1 − v0, . . . , vn − v0} .

Definition 1: A point x0 ∈ S can reach F0 with con-

straint in S by continuous state feedback, denoted x0

S
−→

F0, if there exists a continuous state feedback u(x) such

that properties (i)-(iii) of Problem 1 hold. A set S′ ⊆ S can

reach F0 with constraint in S by continuous state feedback,

denoted by S′ S
−→ F0, if there exists a continuous state

feedback such that for every x0 ∈ S′, x0

S
−→ F0.
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Let B denote the m-dimensional subspace spanned by the

column vectors of B (namely, B = Im(B), the image of B).

Define the set

O := { x ∈ R
n : Ax + a ∈ B } .

It is fairly easy to prove that O = ∅ when Im(A) ⊆ B and

a /∈ B; O = R
n when Im(A) ⊆ B and a ∈ B; and O is an

affine space, otherwise. Notice that vector field f(x, u) can

vanish on O for an appropriate choice of u, so O is the set

of all possible equilibrium points of the system. Define

G := S ∩ O.

Associated with G is its vertex index set IG := {i : vi ∈
V ∩ G}.

Definition 2: The invariance conditions require that there

exist u0, . . . , un ∈ R
m such that:

hj · (Avi + a + Bui) ≤ 0 , i ∈ {0, . . . , n}, j ∈ Ii . (2)

For Problem 1 the following necessary and sufficient condi-

tions have been established.

Theorem 1: [8], [13] We have S
S

−→ F0 by affine

feedback if and only if there exists an affine feedback

u(x) = Kx + g with u1 = u(v1), . . . , un = u(vn), such

that: (a) The invariance conditions hold; (b) The closed-loop

system has no equilibrium in S.

A more computational set of necessary and sufficient

conditions are the following.

Theorem 2: [8], [13] We have S
S

−→ F0 by affine

feedback if and only if there exists an affine feedback

u(x) = Kx + g, with u1 = u(v1), . . . , un = u(vn), and

a vector ξ ∈ R
n such that

(a) The invariance conditions hold.

(b) The flow condition holds:

ξ · (Avi + a + Bui) < 0 , i ∈ {0, . . . , n} .
The invariance conditions (2) are suitable for affine feedback,

but for continuous state feedback, the following stronger

conditions must hold.

Definition 3: The invariance conditions for state feedback

u(x) require that for all j ∈ I and x ∈ Fj ,

hj · (Ax + Bu(x) + a) ≤ 0 . (3)

The following result is easily proved (see the analogous result

in [7] for conditions (2)) and forms the starting point for our

investigation of continuous state feedback.

Lemma 3: Solvability of the invariance conditions (3) is

necessary to solve the reach control problem S
S

−→ F0 by

continuous state feedback.

III. EXISTENCE OF LINEAR AFFINE FEEDBACK

As we have seen in Theorem 2, the invariance conditions

by themselves are generally not enough to establish that

the reach control problem is solvable by affine feedback.

However, there is one extreme case when the invariance

conditions are also sufficient to solve the problem. These

depend on combining Theorem 1 with the fact that O is the

only place in the state space where equilibria can appear. See

also [13].

Theorem 4: Suppose G = ∅. If the invariance conditions

are solvable, then S
S

−→ F0 by affine feedback.

In general it is difficult to extend results such as Theo-

rem 4. However, if one propitiously chooses a triangulation

of the state space which respects the underlying structure

of the system, then new necessary and sufficient conditions

for solvability of the reach control problem are obtainable

and, moreover, the boundary between affine and continuous

state feedback can be clarified. We propose the following

triangulation.

Assumption 1: Simplex S and system (1) satisfy the fol-

lowing condition: if G 6= ∅, then G is a κ-dimensional face

of S, where 0 ≤ κ ≤ n.

Remark 1: We have discussed that there are three possi-

bilities for O. If O = ∅, then one applies Theorem 4. If O
is the entire state space then we will see in Remark 3 that

there are easily derived necessary and sufficient conditions

for solvability. The only interesting case is when O is a κ-

dimensional affine subspace with κ < n. This case arises,

for example, when (A, B) is controllable.

Based on the proposed triangulation, we can find several

new sufficient conditions for existence of affine feedback.

First we require a preliminary lemma which provides a

sufficient condition for existence of a flow condition on a

polytope.

Lemma 5: Let P be a polytope. If O∩P = ∅, then there

exists β ∈ Ker(BT ) such that βT (Ax + a) < 0, ∀x ∈ P .

Theorem 6: Suppose Assumption 1 holds and G 6= ∅.

Suppose the following conditions hold.

1) The invariance conditions are solvable.

2) B ∩ cone(S) 6= 0.

Then S
S

−→ F0 by affine feedback.

Proof: Let G = conv{vi1 , . . . , viκ+1
}, a κ-dimensional

facet of S where 0 ≤ κ ≤ n. Thus, IG = {i1, . . . , iκ+1}. Let

b ∈ B ∩ cone(S), b 6= 0, and select control values ui such

that y(vi) = Avi +Bui + a = b for all i ∈ IG (notice this is

always achievable for vi ∈ O). Clearly, by the assumption

that b ∈ cone(S), y(vi) satisfies the invariance conditions

for vi ∈ V ∩ O. We can select the remaining controls ui

for i ∈ {0, . . . , n} \ IG such that y(vi) 6= 0 (since vi 6∈ O)

and y(vi) satisfies the invariance conditions. Finally, using

{u0, . . . , un} and the synthesis procedure in [7], construct

the affine feedback u(x) = Kx + g.

Now let us show that a flow condition holds in S. First,

a flow condition trivially holds for the closed loop vector

field y(x) := (A + BK)x + Bg + a on G. Let β1 := −b.

We have βT
1 y(vi) = −‖b‖2 < 0 for all i ∈ IG . By the

convexity of y(x), this implies a flow condition holds on G.

Now we claim that a flow condition holds on all of S. Let

P := conv{vi | i ∈ {0, . . . , n}\IG}. Note that P∩O = ∅, so

according to Lemma 5, there exists β2 ∈ Ker(BT ) such that

for all x ∈ P , βT
2 (Ax+a) < 0. Define β = αβ1 +(1−α)β2

for some α ∈ (0, 1). Now consider vi ∈ V ∩ O. Using the

fact that βT
2 b = 0, we have βT y(vi) = βT b = −α‖b‖2 <

0. Next consider vi ∈ V \ O. We have βT (Avi + Bui +
a) = αβT

1 (Avi + Bui + a) + (1 − α)βT
2 (Avi + a). The

1155



term βT
1 (Avi + Bui + a) is a constant of unknown sign,

whereas we know βT
2 (Avi + a) < 0. Therefore it is possible

to select α sufficiently small so that βT (Avi +Bui +a) < 0
for all vi ∈ V \ O. We have shown that for all vi ∈ V ,

βT (Avi + Bui + a) < 0, so by convexity of the vector

field y(x), a flow condition holds on all of S. Therefore, by

Theorem 2 with ξ = β, the control u(x) = Kx + g solves

S
S

−→ F0 by affine feedback.

One can also obtain sufficient conditions for existence of

affine feedback even when B∩ cone(S) = 0. Of course, this

will only be possible if v0 6∈ G (see Remark 3). This relies

on the idea that there are enough degrees of freedom in B
with respect to G. We make the following assumptions.

Assumption 2:

(A1) W.l.o.g. G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < m.

(A2) B ∩ cone(S) = 0.

(A3) There exists a linearly independent set {bi ∈ B∩Ci | i ∈
IG}.

The important new assumption is (A3) which says that

B and G are arranged with respect to each other so that

there are enough degrees of freedom in B both to span

a κ + 1-dimensional subspace of B and at the same time

satisfy all the invariance conditions for the vertices of G.

For this to work, it is of course necessary that κ < m. We

now show that under Assumption 2, the linearly independent

vectors {b1, . . . , bκ+1} can always be modified to obtain a

new set {y1, . . . , yκ+1 | yi ∈ B ∩ Ci} which permits a flow

condition on G. To do so, we introduce the following family

of matrices. Let 1 ≤ p ≤ q ≤ κ + 1 and define

Mp,q :=







(hp · bp) (hp · bp+1) · · · (hp · bq)
...

...
...

(hq · bp) (hq · bp+1) · · · (hq · bq)






.

Define the matrices

Hp,q := [hp · · ·hq] , Yp,q := [bp · · · bq] .

Then Mp,q = HT
p,qYp,q . We say a matrix M is a Z -matrix

if the off-diagonal elements are non-positive; i.e. mij ≤ 0
for all i 6= j [2]. Since bi ∈ B ∩ Ci, i ∈ IG , each Mp,q is a

Z -matrix. Also under the condition that B ∩ cone(S) = 0,

Mp,q adopts further algebraic properties. In particular, we

require the notion of an M -matrix. The following theorem

characterizes non-singular M -matrices (see [2], Ch. 6).

Theorem 7: Let M ∈ R
k×k be a Z -matrix. Then the

following are equivalent:

(i) M is a non-singular M -matrix.

(ii) ℜ(λ) > 0 for all eigenvalues λ of M .

(iii) There exists a vector ξ � 0 in R
k such that Mξ ≻ 0.

(iv) The inequalities y � 0 and My � 0 have only the

trivial solution y = 0, and M is non-singular.

(v) M is monotone; that is, My � 0 implies y � 0 for all

y ∈ R
k.

(vi) M is nonsingular and M−1 is a non-negative matrix.

Lemma 8: Suppose B ∩ cone(S) = 0. Let 1 ≤ p ≤ q ≤
κ + 1 and suppose {bp, . . . , bq | bi ∈ B ∩ Ci} are linearly

independent. Then Mp,q is a non-singular M -matrix.

Proof: First we note that since rank(Hp,q) = q− p + 1
and by assumption rank(Yp,q) = q − p + 1, we have that

Mp,q is non-singular. Next, we claim that Mp,q has a positive

diagonal; that is, (Mp,q)ii
> 0 for i = 1, . . . , q − p + 1. For

if not, we would have hj · bp+i−1 ≤ 0 for all j = 1, . . . , n,

which implies 0 6= bp+i−1 ∈ B ∩ cone(S), a contradiction.

Now suppose there exists c ∈ R
q−p+1 with c 6= 0 and c � 0

such that Mp,qc � 0. Define the vector ȳ = Yp,qc ∈ B. Note

that ȳ 6= 0 because {bp, . . . , bq} are linearly independent.

Then Mp,qc = HT
p,qYp,qc = HT

p,qȳ � 0 implies hj · ȳ ≤
0 for j = p, . . . , q. Also, hj · ȳ =

∑q

i=p ci(hj · bi) ≤ 0
for j 6∈ {p, . . . , q}. This implies 0 6= ȳ ∈ B ∩ cone(S), a

contradiction. Therefore, Mp,q has the property that the only

solution of the inequalities c � 0 and Mp,qc � 0 is c = 0.

By Theorem 7 this implies that Mp,q is a non-singular M -

matrix.

We will construct a set {y1, . . . , yκ+1 | yi ∈ B∩Ci} which

permits a flow condition on G by an inductive procedure. The

following lemma establishes the initial step of the induction.

Lemma 9: Suppose Assumption 2 holds. Then w.l.o.g.

(by reordering the indices 1, . . . , κ + 1 and the indices

κ + 2, . . . , n), hκ+2 · b1 < 0.

Proof: Suppose not. That is,

hj · bi = 0 , i = 1, . . . , κ + 1 , j = κ + 2, . . . , n . (4)

By Assumption 2 and Lemma 8, M1,κ+1 is a non-singular

M -matrix, so by Theorem 7(iii), there exists c � 0, c 6= 0,

such that M1,κ+1c =: d � 0. Let y := Y1,κ+1c. Note

y 6= 0 since {b1, . . . , bκ+1} are linearly independent. Now

y satisfies HT
1,κ+1y = HT

1,κ+1Y1,κ+1c = M1,κ+1c � 0.

Combining with (4) we have hj · y ≤ 0 for j = 1, . . . , κ +1
and hj · y ≤ 0 for j = κ + 2, . . . , n. Therefore, 0 6= y ∈
B ∩ cone(S), a contradiction.

The following proposition shows how one can modify the

linearly independent set {bi ∈ B ∩ Ci | i ∈ IG} to obtain

a new set of velocity vectors satisfying both the invariance

conditions and also a flow condition on G.

Proposition 10: Suppose Assumption 2 holds. Then there

exists an assignment {yi ∈ B ∩ Ci | i ∈ IG} and a vector

β1 ∈ B such that β1 · yi < 0 for all i ∈ IG .

Proof: In the first step of the proof, we will construct

an assignment {yi ∈ B ∩ Ci | i ∈ IG} such that for each

i ∈ IG ,

(∃pi ∈ {κ + 2, . . . , n}) hpi
· yi < 0 . (5)

In the second step of the proof, we will show that the sets

conv{y1, . . . , yκ+1} and {0} are strongly separated, and this

will lead to the desired result.

For the first step, the proof is by induction on an index

l = 0, . . . , κ. Following Assumption 2, let {b1, . . . , bκ+1} be

a linearly independent set satisfying bi ∈ B ∩Ci, i ∈ IG . Set

l := 0 and y1 := b1. Assuming indices have been ordered

according to Lemma 9, we have that {y1} satisfies the prop-

erty (5). Now suppose there exists {y1, . . . , yl+1} satisfying

(5) and there remain {bl+2, . . . , bκ+1} which have not been

modified. If w.l.o.g. (by reordering indices l + 2, . . . , κ + 1)

there exists bl+2 satisfying property (5), then set yl+2 = bl+2
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and the induction step is done. Suppose instead that no such

bi exists. That is,

hj ·bi = 0 , i = l+2, . . . , κ+1 , j = κ+2, . . . , n . (6)

Now we claim that w.l.o.g. (by reordering indices l +
2, . . . , κ + 1) there exist bl+2 and q ∈ {1, . . . , l + 1} such

that hq · bl+2 < 0.

For suppose not. Then since bi ∈ B ∩ Ci,

hj ·bi = 0 , i = l+2, . . . , κ+1 , j = 1, . . . , l+1 . (7)

Now consider Ml+2,κ+1 formed using the linearly inde-

pendent vectors {bl+2, . . . , bκ+1}. By Assumption 2 and

Lemma 8, it is a non-singular M -matrix. By Theorem 7(iii),

there exists c � 0, c 6= 0 such that Ml+2,κ+1c ≺ 0.

Let y := Yl+2,κ+1c. Note y 6= 0 since {bl+2, . . . , bκ+1}
are linearly independent. Now y satisfies HT

l+2,κ+1
y =

HT
l+2,κ+1

Yl+2,κ+1c = Ml+2,κ+1c ≺ 0. Combining with

(6)-(7) we have hj · y ≤ 0 for j = l + 2, . . . , κ + 1 and

hj · y = 0 for j = 1, . . . , l + 1, κ + 2, . . . , n. Therefore,

0 6= y ∈ B ∩ cone(S), a contradiction.

Consequently we know that w.l.o.g. (by reordering indices

{1, . . . , l + 1}) for bl+2 there exists q ∈ {1, . . . , l + 1} such

that hq ·bl+2 < 0. Now define yl+2 := αyq +bl+2 ∈ B. Even

though hq · yq > 0, we have hq · bl+2 < 0, so α > 0 can

be selected sufficiently small so that hq · (αyq + bl+2) ≤ 0.

Also, we know that hj ·(αyq + bl+2) ≤ 0 for j ∈ I\{l+2, q}
since hj · yq ≤ 0 and hj · bl+2 ≤ 0 for all j ∈ I \ {l + 2, q}.

Therefore, yl+2 6= 0 satisfies the invariance conditions at

vl+2. Also, by assumption of the induction step, there exists

pq ∈ {κ+2, . . . , n} such that hpq
·yq < 0. Since hpq

·bl+2 ≤
0, we obtain hpq

· (αyq + bl+2) < 0. Therefore yl+2 satisfies

property (5) with pl+2 = pq . This completes the induction

step.

Now we consider the second step of the proof. Let

{y1, . . . , yκ+1} be the (not necessarily linearly independent)

assignment of feasible velocity vectors for vi, i ∈ IG ,

constructed in the first step and satisfying property (5).

Consider the set C := conv{y1, . . . , yκ+1} ⊂ B. We observe

that 0 6∈ C because no convex combination of yi’s can sum

to zero by property (5). (For consider y =
∑

i ciyi, ci ≥ 0,

and
∑

i ci = 1. Suppose w.l.o.g. that c1 > 0. By assumption

∃ p1 ∈ {κ+2, . . . , n} such that hp1
·y1 < 0. Also, hp1

·yi ≤ 0
for all i = 2, . . . , κ + 1, so hp1

· y < 0 which implies

y 6= 0.) Now applying the Separating Hyperplane Theorem

([12],p.98), there exists a hyperplane H separating C and {0}
strongly in B. That is, there exists β1 ∈ B such that for all

y ∈ C, βT
1 y < 0.

The proof of the following theorem is analogous to that

of Theorem 6.

Theorem 11: Suppose Assumption 1 holds and G =
conv{v1, . . . , vκ+1}, with 0 ≤ κ < m. Suppose the fol-

lowing conditions hold.

1) The invariance conditions are solvable.

2) There exists a linearly independent set {bi ∈ B ∩
Ci | i ∈ IG}.

Then S
S

−→ F0 by affine feedback.

Remark 2: An interesting aspect of Theorems 6 and 11

is that one is able to show existence of a flow condition on

S without explicitly computing controls for the vertices. In

this manner the problem of finding controls to satisfy the

invariance conditions and that of satisfying a flow condition

are decoupled. This property is achieved due to the method

of triangulation of the state space relative to O.

IV. EXISTENCE OF EQUILIBRIA

In this section we explore cases when equilibria appear

on G when an assignment of a continuous state feedback

y(x) is made on S, so that the reach control problem is not

solvable by continuous state feedback. Particular attention

is given to the case when B ∩ cone(S) = 0. Let u(x) be

a continuous state feedback defined on S. We restrict our

attention to such controls which yield unique solutions on S
and which satisfy the invariance conditions (3) on S. Define

the closed-loop system

ẋ = Ax + Bu(x) + a =: y(x) . (8)

First we consider an obvious necessary condition for the

problem to be solvable, which is that one must be able to

assign y(vi) 6= 0 at each vertex vi ∈ G.

Proposition 12: Suppose Assumption 1 holds and let u(x)
be a continuous state feedback such that the closed-loop

system has unique solutions and the invariance conditions

hold. If at some i ∈ IG , B ∩ Ci = 0, then the closed-loop

system ẋ = Ax + Bu(x) + a has an equilibrium point at

vi ∈ G.

Remark 3: When v0 ∈ G, then Proposition 12 immedi-

ately implies that a necessary condition for existence of a

continuous state feedback is that B ∩ cone(S) 6= 0.

From Proposition 12 a necessary condition for a solution

is that there exists a set {bi ∈ B∩Ci | bi 6= 0, i ∈ IG}. In the

special case of v0 ∈ G this completely settles the question

of necessary conditions since in that case we require that

B ∩ cone(S) 6= 0. More generally, if B ∩ cone(S) 6= 0, the

question is settled because of Theorem 6. Therefore, other

necessary conditions for a solution are studied in this section

under the following assumptions.

Assumption 3:

(E1) W.l.o.g. G = conv{v1, . . . , vκ+1}, with 0 ≤ κ < n.

(E2) B ∩ cone(S) = 0.

(E3) The maximum number of linearly independent vectors

in any set {bi ∈ B∩Ci | i ∈ IG} is m⋆ with 1 ≤ m⋆ ≤ κ.

Asssumption (E3) says there does not exist a full linearly

independent set {bi ∈ B ∩ Ci | i ∈ IG} as in Assumption 2.

This automatically holds true when κ = m, in which case

(E3) could simply be removed. We remark that m⋆ is well-

defined (for dim(sp{bi ∈ B∩Ci | i ∈ IG}) ∈ {0, . . . , κ + 1}
defines a finite set of integers for which the maximum always

exists).

Given 1 ≤ m⋆ ≤ κ as above, w.l.o.g. let

{b1, . . . , bm⋆ | bi ∈ B ∩ Ci}

be one such maximal linearly independent set. By con-

struction, every bj ∈ B ∩ Cj for j = m⋆ + 1, . . . , κ + 1
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satisfies bj ∈ sp{b1, . . . , bm⋆}. Indeed for each j ∈ {m⋆ +
1, . . . , κ + 1} there exists 1 ≤ κj ≤ m⋆ such that w.l.o.g.

(reordering indices 1, . . . , m⋆), B ∩ Cj ⊂ sp{b1, . . . , bκj
},

and sp{b1, . . . , bκj
} is the smallest such subspace in B.

Therefore we can say κj = dim(B ∩ Cj). Now consider

B ∩ Cm⋆+1. Following the arguments above, let κ⋆ :=
dim(B ∩Cm⋆+1) and w.l.o.g. (reordering indices 1, . . . , m⋆)

assume B ∩ Cm⋆+1 ⊂ sp{b1, . . . , bκ⋆}. If κ⋆ < m⋆, swap

the indices m⋆ + 1 ⇐⇒ κ⋆ + 1. (The index swap is to

make incrementing of indices easier below). Finally select

any vectors βi ∈ B, i = κ⋆ + 1, . . . , m such that

B = sp{b1, . . . , bκ⋆ , βκ⋆+1, . . . , βm} . (9)

With our reordering of indices we have that for all bκ⋆+1 ∈
B ∩ Cκ⋆+1, bκ⋆+1 = c1b1 + · · · + cκ⋆bκ⋆ . Also define

G⋆ := conv{v1, . . . , vκ⋆+1} .

The following results will show that there exists an equilib-

rium in G⋆ for any closed-loop vector field y(x) satisfying

the invariance conditions on S. We begin by isolating the

defect in available degrees of freedom in B with respect to

G⋆.

Proposition 13: Suppose Assumptions 1 and 3 hold. Sup-

pose that the closed-loop system ẋ = y(x) satisfies the

invariance conditions. Then for all x ∈ G⋆,

hj · y(x) = 0 , j = κ⋆ + 2, . . . , n .

Proof: W.l.og. let a basis of B be as in (9) and select

bκ⋆+1 ∈ B ∩ Cκ⋆+1 such that

bκ⋆+1 = c1b1 + · · · + cκ⋆bκ⋆ , ci 6= 0 .

(Such a vector exists by the definition of κ⋆ and convexity of

B ∩ Cκ⋆+1.) Define c := (c1, . . . , cκ⋆). Since {b1, . . . , bκ⋆}
are linearly independent and B∩cone(S) = 0, by Lemma 8,

M1,κ⋆ is a non-singular M matrix. Consider the following

invariance conditions

HT
1,κ⋆bκ⋆+1 = HT

1,κ⋆Y1,κ⋆c = M1,κ⋆c � 0 .

By Theorem 7(v) and the fact that ci 6= 0, we obtain c ≺ 0.

Now consider the invariance conditions

hj · bκ⋆+1 = hj ·

(

κ⋆

∑

i=1

cibi

)

≤ 0 , j = κ⋆ + 2, . . . , n .

Every term in the sum is non-negative, since bi ∈ B∩Ci and

ci < 0, and so we obtain

hj · bi = 0 , i = 1, . . . , κ⋆ +1, j = κ⋆ +2, . . . , n . (10)

Now by Theorem 7(iii) there exists c′ = (c′1, . . . , c
′
κ⋆) such

that c′ � 0 and M1,κ⋆c′ ≺ 0. Define b′κ⋆+1 := Y1,κ⋆c′. The

vector HT
1,nb′κ⋆+1 ∈ R

n has the following sign pattern:

(−, . . . ,−, ∗, 0, . . . , 0) (11)

where the ∗ appears in the (κ⋆+1)th component. In particular

b′κ⋆+1 ∈ B∩Cκ⋆+1 and the first κ⋆ invariance conditions are

strictly negative. Now suppose we find a non-zero vector

β ∈ sp{βκ⋆+1, . . . , βm} such that

hj · β ≤ 0 , j = κ⋆ + 2, . . . , n . (12)

Then for α > 0 we can form b′′κ⋆+1 := b′κ⋆+1 + αβ.

Using (11) and (12), α can be selected sufficiently small so

that hj · b′′κ⋆+1 ≤ 0 for all j = 1, . . . , κ⋆, κ⋆ + 2, . . . , n.

That is, b′′κ⋆+1 ∈ B ∩ Cκ⋆+1. Moreover, with β 6= 0,

{b1, . . . , bκ⋆ , b′′κ⋆+1} is a linearly independent set. This con-

tradicts that B ∩ Cκ⋆+1 ⊂ sp{b1, . . . , bκ⋆}. The conclusion

is that there does not exist β ∈ sp{βκ⋆+1, . . . , βm}, β 6= 0,

satisfying (12).

Now let y(x) be any continuous closed-loop vector field

on S satisfying the invariance conditions (3). Using (9), for

x ∈ G, let

y(x) = c1(x)b1 + · · · + cκ⋆(x)bκ⋆ + β(x) , (13)

where β(x) ∈ sp{βκ⋆+1, . . . , βm}. From (3) we know that

for each x ∈ G⋆, hj ·y(x) ≤ 0, for j = κ⋆ +2, . . . , n. Using

(10) and (13) these conditions become

hj · β(x) ≤ 0 , j = κ⋆ + 2, . . . , n ,

but we have just shown that no such non-zero β exists, so

it must be that β(x) = 0. Therefore for each x ∈ G⋆, hj ·
y(x) = 0 for j = κ⋆ + 2, . . . , n, as desired.

Remark 4: Proposition 13 has the following intuitive

meaning. For simplicity suppose v0 = 0. We know from

the geometry of the simplex that the state space can be

decomposed as follows:

R
n = aff{v0, . . . , vκ⋆+1} ⊕ sp{hκ⋆+2, . . . , hn} . (14)

Therefore, Proposition 13 says that

sp{b1, . . . , bκ⋆} ⊂ aff{v0, . . . , vκ⋆+1} .

Moreover, for all x ∈ G⋆,

y(x) ∈ sp{b1, . . . , bκ⋆} .

Geometrically, G⋆ lies in aff{v0, . . . , vκ⋆+1}, a κ⋆ + 1
dimensional affine space in R

n, and B provides to G⋆ only

κ⋆ usable directions (which also lie in aff{v0, . . . , vκ⋆+1})

to resolve all its invariance conditions.

Proposition 13 captures the fundamental geometric struc-

ture of the problem which forces the existence of an equi-

librium. The proof that an equilibrium exists can now be

executed in a number of different ways, including index

theory and the Brouwer Fixed Point Theorem. A particularly

efficient proof can be obtained based on Sperner’s Lemma

[14].

Let T be a triangulation of n-dimensional simplex S.

A proper labeling of the vertices of T is as follows: (P1)

vertices of the original simplex S have n + 1 distinct

labels. (P2) Vertices of T on a face of S are labeled using

only the labels of the vertices forming the face. Given a

properly labeled triangulation of S, we say a simplex in T is

distinguished if its vertices have all n + 1 labels. Sperner’s

lemma says that every properly labeled triangulation of S
has an odd number of distinguished simplices.
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Theorem 14: Suppose Assumptions 1 and 3 hold. Let

u(x) be a continuous state feedback such that the closed-loop

system ẋ = Ax + Bu(x) + a = y(x) has unique solutions

and the invariance conditions (3) hold. Then the closed-loop

system has an equilibrium point in G.

Proof: By assumption G = conv{v1, . . . , vκ+1}. If

κ > m, redefine G as G = conv{v1, . . . , vm+1}. Define

the simplex G⋆ using the construction above and let I⋆ :=
{1, . . . , κ⋆ + 1}. Now we show how to obtain a proper

labeling of G⋆. We begin by defining the sets:

Q⋆
i := {x ∈ G⋆ | hi · y(x) > 0} , i ∈ I⋆ .

Observe that vi ∈ Q⋆
i and vi 6∈ Q⋆

j , i, j ∈ I⋆, i 6= j
(for otherwise, we would have y(vi) ∈ B ∩ cone(S) which

either contradicts that B ∩ cone(S) = 0 or implies y(vi) is

an equilibrium). Therefore, we either immediately conclude

there is an equilibrium on a vertex of G⋆ or we conclude

that inclusion in a set Q⋆
i provides a distinct label for the

vertices vi ∈ G⋆. This satisfies (P1) of a proper labeling of

G⋆. Next, let T be any triangulation of G⋆ and consider a

vertex v of T which is not a vertex of G⋆ and lies in ∂G⋆.

W.l.o.g. let v ∈ conv{v1, . . . , vl+1} for some 1 ≤ l < κ⋆.

Then it must be that v ∈ Q⋆
k for some 1 ≤ k ≤ l +1 (by the

same reasoning that otherwise y(v) ∈ B ∩ cone(S)). Clearly

this labeling of v satisfies the second condition (P2) for a

proper labeling. Finally, for vertices v of T in the interior of

G⋆, any label Q⋆
i such that hi ·y(v) > 0 can be used (at least

one such exists because if all hi ·y(v) ≤ 0, i ∈ I⋆, it implies

hi · y(v) ≤ 0 for all i = 1, . . . , n or y(v) ∈ B ∩ cone(S)).
Now for each k > 0, k ∈ Z, define a triangulation

T
k of G⋆ such that each simplex of T

k has diameter 1

k
.

Apply Sperner’s lemma for each T
k to obtain a distinguished

simplex conv{vk
1 , . . . , vk

κ⋆+1} and its baricenter xk. {xk}
defines a bounded sequence in G⋆ which has a convergent

subsequence, again denoted {xk}. We have limk→∞ xk =
x ∈ G⋆, since G⋆ is closed. Also, by construction vk

i → x,

i ∈ I⋆. By Sperner’s lemma we know that hi · y(vk
i ) > 0,

i ∈ I⋆, so by continuity of y(x) this implies hi · y(x) ≥ 0,

i ∈ I⋆. Combined with Proposition 13, we obtain that

−y(x) ∈ B ∩ cone(S) = 0, which implies x ∈ G⋆ is an

equilibrium of the closed-loop system ẋ = y(x).

V. EXISTENCE OF CONTINUOUS STATE FEEDBACK

In this section we collect the previous results to resolve

the boundary between continuous state feedback and affine

feedback.

Theorem 15: Suppose Assumption 1 holds. Then the fol-

lowing statements are equivalent:

1) S
S

−→ F0 by affine feedback.

2) S
S

−→ F0 by continuous state feedback.

Proof: (1) =⇒ (2) is obvious.

(2) =⇒ (1) Suppose there exists a continuous state feedback

u(x) such that the closed loop system (8) has a unique

solution for each initial condition in S and Problem 1 is

solved using u(x). By Lemma 3 the invariance conditions

(2) must be solvable. Suppose G = ∅. Then by Theorem 4,

S
S

−→ F0 by affine feedback. Suppose G 6= ∅. Also, suppose

B ∩ cone(S) 6= 0. Then by Theorem 6, S
S

−→ F0 by affine

feedback. Instead suppose G 6= ∅ and B ∩ cone(S) = 0.

Suppose v0 ∈ G. Then by Proposition 12, the closed-loop

system has an equilibrium point x0 ∈ S, a contradiction. In-

stead suppose v0 6∈ G and w.l.o.g. G = conv{v1, . . . , vκ+1},

with 0 ≤ κ < n. Suppose there does not exist a linearly

independent set {bi ∈ B∩Ci | i ∈ IG}. Then by Theorem 14

the closed-loop system has an equilibrium point x0 ∈ S,

a contradiction. Instead suppose there does exist a linearly

independent set {bi ∈ B∩Ci | i ∈ IG}. Then by Theorem 11,

S
S

−→ F0 by affine feedback.
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