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Abstract— We continue with the study of fish-like underwater
source seeking initiated in a companion paper where we
considered a three-rigid-link fish model. In this paper we
consider a more realistic fish model based on a Joukowski airfoil
which has only one degree of freedom in its movement, and thus
relies on vortex shedding to move through a perfect fluid. Both
the propulsion problem and the source seeking problem are
solved by employing the same sinusoidal perturbation input—
the flapping of the fish’s tail. The fish converges to the signal
source despite being unaware of it’s position, the source’s
position, and the spatial distribution of the source.

I. INTRODUCTION

This paper addresses GPS-denied source seeking problems

for underwater vehicles which, in order to move forward,

employ periodic shape deformations similar to fish move-

ment. The motivation for this work comes from our previous

work on source seeking for the nonholonomic unicycle with

constant forward velocity [3], [4]. In that work we use the

extremum seeking method to design a control law which

drives the vehicle to the vicinity of a source.

In a companion paper [2] we address the source seeking

problem for a three-link model of fish in perfect fluid. This

is a nonlinear model with only four states but with an

extremely complex right hand side and with an output map

which is infinite dimensional (the ‘fluid field’). The model

has two inputs, at each of the two joints of the three-link

structure. The extremum seeking guides the three-link fish

to the unknown location of the measured signal.

In this paper we consider a more complex and more

realistic fish model developed in [22] (and studied in [11]),

employing a Joukowski airfoil representation, which has only

one degree of freedom in its movement and relies on vortex

shedding to move through a perfect fluid and to achieve

steering. We study how to use a combination of two basic

“gaits,” the periodic shape deformations that produce forward

and turning motions, to enable, with the help of feedback,

the fish to move towards the signal source.

Much work has been done in the area of modelling fish

movement - both for the understanding of fluid dynamics

and for the purpose of building more efficient vehicles

that operate underwater. The studies presented in [6], [9],

[20], [1], [10], [18], [21] have all examined locomotion by

swimming and the role of vortices. References [7], [22], [11],
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[5] have taken the lessons learned from this previous work

and extended it to the development of computational fish

models in fluid systems. The model developed in [22], [11]

spans the gap between studies which look at deformable

bodies moving through a fluid without the use of vortex

shedding and studies examining systems with rigid bodies

and vortices. Many research groups, including [19], [12],

[11], [14], [8], have developed underwater vehicles modelled

after biological entities which use sinusoid-dominated move-

ments to propel the vehicle forward. In related work, [16]

and references therein have studied stabilization of vortex

shedding—an area with useful ideas for vehicle control.

A common theme in fish locomotion is the periodic move-

ment of the body. This brings the extremum seeking method

to mind as it employs periodic inputs to probe a signal field

and achieve real-time non-model based optimization. We

combine the natural gait of the fish model with the extremum

seeking. By marrying the requirements of propulsion and

optimization, we solve the source seeking problem in an

extremely simple, biologically plausible manner.

We start in Section II with a recap of equations of

motion in a perfect fluid, followed, in Section III-A, by a

presentation of an ODE model of Joukowski foil motion in

a field of point vortices. In Section III-B we review the basic

Joukowski fish gaits and in Sections III-C and III-C introduce

and test our source seeking and path following designs.

II. EQUATIONS OF MOTION IN A PERFECT FLUID

The fluid is considered to be inviscid (no viscosity)

and incompressible. The fluid particles may slip along the

boundaries of the solid but cavities are not allowed to form

in the fluid nor at the interface. The fluid is assumed to be at

rest at infinity. In [22], vorticity is shed from the trailing edge

of the airfoil in the form of point vortices. Away from the

shed point vortices, the fluid is assumed to remain irrotational

at all time. In this case, the configuration space of the body-

fluid system can be identified with that of the submerged

body and the position of the shed point vortices.

The fluid velocity field u, in the fluid domain excluding

the body and point vortices when accounted for, can be

expressed in term of a potential function φ as u = ∇φ.

Incompressibility implies that ∇2φ = 0. The boundary

conditions result from the two assumptions that the fluid is at

rest at infinity and that fluid particles may slip along the body

surface, and are expressed as ∇u|∞ = 0 and u ·n = Ḃ|S ·n,

where B is the fish body and S is the surface of the body

(touching the fluid). In the Joukowski airfoil model [22],

[11], φ is a function of the configuration and velocity of the

body as well as the position of the shed point vortices and is

obtained in closed form using tools from complex analysis.
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The kinetic energy of the fluid, Tf , is defined as Tf =
1
2

∫

D
u

2dv, where D is the fluid domain (excluding sin-

gularities present in the form of point vortices) and dv is

the standard volume element. Using Green’s theorem, Tf is

rewritten as Tf = − 1
2

∫

∂S
φ∇φ·nds, where ∂S is the surface

of the fish body and n is the unit normal into the fluid. The

xpression for Tf is given in Section III.

The equations governing the net locomotion of the fish

can be viewed as variations of Kirchhoff’s equations for the

motion of a rigid body in an ideal fluid (see [13])

dL

dt
+ Ωk × L = 0 (1)

dA

dt
+ k · ([U V ]T × L) = 0 (2)

where L and A are the linear and angular momenta of the

body-fluid system and U , V , and Ω are the translational

and rotational velocities associated with a net locomotion

of the body. The variables L, A, U , V , Ω are expressed in

a body frame moving with the fish. The linear and angular

momenta L and A are obtained by differentiating the kinetic

energy L =

[

∂T

∂U

∂T

∂V

]T

, A = ∂T
∂Ω . The theme of the

derivations is conservation of momentum and starting the

system from rest, which implies L = 0 and A = 0 for all

time. This allows one to solve for U , V , and Ω at each time

step and then integrate to derive the locomotion of the fish.

III. LOCOMOTION AND SOURCE SEEKING FOR A

JOUKOWSKI FOIL FISH

We now move to the discussion of locomotion for a de-

formable Joukowski foil. [22], [11] have used the Joukowski

transformation, a class of conformal maps, to study a fish

modelled as an airfoil. The transformation

z = F (ζ) = ζ + ζc +
α

ζ + ζc
(3)

allows the parameterization of a circle ζ = rce
iθ in the ζ-

plane to describe an airfoil in the z = x + iy plane. The

parameters ζc = ζx + iζy ∈ C and α ∈ R determine the

foil shape. Varying the imaginary part ℑ{ζc} = ζy while

enforcing the constraint rc = |ζc − α| with rc constant, as

is done in [22], [11] and this paper, causes the camber of

the foil to vary as well. This variation allows for one degree

of freedom, which, by itself, will not allow the fish to make

forward progress in a potential flow. To counter this, [22],

[11] add discrete point vortices to the system, modelled after

vortex shedding by actual fish. (The potential function in this

case encompasses the domain of the fluid minus small circles

at the locations of the vortices.) The vortices are shed at

discrete time instants from the trailing edge of the fish. When

this happens, an exchange of momentum ensues and the fish

is capable of moving forward. By periodically varying ζ̇y —

the single input to the system — in a certain way, the fish

will move forward or turn.

The model presented in [22], [11] spans the gap between

studies which look at deformable bodies moving through

a fluid without the use of vortex shedding and studies

examining systems with rigid bodies and vortices. Through

the model in [22], the authors successfully address motion

planning problems for fish locomotion, using only one input

and exploiting the presence of vortices for both propulsion

and steering.

Next, we first summarize the equations of motion for the

fish foil, though we do not rederive these equations. After

discussing the basic gaits to move forward and to turn, we

then present our control law which allows the fish to move

both to a desired location and along a specific path.

A. ODE Model With an Infinite Dimensional Output Map for

a Joukowski foil fish in a Potential Flow with Point Vortices

The continually growing number of state variables of this

system are

Ξ =
[

ζy g ΛT ΓT
]T

(4)

where g = [θf fx fy]
T

, Λ = [ζ1 ζ2 ...]
T , with ζk ∈ CN ,

is a vector of the location of each point vortex and Γ =
[γ1 γ2 ...]

T , with γk ∈ R, is a vector of the strength of each

point vortex. The variables θf and (fx, fy) are the orientation

and location of the foil fish with respect to the spatially

fixed frame. The number of vortices N continues to grow

as time goes on; at periodic discrete points in time another

vortex is added. The system has one input, ζ̇y = Ψ while

the output map defines the potential field and is given in

the infinite dimensional form φ(x, y) = η[Ξ,Ψ](x, y). To

complete the model description we must develop expressions

for the evolution of all the state variables and define the

output operator η.

Both [22] and [11] develop the equations of motion for a

Joukowski foil in a perfect fluid with point vortices. Refer-

ence [11] develops the expression for the potential function

which [22] uses (and therefore we use as well). However,

[11] uses Newton’s second law to derive the motion of the

body, while [22] applies conservation laws. Though the two

methods should produce the same equations of motion, the

simulation results are quite different. We use the motion

derived by [22], as in this work, the fish model (correctly)

cannot propel itself forward without the inclusion of vortices.

The complex potential W (z) = φ(z)+iψ(z) is an analytic

function where φ is the potential function and ψ is the stream

function. We use a frame of reference attached to the foil

and we express W (z) in terms of the body configuration

and velocities as

w(ζ) = W (z) = Uw1(ζ) + V w2(ζ) + Ωw3(ζ)

+ζ̇xws1(ζ) + ζ̇yws2(ζ) + α̇ws3(ζ)

+

N
∑

k=1

wk
pv(ζ) (5)

where U, V are the translational velocities of the foil, Ω is

the rotational velocity, N is the number of vortices in the

flow and wk
pv(ζ) represents the contribution to the potential

from the k-th vortex. As noted in [22], the subscript ‘s’

appears in conjunction with variables describing the shape

of the foil. Finding the functions wi and wsi corresponds to

satisfying the boundary condition that the normal component
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of the fluid velocity must match the normal component of

the velocity of the foil at its surface. The velocity of the

foil at its surface is a combination of the translational and

rotational velocities of the foil plus the velocities associated

with the change in shape ζ̇x, ζ̇y, α̇, which depends on the

input Ψ = ζ̇y . The functions wk
pv are found using the Milne-

Thomson circle theorem [13]

wk
pv = iγk

(

log(ζ − ζk) − log

(

ζ −
r2c
ζk

)

)

(6)

where ζk is the location of the k-th point vortex, and γk is

its strength.

Using the complex potential W (z), the kinetic energy of

the fluid can be determined from the integral

Tf = −
1

2

∫

∂S

φ(∇φ · n)ds (7)

where ∂S is the surface of the foil. Given that φ is a function

of the body configuration, the body velocities and the point

vortices, Tf can be expressed as

Tf =
1

2
[UT

ṡ
T ΓT ]



 MTf









U

ṡ

Γ



 (8)

U = [Ω U V ]T (9)

s = [ζx ζy α]T (10)

Γ = [γ1 ... γN ]T (11)

where the body shape s(ζy) can be determined from ζy alone,

the matrix MTf (s,Λ) depends only on the foil shape s(ζy)
and the location of the vortices and the change in body shape

ṡ(s,Ψ) depends only the shape s(ζy) and the input Ψ. The

relationship between ζy and ζx, a is defined as

ζx(ζy) =
(1 − µ)

(1 + µ)

√

r2c − ζ2
y (12)

α(ζy) = ζx −
√

r2c − ζ2
y

= −
2µ

(1 + µ)

√

r2c − ζ2
y (13)

where µ ∈ (0, 1) is a constant. The kinetic energy of the foil

can also be expressed in term of the body configuration and

velocities

TB =
1

2
[UT

ṡ
T ]



 MTB





[

U

ṡ

]

(14)

where the matrix MTB(s) depends on only the shape s of

the foil. The total effective momentum of the system is

A =
∂(TB + Tf)

∂Ω
−

1

2

N
∑

k=1

(−2πγk)(|zk|
2 − |z0|

2)(15)

L =

[

∂(TB+Tf )
∂U

∂(TB+Tf )
∂V

]

+

N
∑

k=1

(−2πγk)(zk + z0) × k(16)

where the terms due to the vortices are developed in [17],

zk = [ℜ{zk} ℑ{zk}]
T is the vector location of the k-th

vortex in the foil-fixed frame, and z0 is the location of the

origin of the foil-fixed frame with respect to the spatially-

fixed frame. The momentum is governed by (1)–(2) and the

system starts from rest; therefore L = [Lx Ly]
T = 0 and

A = 0 for all time. Thus we have a system of equations





A
Lx

Ly



 = I





Ω
U
V



+B





ζ̇x
ζ̇y
α̇



+ P







γ1

...

γN






(17)

with a solution

U(Ξ,Ψ) = −I−1 (Bṡ + PΓ) (18)

where the matrices I(s) and B(s) depend only on the foil

shape s and the matrix P (s,Λ) depends on the shape plus

the locations of the vortices.

The remaining two items to summarize are 1) the motion

of the point vortices and 2) how to add vortices. The motion

of the vortices

ζ̇k = pk(Ξ,Ψ) =

(

dWk

dz
− (U + iV + iΩzk)

−
∂F

∂ζc
ζ̇c −

∂F

∂α
α̇

)

1

F ′(ζk)
(19)

Wk(z) = W (z) − iγk log(z − zk) (20)

is stated in [22] and is found using Routh’s rule [15]. The

point vortices are added to the system one by one at discrete

points in time. The trailing edge of the foil (i.e. the stagnation

point) is (α− ζc) [22], while we choose the location of the

new point vortex as ζn = 1.5(α− ζc). A review of different

vortex locating methods (including simulations) can be found

in [22]. The condition

dw

dζ

∣

∣

∣

ζ=ζn

= 0 (21)

must be satisfied to guarantee the stagnation point. The

addition of the new vortex causes the effective fluid momenta

to change, and thus the body momentum must change as

well. The discrete change in U, denoted as ∆U, plus the

strength of the new vortex γn must satisfy

I∆U + Pγn = 0 (22)

to ensure the conservation of momentum.

The calculation of U is split into 1) intervals of time

where (17) is used to find the body’s translational and

rotational velocities due to the body configuration and its

shape velocities and 2) points in time where (21) and (22) are

used to calculate the discrete change in the body velocities.

Thus, the complete dynamic system is given by the evo-

lution equation

Ξ̇ =









ζ̇y
ġ

Λ̇

Γ̇









=









Ψ
l(Ξ,Ψ)
Π(Ξ,Ψ)

0









(23)

and by the infinite dimensional output map

φ(x, y) = η[Ξ,Ψ](x, y) = ℜ
{

W (z)
}

, (24)
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Fig. 1. Forward gait for Joukowski foil fish. β = 0.

where

Π(Ξ,Ψ) = [p1(Ξ,Ψ) p2(Ξ,Ψ) ...]T (25)

l(Ξ,Ψ) =





1 0 0
0 cos(θf ) − sin(θf )
0 sin(θf ) cos(θf )



U(Ξ,Ψ) ,(26)

and where U(Ξ,Ψ) is defined in (18), pk(Ξ,Ψ) is defined

in (19), and W (z) is defined in (5). The initial condition for

Λ is arbitrary, while the initial condition for Γ is zero. In

this way, until a vortex is initialized, it has no effect on the

system. To initialize, each ζk in Λ and γk in Γ are reset at

time k∆t where ∆t is the time between each shed vortex.

Thus the reset is defined as

ζk(k∆t) = 1.5
(

α(k∆t) − ζc(k∆t)
)

(27)

γk(k∆t) = νk (28)

where νk is the γn part of the solution to (21), (22) at time

k∆t where ζn = ζk and ∆U is added to (18) for use in

(26).

B. Basic Gaits of the Joukowski Foil Fish

As shown in [22], the Joukowski foil fish, with the help

of the shed vortices, will move forward and turn with the

same input

ζ̇y = aω cos(ωt) , (29)

where the other shape parameters follow from the choice

of ζy as seen in (12), (13). The difference between the two

gaits lies in the initial condition of ζy ; The fish will move

straight forward with the initial condition ζy|t=0 = 0 while

the fish will move around circles with the initial condition

ζy|t=0 = β with β 6= 0 leading to

ζy(t) = a sin(ωt) + β . (30)

Figures 2 and 1 show the fish moving forward and in a circle

for various choices of parameters. Figure 2 clearly shows

the effect of the non-decaying vortices — the fish tail still

moves with the same frequency, yet the period of resulting

fish locomotion increases. Figure 3 shows snapshots in time

of the fish moving forward and the vortices that form.

−10 0 10 20 30 40
−30

−25

−20

−15

−10

−5

0

5

Joukowski Foil Fish Gait with a = .1 and ω = 15

x

y

 

 

β = 0

β = 0.01

β = 0.6

β = 0.1

init pos

Fig. 2. Turning gait for Joukowski foil fish. a = .1, ω = 15.

C. Source Seeking for a Joukowski Foil Fish

We notice that the forward gait and turning gait both have

a sinusoidal term. We make β from (30) time dependent and

arrive at

ζ̇y = aω cos(ωt) + cξ sin(ωt) (31)

ξ = H(s)[J ] (32)

H(s) =

(

s

s+ h

)2

(33)

where our compensator H(s) is a double washout filter. The

function J we wish to maximize is

J = −qr

(

(

x∗ − fsx

)2
+
(

y∗ − fsy

)2
)

(34)

fs =

(

µ+
a2

µ

)

ejθf + fx + ify (35)

where fs = (fsx, fsy) is the location of the fish sensor, a

forward point of the fish — its “nose”. As before (x∗, y∗) is

the goal location. Figures 4 and 5 depict the fish going toward

a target under the influence of (31) and different parameter

choices.

We constrain both the value of β and its time derivative β̇
in the control law of the Joukowski foil fish. We do this both

for physical realism and for computational convergence.

D. Path Following for a Joukowski foil fish.

We modify the function J so that the Joukowski foil fish

follows a predetermined path. Figure 6 shows the path the

fish takes when following the path defined by

J = 300/

√

1+
∣

∣

∣
fx−(3/1000f3

y−4/15f2
y +16/3fy+1)

∣

∣

∣

(36)

IV. CONCLUSIONS

We have shown that the extremum seeking method, which

performs real-time optimization using periodic perturba-

tions, can perform navigation of underwater vehicles which

move through sinusoid-dominated body movement instead of

through the use of traditional motors. The algorithm allows

the fish to find the source of a signal, move to a target

waypoint and follow a prespecified path. These tools can
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Fig. 3. Snapshots in time of a Joukowski foil fish moving forward. The background color field represents the stream function ψ with red representing
positive (clockwise) values and blue negative (counterclockwise). Vortices are also shown as xs moving counter clockwise and os clockwise. a = .1,
β = 0.
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Fig. 4. Source seeking for a Joukowski foil fish. (a) The background color field represents the stream function ψ with red representing positive values
and blue negative. (b) The background color field represents the “concentration” of the signal field J with the darker shade representing higher values than
the lighter shade. a = 0.3, c = 0.3, ω = 20, h = 10, qr = 10.2, rc = 1, µ = 0.74.

also be used to guide the vehicle through an obstacle field.

In so much as the model considered is a realistic model of

body-fluid interaction taking place in locomotion of actual

fish, the simple control law (31)–(33) seems as a plausible

feedback strategy that actual fish may be using to navigate

gradient fields.
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values and blue negative. (b) The background color field represents the “concentration” of the signal field J with the darker shade representing higher
values than the lighter shade. a = 0.3, c = 10, ω = 20, h = 20, rc = 1, µ = 0.74.
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