
Dataflow-based Implementation of Model Predictive Control

Ruirui Gu, member IEEE, Shuvra S. Bhattacharyya, senior member IEEE and Williams S. Levine, IEEE fellow

Abstract— Model Predictive Control (MPC) has been used
in a wide range of application areas including chemical en-
gineering, food processing, automotive engineering, aerospace,
and metallurgy. MPC is often computation intensive, which
limits the class of systems to which it can be applied and
the performance criteria it can use. This paper describes a
general framework called reactive, control-integrated dataflow
modeling for analyzing and improving the algorithms used
for MPC and their hardware implementations. The utility of
the framework is demonstrated by applying it to the Newton-
KKT algorithm. The results show significant reductions in
computation time for test cases.

I. INTRODUCTION

Model Predictive Control (MPC) has found broad appli-
cation, especially in the process industry. MPC can require
considerable amounts of computation because it is based
on the real-time solution of an optimal control problem.
This has limited its application to relatively slow systems
and tractable performance measures [1]. The ability to solve
larger, more complex problems quickly would extend the
practical applicability of MPC.

As a result, there has been considerable research aimed
at speeding up the computation of optimal controls. Most of
this research has concentrated on improving the algorithms.
Relatively little work [2] has been devoted to improving
the implementation of the algorithms. But the two go hand
in hand. A specific example that is especially relevant to
the work reported here is that an algorithm that can be
executed with many parallel steps will be much faster if
properly implemented than a more efficient algorithm that
must operate sequentially.

This paper describes a high level method for modeling
control algorithms. The resulting models display the flow of
data and the sequencing of calculations in a way that greatly
facilitates their analysis. In particular, it is relatively easy
to see where computational and/or storage bottlenecks exist.
Once identified, these problems can be eliminated or ame-
liorated by modifying the algorithm or by proper hardware
implementation. The method and its use are demonstrated
by an example application to the Newton-KKT algorithm, a
potentially important component of future MPC algorithms.

R. Gu is with the Department of Electrical and Computer Engineering,
and Institute for Advanced Computer Studies, University of Maryland,
College Park, MD, 20742. rgu@umd.edu

S. S. Bhattacharyya is with the Department of Electrical and Computer
Engineering, and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD, 20742. ssb@umd.edu

W. S. Levine is with the Department of Electrical and Computer Engineer-
ing, University of Maryland, College Park, MD, 20742. wsl@umd.edu

II. RELATED WORK
A. Control Background

MPC has been studied at least since the 1970s. At that
time various works show an incipient interest in MPC in the
process industry [3][4]. The basic ideas appearing in MPC
are explicit use of a model to predict the process output
at future time instants; calculation of a control sequence
minimizing a certain objective function; and the application
of only the first control signal of the sequence calculated at
each step. A detailed introduction to MPC and some specific
algorithms can be found in the book [5].

It is well known that MPC can be computation intensive
and that, as a result, it can usually be used only in applica-
tions with relatively slow dynamics [1]. One approach to
addressing this problem has been to compute the control
law off-line and store it as a lookup table [6]. However, the
situations where this can be done are limited. One would like
to be able to compute the controls in real time by solving
an optimal control problem. This has prompted a number
of researchers to investigate means for increasing the speed
with which optimal controls can be computed. Much of this
work has focused on improving the algorithms [1], [7].

A few researchers have addressed the implementation
of MPC. Ling et al. [8] demonstrated that a “reasonably
sized constrained MPC Controller” could be implemented
on a modest FPGA chip. Bleris et al. [9] have proposed
a computing architecture that is specifically designed for
MPC. Furthermore, they have proposed a design framework
for application specific processor implementation [2]. Our
approach differs from that of Bleris et al. in that we focus
on modeling the MPC algorithm structure. This model can
be used to derive efficient implementations across a range
of architectures. In particular, designers can systematically
trade off performance and resource requirements, based on
the constraints of the control problem, and the set of available
hardware resources.

B. Embedded Signal Processing Background
Since the mid 1980s, a class of graphical program repre-

sentations has been evolving steadily, and gaining increasing
acceptance among designers of digital signal processing
(DSP) systems. Foundations for such dataflow representa-
tions have been provided by computation graphs [10], Kahn
process networks [11], and dataflow architectures [12]. Syn-
chronous dataflow (SDF) is a specialized form of dataflow
that is streamlined for efficient representation of DSP sys-
tems [13]. Since the introduction of SDF, a variety of such

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA11.5

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2343

DSP-oriented dataflow models of computation have been
proposed, and DSP-oriented models have been incorporated
into many commercial design tools, including Agilent ADS,
Cadence SPW (later acquired by CoWare), National In-
struments LabVIEW, and Synopsys CoCentric. These al-
ternative modeling approaches provide different trade-offs
among expressive power (the range of DSP applications
that can be represented), analysis potential (the rigor with
which implementations can be automatically validated or
optimized), and intuitive appeal.

In DSP-oriented dataflow graphs, vertices (actors) repre-
sent computations of arbitrary complexity, and an edge rep-
resents the flow of data as values are passed from the output
of one computation to the input of another. Each data value
is encapsulated in an object called a token as it is passed
across an edge. Actors are assumed to execute iteratively,
over and over again, as the graph processes data from one or
more data streams. These data streams are typically assumed
to be of unbounded length (e.g., derived implementations
are not dependent on any pre-defined duration for the input
signals). In dataflow graphs, interfaces to input data streams
are typically represented as source actors (actors that have
no input edges).

A limitation of SDF and related models, such as cyclo-
static [14] dataflow, is that dynamic dataflow relationships
among computations cannot be described. To express ap-
plications that involve such relationships, one must employ
models that are more expressive than such static dataflow
models. Earlier work on DSP-oriented dataflow models has
focused heavily on static dataflow techniques, especially
SDF. As designers seek to develop more and more complex
embedded DSP systems, incorporating more flexible sets of
features, and more powerful forms of adaptivity, exploration
of dynamic dataflow models is becoming increasingly im-
portant.

A variety of dynamic dataflow modeling techniques
have been developed previously, including stream-based
functions [15], functional DIF [16], and the CAL ac-
tor language [17]. In this paper, we describe a new
dynamic dataflow modeling technique, called reactive,
control-integrated dataflow (RCDF), that appears particularly
promising for MPC applications. Our approach is more
specialized compared to other dynamic dataflow techniques,
but for MPC, this specialization can be exploited in useful
ways to streamline the implementation process.

Note that in addition to their formal properties, DSP-
oriented dataflow models provide different kinds of software
architectures for working with signal processing computa-
tions (of which control system implementations form an
important sub-class). This kind of representation can help
to structure subsequent phases of design, simulation, veri-
fication, testing, and implementation regardless of whether
the underlying model of computation is explicitly supported
by an off-the-shelf design tool. This is true especially in

the area of embedded systems, including embedded control,
where designers are often willing to explore specialized,
application/architecture-driven analysis techniques that may
provide streamlined performance, power consumption, cost,
or robustness.

III. REACTIVE CONTROL-INTEGRATED
DATAFLOW

We first introduce some notation related to dataflow
graphs. Given an edge e in a dataflow graph, we denote the
source and sink actors of e as src(e) and snk(e), respectively.
For a specific edge ei, and a positive integer j, we use
prd(ei, j) to denote the number of tokens produced by
src(ei) onto ei during the jth execution of src(ei), and
similarly, we use cns(ei, j) to denote the number of tokens
consumed by snk(ei) from ei during the jth execution of
snk(ei). In general, prd(ei, j) and cns(ei, j) can be data
dependent — i.e., they can depend on the values of samples
in the input signals of the dataflow graph. In the restricted
case of SDF, such data dependence cannot be present, and
furthermore, there can also be no dependence on j — that
is, the production and consumption “volumes” must be the
same for all values of j.

Given a dataflow graph edge e and a positive integer k, we
say that e has k/0 production if for all j, prd(e, j) ∈ {0, k}.
Similarly, a dataflow edge has k/0 consumption if for all j,
cns(e, j) ∈ {0, k}. Notice that by this definition, any edge
e in an SDF graph (degenerately) has k′/0 consumption for
some k′ = k′(e)

If S is a set of k/0 production (consumption) edges in a
dataflow graph, we employ a minor abuse of notation and
refer to S as having k/0 production (consumption).

A major concept in the RCDF modeling approach is that of
mutually-exclusive production and consumption edges. This
concept provides a common framework for representing a
useful class of dynamic dataflow structures that is relevant
to MPC.

Definition 1: Given a dataflow graph G, a set of mutually-
exclusive token-production edges (METP edges) is a subset
e1, e2, . . . , em of edges in G such that for any set of input
signals applied to G, and for any positive integer j,

m∑
i=1

I(prd(ei, j)) = 1, where I(x) = {1,x>0
0,x≤0

represents the indicator function over the positive integers.
Intuitively, a set S of edges is an METP set if across any

set of corresponding executions of the edges’ source actors,
a nonzero token volume is produced on exactly one of the
edges in S.

An analogous notion of mutually-exclusive token-
consumption edges (METC edges) can be formulated by
replacing the sum in Definition 1 with

2344

m∑
i=1

I(cns(ei, j)) = 1,

.
In this paper, we focus on a particular class of METP

edges and METC edges, which we refer to as regular METP
edges and METC edges. A regular METP is an METP S =
e1, e2, . . . , em such that all elements have the same source
actor (src(ei) = src(e1) for all i), and there exists a positive
integer k such that S has k/0 production. Similarly, a regular
METC is an METC such that all elements have the same
sink actor, and there exists a positive integer k such that the
METC has k/0 consumption.

IV. EXAMPLE: NEWTON KKT ALGORITHM

In numerical analysis, Newton’s method is one of the best
known methods to find successively better approximations
to the roots of a real-valued function. Newton’s method, as
an optimization algorithm, is also well-known for finding
the value of x ∈ Rn that minimizes a twice-differentiable
function f : Rn → R.

The Karush-Kuhn-Tucker conditions (KKT) are necessary
for a solution of a nonlinear programming problem to be
optimal provided some regularity conditions are satisfied.

The Newton-KKT method takes advantage of both New-
ton’s method and the KKT condition. Newton-KKT methods
are algorithms in which search directions for the primal
variables and the KKT multiplier estimates are components
of the Newton (or quasi-Newton) direction for the solution of
the equalities in the first-order KKT conditions of optimality
or a perturbed version of these conditions. The specific
version of Newton KKT we use was introduced by Absil
and Tits [18]. Their methods are adapted from previously
proposed algorithms for convex quadratic programming and
general nonlinear programming. The Newton-KKT algorithm
is a good choice for use in solving the discrete-time optimal
control problems that are central to MPC.

Consider the following Quadratic Programming (QP)
problem in standard inequality form:

minimize
1
2

< x,Qx > + < c, x >, s.t. Ax ≤ b, x ∈ Rn

with A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and with Q ∈ Rn×n

symmetric. In order to solve this problem using the Newton
KKT method, we introduce some notation. Let I = 1, ...m,
where m is the number of rows of A, and, for i ∈ I , let
ai be the ith row of A, let bi be the ith entry of b, and let
gi(x) ≡< ai, x > −bi. Also let f(x) ≡ 1

2 < x,Qx > + <
c, x >. The Newton KKT algorithm to solve the problem
is modeled by the RCDF model in Figure 1. We implement
communication between actors based on the dataflow model.
However implementation of each actor follows the sequential
programming method. As shown in Figure 1, there are seven
actors in the system, and each actor is responsible for a

specific function. The function of each actor is described
in brief as follows:

Fig. 1. RCDF model of Newton KKT algorithm.

I—The actor I is used to initialize the values of state
variables and the values of parameters, such as the tolerance
threshold, that are used later.

P—The actor P is used to compute the values of f , g and
the Schur complement at the current value of x for every
iteration.

H—The actor H is used to compute the modified Hessian
matrix. It functions only under the condition that the Hessian
matrix has one or more negative eigenvalues.

V —The actor V is used to compute the gradient of f in
every iteration.

S—The actor S is used to compute the search direction
for the next iteration. It finds the solution by solving a linear
system of equations.

U—The actor U is used to compute the updated values of
x, f and g.

T—The actor T is used to compare the difference between
the updated value and previous value with a given criterion,
to see if the system needs to go to the next iteration or
terminate in this iteration.

Since the algorithm is decomposed into actors based
on functionality, the code size and complexity generally
varies across the actors. This is typical of dataflow-based
program representations. Some of the more complex actors,
most notably U , may represent hierarchical actors whose
internal functionalities are described by additional (“nested”)
dataflow graphs. We elaborate on the internal representation
of actor U in the following section.

V. PROFILING AND IDENTIFICATION OF
BOTTLENECKS

Based on our dataflow-based modeling approach, along
with MATLAB implementations of the individual actors,
we have conducted MATLAB simulations to evaluate the
contribution of each actor to the overall execution time
required for the application. In our analysis and use of
execution time information, we have ignored certain “fine-
grained” actors that have very low computational cost. For
example, we have ignored actor I , which is used only to
initialize parameters. We have also ignored the execution
time contributions of actors P , V and T , which involve
simple addition and equality-testing operations.

In our MATLAB simulations, the matrix Q was generated
based on the condition number (ncond) parameter, and

2345

TABLE I
ACTOR EXECUTION TIMES (SEC) IN NEWTON-KKT.

ncond 0 3 6
statistics mean variance mean variance mean variance

H 0.012 4e-5 0.011 5e-5 0.012 4e-5
S 0.009 6e-5 0.006 5e-5 0.026 7e-5
U 0.005 5e-5 0.005 5e-5 0.010 5e-5
V 0.000 0.000 0.000 0.000 0.000 0.000

the number of negative eigenvalues (ngeig). We fixed the
parameter ngeig to be 5, and chose ncond from the set
{0, 3, 6, 9, 12}. Table I shows the execution times of different
actors for different values of ncond and otherwise randomly
chosen Q. These values were determined by implementing
each actor in MATLAB (version 7.04), executing the code
for 10 random choices of Q, and recording the mean and
variance of the time required to complete the computations.

It is easily seen from Table I that actors H , S, and U
impose a relatively high computational load.

In the next section, we describe how our dataflow-based
model together with its profiled execution time informa-
tion can be used to strategically dedicate parallel hardware
resources and accelerate the computation of performance-
critical components in the overall design.

VI. MULTI-VERSION PARALLELISM

Two important forms of parallelism that are exposed effec-
tively by dataflow graphs are functional parallelism and data
parallelism. Functional parallelism refers to the simultaneous
execution of distinct actors on separate hardware resources,
whereas data parallelism involves simultaneously executing
the same actor on separate resources.

A hybrid form of parallelism, which we call multi-version
parallelism, can be very useful when hardware resources
are relatively abundant and constraints on performance are
relatively stringent. We view multi-version parallelism as a
hybrid form because it relates to aspects of both functional
and data parallelism. As an example of multi-version par-
allelism, consider the search direction calculation actor in
the NEWTON-KKT example of Section IV. Two different
algorithms are given in [18] for determining the search
direction. The first, which we denote by actor S1, is an
augmented system. In some applications, a normal system,
also given in [18] converges faster. We denote it by actor S2.

The time required to complete an execution of S1 or
S2 is in general data-dependent, and the relative speeds of
corresponding executions (i.e., executions that have the same
“j” index) are also data-dependent. In general, for some
values j ∈ J1, each jth execution of S1 will complete
before the jth execution of S2, and for other values j ∈ J2

(J1∩J2 = ∅), the jth executions of S2 will complete sooner.
A multi-version implementation of the search direction

calculation based on alternative implementations S1 and S2

therefore involves executing them both in parallel (simulta-
neously on separate resources), and taking the result of the Si

that finishes first. As soon as one of the “versions” completes,
its result is taken as the result of the corresponding execution
of the search direction calculation, and the current execution
of the other version is terminated. Such a multi-version
implementation is useful whenever there can be significant
variation between which of the versions completes first,
and the available hardware resources accommodate parallel
execution of the different versions.

If one replaces an actor X with actors x1, x2, . . . , xn

that represent multiple versions of X , then with respect to
the new (transformed) dataflow graph, parallelism among
x1, x2, . . . , xn can be viewed as functional parallelism.
Multi-version implementation is also related to data paral-
lelism since the parallel executions of x1, x2, . . . , xn operate
on one or more common data streams in the original dataflow
graph (the data streams associated with the input edges
of X). Thus, in some sense, we can view multi-version
parallelism as a hybrid form of parallelism that involves
aspects of both functional and data parallelism.

VII. CASE STUDY: NEWTON-KKT

Through our execution time analysis on our model of
Newton-KKT, we found, as described in Section V, that the
major computational bottlenecks are the actors H , S, and U .

A. Multi-version implementation of H

To alleviate the bottleneck due to H (Hessian calculation),
we apply a multi-version implementation of H . Two different
methods for adjusting the Hessian to be positive definite
are mentioned in [18]. The first, H1, is more reliable while
the second, H2, is usually faster. The new dataflow graph
that results from applying the multi-version transformation
to H and S is illustrated in Fig. 2. Here, H1 and H2

represent the computation-every-iteration and vector-based-
computation methods, respectively.

Actor R in Figure 2 represents a special actor, which
we call a multi-version output selector (MVOS), for multi-
version implementation. R is an RCDF actor that samples its
input edges in some pre-defined order. As soon as it finds an
input edge that contains a token, it reads the token and copies
it to its output. The actor then samples the remaining inputs
and discards any tokens that it finds on those inputs — this
happens in the event that different versions of the associated
multi-version actor have produced their outputs at relatively
closely-spaced points in time. After any such “redundant”
inputs have been discarded, an MVOS actor sends a single
token to each of the separate “version” actors (H1 and H2 in
this example) to enable the next invocations of these actors.
The use of such enabling tokens ensures that at most one
execution of each version actor is allowed to execute at
any given time (i.e., version-level, data-parallel operation is
prevented). Use of these enabling tokens can be “optimized
away” if other details in the implementation preclude data

2346

parallel operation — for example, if each version actor is
mapped to a single hardware resource that is capable of
performing only one version execution at any given time.

The MVOS can also optionally send an asynchronous reset
signal to each version actor. These signals are asynchronous
in the sense that they are not synchronized with dataflow
firings (executions) of the actors that they are controlling.
Such reset signals are useful, for example, to save execution
time and power consumption associated with version exe-
cutions that are ignored because another version has “won
the race” already for the current execution. Such a signal
can be implemented through a software interrupt or through
asynchronous hardware reset logic, depending on the type
of implementation platform. The asynchronous reset signals
generated by the MVOS actor R are represented by dashed
lines in Figure 2. The main drawback associated with using
these reset signals is that they deviate from pure dataflow
semantics, and this may complicate certain forms of analysis
of the overall specification. Studying ways to systematically
integrate such asynchronous reset signals into DSP-oriented
dataflow graph analysis is a useful direction for further study.

The self loop edge of R (the edge whose source and sink
are both R) represents the state variable used by R that
determines whether 1) the actor is presently monitoring its
input edges to determine which version has won the race
for the current execution, or 2) the actor is in a state of
discarding input tokens because the race is over. The D next
to this edge represents a unit delay. Such delays represent
initial tokens on edges.

B. Handling failed searches

Multi-version implementation is especially attractive for
scenarios in which complex searches must be carried out.
In practice, such search techniques can sometimes fail to
find solutions within the allowable period of time that can
elapse before a response must be produced by the system.
In such cases, if the system keeps waiting, the whole system
may stop or “crash”, leading to disastrous or otherwise
undesirable consequences. This is important in MPC because
the optimization computation may fail to converge in the
available time.

To prevent such failures, timers can be incorporated into
MVOS actors so that whenever a timeout occurs, asyn-
chronous reset signals, and next-execution-enable tokens are
sent to all of the associated versions. In such cases, the
MVOS actor can respond with a copy of the value that it
produced by the previous execution of the corresponding set
of version actors. More elaborate approaches for handling
timeout problems in multi-version actors are worthy of
further investigation.

C. Transformation of U

To alleviate the bottleneck due to U , we examined the
MATLAB source code for U and replaced it with the
equivalent, hierarchical (“nested”) RCDF graph shown in

Figure 3. We performed this MATLAB-to-RCDF transfor-
mation manually, through our understanding of the algorithm
and relationships among its various parts. Because of the
high expressive power of MATLAB, automated conversion of
MATLAB to specialized DSP-oriented dataflow representa-
tions is in general undecidable (computationally infeasible),
although investigation of such conversion under restricted
cases is an interesting direction for further study.

Our refinement of actor U as a nested RCDF graph
exposes opportunities for exploiting functional parallelism
among actors Ut2, Ut3, and Ut4. Also, the Ut1 and Ut2 actors
are both well-suited to exploiting data parallelism because
they involve relatively simple operations that are applied
independently to successive items of data in their respective
input streams. In our experiments, we have exploited both the
functional parallelism and data parallelism described above
that is associated with our RCDF refinement of actor U .
These experiments are described in Section VII-D.

Fig. 2. RCDF model of Newton KKT algorithm after application of multi-
version transformations.

Fig. 3. RCDF model of Newton KKT algorithm after transformations.

D. Experimental Results

To demonstrate our parallel processing methods for New-
ton KKT, we have evaluated them with MATLAB simu-
lations. These simulations take into account the detailed
functionality of each actor, and our analysis of the simulation
results provides estimates for the performance improvements
gained through our integrated application of RCDF model-
ing, multi-version transformations, and hierarchical refine-
ment.

Our simulations are organized into four groups. In group
1, three different hardware designs are simulated.

1) case1(a): sequential system with actor S1;
2) case1(b): sequential system with actor S2;

2347

TABLE II
SIMULATION RESULTS FOR GROUP 1.

ncond Case1(a) Case1(b) Case2
statistics mean variance mean variance mean variance

0 0.309 0.031 0.054 0.000 0.055 0.000
3 0.758 0.013 1.452 0.005 0.758 0.013
6 0.839 0.015 0.530 0.002 0.525 0.003
9 0.769 0.014 0.330 0.003 0.330 0.002
12 1.173 0.018 0.334 0.012 0.334 0.010

TABLE III
SIMULATION RESULTS FOR GROUP 2.

nzeig Case3(a) Case3(b) Case4
statistics mean variance mean variance mean variance

function 1 1.778 0.007 2.031 0.010 1.714 0.007
function 2 1.875 0.003 2.040 0.005 1.859 0.003
function 3 1.869 002 1.967 0.006 1.809 0.003
function 4 2.834 0.001 2.888 0.012 2.803 0.012
function 5 3.422 0.001 3.433 0.016 3.260 0.011

3) case2: parallel, multi-version system using both S1 and
S2.

In Table II, different values (0, 3, 6, 9, 12) for the parameter
ncond determine different objective functions that are input
to the Newton KKT system. From the simulation results, the
parallel, multi-version architecture outperforms both of the
sequential architectures. This is because different versions
(S1 or S2) perform better for different problems.

The second group of simulation, group 2, is as follows:
1) case3(a): sequential system with actor H1;
2) case3(b): sequential system with actor H2;
3) case4: parallel, multi-version system using both H1

and H2.
In this case, ncond was held fixed, and ngeig was varied

because H only activates when ngeig > 0. The simulated
results share similar properties with the results of group 1
— the multi-version architecture again provides significant
performance improvement.

Next, in group 3, we examine the effect of combining
both of the instances of multi-version parallelism that we
are experimenting with.

1) case4: parallel system with multi-version implementa-
tion of H (H1 and H2), and single-version implemen-
tation of S (S1 only).

2) case5: parallel system with multi-version implementa-
tion of S (S1 and S2), and single-version implemen-
tation of H (H1 only).

3) case6: parallel system with multi-version implementa-
tions of both H and S.

The simulation results for group 3 are shown in Table IV.
In these results, it is demonstrated that the more multi-

TABLE IV
SIMULATION RESULTS FOR GROUP 3.

ncond Case4 Case5 Case6
statistics mean variance mean variance mean variance

0 2.611 0.011 0.164 0.000 0.128 0.001
3 2.175 0.004 0.541 0.002 0.532 0.000
6 3.275 0.012 0.715 0.005 0.713 0.002
9 2.784 0.008 0.766 0.003 0.756 0.006
12 4.466 0.010 1.117 0.003 1.084 0.008

TABLE V
SIMULATION RESULTS FOR GROUP 4.

ncond Case7 Case8
statistics mean variance mean variance

0 0.794 0.009 0.725 0.008
3 1.111 0.010 1.067 0.012
6 1.206 0.012 1.110 0.013
9 0.991 0.015 0.904 0.015

12 1.633 0.018 1.531 0.016

version parallelism we utilize, the better the system perfor-
mance.

The simulations in groups 1-3 involve functional paral-
lelism that is achieved through the multi-version transforma-
tion. Next, we examine the effect of data parallelism. We fix
the value of ngeig at 0 , and vary the ncond parameter. Under
this condition, all of the problems are convex and neither
H1 nor H2 is needed. We summarize the fourth group of
experiments as follows.

1) case7: sequential system with the original version of
U ;

2) case8: parallel system using the data parallel version
of U described in Section VII-C.

The simulation results for group 4 are shown in Table V.
These results show that data parallelism also gives a signif-
icant improvement in system performance.

The results in groups 1-4 help to understand the impact
of individual dataflow graph transformations in isolation.
In our next group of experiments, we show the impact of
applying all of the transformations together. The results in
Table VI compare the performance of a sequential imple-
mentation with that of a “fully-transformed implementation
— that is, and implementation that includes multi-version
implementations of both H and S , as well as a data parallel
implementation of U .

To further demonstrate the utility of these tools we took
an example due to Maciejowski et al. where MPC is used to
control a Cessna citation 500 aircraft [19] when it is cruising
at an altitude of 5000m and a speed of 128.2 m/sec. They use
a linear fourth-order model of the aircraft. There is only one
input: elevator angle. There are three outputs: pitch angle,
altitude and altitude rate.

The elevator angle is limited to ±15o, and the elevator

2348

TABLE VI
SIMULATION RESULTS FOR GROUP 5.

ncond Case1(a) Case9 improve
statistics mean variance mean variance percentage

0 2.735 0.008 0.161 0.000 94.1%
3 2.310 0.012 0.517 0.001 77.6%
6 3.040 0.007 0.636 0.000 79.1%
9 2.900 0.007 0.816 0.005 81.6%
12 4.363 0.016 1.061 0.002 75.7%

TABLE VII
AVERAGE COMPUTING TIME IN SECONDS FOR AIRCRAFT EXAMPLE

Ts(sec) original PM+DPV improve
0.5 0.0859375 0.0281250 67.2%

slew rate is limited to ±30o/sec. These are limits imposed by
the equipment design, and cannot be exceeded. For passenger
comfort the pitch angle is limited to ±20o.

The performance measure is f(z) = 1
2zT Qz + cT z. An

MPC controller was designed by Maciejowski et al. with 0.5s
sampling interval, prediction horizon Np = 10, and control
horizon Nu = 3. The system must compute the solution to
the Quadratic Programming obtained by time discretization
of this continuous-time optimal control problem at every
sample time and within the sampling interval.

We simulated implementations of the Maciejowski et al.
MPC using the Newton-KKT algorithm described in Section
VII. Table VII shows the average time required per time step
for the computations to finish. Note that the original scheme
in the table refers to the Newton-KKT, not the Maciejowski
et al. algorithm. Clearly, we have been able to shorten the
time required for the computations substantially. The extra
computing time created could be used to improve the MPC
controller in a variety of ways.

VIII. CONCLUSIONS

In this paper, we have proposed an abstract model for
the control algorithms used in MPC, and have analyzed the
model for performance bottlenecks and, in examples, pos-
sible improvements. We have introduced different forms of
parallelism into the algorithm, and demonstrated the resulting
improvements in performance. Our approach to parallel
MPC implementation can also increase system reliability in
the following sense. The calculation does not necessarily
terminate with an optimal control. It is known that MPC will
be stable provided the control obtained is, loosely speaking,
close enough to optimal. Parallelism increases the likelihood
that this is so.

Notice that the tools described in the paper are largely
implementation independent. The methodologies for exploit-
ing functional, multi-version, and data parallelism described
in the paper have broad, and so far only partially exploited
applicability to MPC and other control system computations.

REFERENCES

[1] Y. Wang and S. Boyd, “Fast model predictive control using online
optimization,” in Proceedings of the IFAC World Congress, July 2008,
pp. 6974–6979.

[2] L. G. Bleris, J. Garcia, M. G. Arnold, and M. V. Kothare, “Towards
embedded model predictive control for system-on-a-chip applications,”
Journal of Process Control, vol. 16, no. 3, March 2006.

[3] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive
heuristic control: application to industrial processes,” Automatica,
vol. 14, no. 2, pp. 413–428, 1978.

[4] C. R. Cutler and B. Ramaker, “Dynamic matrix control—a computer
control algorithm,” in Proceedings of the Joint Automatic Control
Conference, 1980.

[5] E. F. Camacho and C. Bordons, Model predictive control in the process
industry. Springer, 1995.

[6] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, January 2002.

[7] H. Chung, E. Polak, and S. Sastry, “An accelerator for packages
solving discrete-time optimal control problems,” in Proceedings of the
IFAC World Congress, July 2008, pp. 14 295–14 300.

[8] K. V. Ling, S. P. Yue, and J. M. Maciejowski, “An FPGA implemen-
tation of model predictive control,” in Proceedings of the American
Control Conference, June 2006.

[9] L. G. Bleris, P. D. Vouzis, M. G. Arnold, and M. V. Kothare, “A
co-processor FPGA platform for the implementation of real-time
model predictive control,” in Proceedings of the American Control
Conference, June 2006.

[10] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queuing,” SIAM Journal of
Applied Math, vol. 14, no. 6, November 1966.

[11] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proceedings of the IFIP Congress, 1974.

[12] J. B. Dennis, “First version of a data flow procedure language,” Lab-
oratory for Computer Science, Massachusetts Institute of Technology,
Tech. Rep., May 1975.

[13] E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, September 1987.

[14] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-
static dataflow,” IEEE Transactions on Signal Processing, vol. 44,
no. 2, pp. 397–408, February 1996.

[15] B. Kienhuis and E. F. Deprettere, “Modeling stream-based applications
using the SBF model of computation,” in Proceedings of the IEEE
Workshop on Signal Processing Systems, September 2001, pp. 385–
394.

[16] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya,
“Functional DIF for rapid prototyping,” in Proceedings of the Interna-
tional Symposium on Rapid System Prototyping, Monterey, California,
June 2008, pp. 17–23.

[17] J. Eker and J. W. Janneck, “CAL language report, language version 1.0
— document edition 1,” Electronics Research Laboratory, University
of California at Berkeley, Tech. Rep. UCB/ERL M03/48, December
2003.

[18] P. A. Absil and A. L. Tits, “Newton-kkt interior-point methods for
indefinite quadratic programming,” Computational Optimization and
Applications, vol. 36, no. 1, pp. 5–41, January 2007.

[19] J. M. Maciejowski, Predictive Control with Constraints. Prentice
Hall, 2002.

2349

