
Pose Control of Robot Manipulators Using Different Orientation

Representations: A Comparative Review

Ricardo Campa and Hussein de la Torre

Abstract—The pose of a rigid–body in 3-D space is
described by a set of six independent variables, being three
for position and three for orientation. In pose control tasks
it is useful to define a pose error representing the deviation
between the desired and actual pose of the body. Nevertheless,
due to the peculiar properties of the orientation manifold, the
orientation error is not well defined as a vector difference.
This paper deals with some of those properties, and rewiews
various definitions of the orientation error found in the
literature. Then, some simulations are carried out on a robotic
spherical wrist in order to compare the performance of each
approach in a simple orientation control task.

I. INTRODUCTION

The term pose is employed in Mechanics to represent

both the position and orientation of a body. It is well–

known that the number of degrees of freedom required

to define the pose of an object in a three-dimensional

space is six: three for position and three for orientation.

Chasles’ theorem [1] states that the position and ori-

entation parts of the pose can be treated independently.

Position is well described by a vector p ∈ IR3, usually

in Cartesian coordinates. In the case of orientation,

however, there is not a generalized method to describe

it, and this is mainly due to the fact that the orientation

manifold is not a vector space, but a Lie group.

Minimal representations of orientation are defined

by three parameters, e.g., Euler angles. But in spite

of their popularity, Euler angles suffer the drawbacks

of representation singularities and inconsistency with

the task geometry [2]. There are other nonminimal

parameterizations of orientation which use a set of 3+ k

parameters, related by k holonomic constraints, in order

to keep the required three degrees of freedom. Common

examples of these are the rotation matrices, the angle-

axis pair, and the Euler parameters.

The pose control problem consists on making the

actual pose of a body reach the desired (possibly time–

varying) pose. This problem has become more relevant

in the recent years due to: (a) the use of new electronic

devices for direct sensing of position/orientation signals;

(b) the application of mathematical tools —such as

unit quaternions and screws [3]—, which facilitate the

analysis of the pose configuration space [4].

In pose control tasks, it is common to define a pose

error which gives a measure of the deviation of the

Work supported by DGEST and CONACyT (grant 60230).
The authors are with the Postgraduate and Research Division of

the Instituto Tecnológico de la Laguna, Apdo. Postal 516, 27000,
Torreón, Coah., Mexico. recampa@itlalaguna.edu.mx

body’s actual pose from the desired one. As position

belongs to a vector space, the position error is merely the

difference between the desired and actual position. But

the definition of the orientation error is not so simple,

and depends on the parameterization of orientation used.

Applications of pose modeling and control are mainly

found in Robotics, where the desired motion of a moving

body —such as a mobile vehicle or a manipulator’s end–

effector— is usually expressed in terms of its relative

pose with respect to a fixed frame.

The main concern of this paper is to review the most

common parameterizations of orientation and the differ-

ent definitions of the orientation error. Then, in order to

make a comparison among these, some simulations are

carried out using a prototypical robotic spherical wrist

and a simple orientation control task.

Throughout this paper bold letters indicate column

vectors. The inner product of a, b ∈ IRn is given by

aT b = bT a ∈ IR, where aT represents the transpose of a.

The Euclidean norm of a is thus defined as ‖a‖ =
√

aT a.

II. THE POSE MANIFOLD OF A RIGID BODY

Every possible location of an object in space is known

as a configuration. According to this, Samson et al [4]

define the configuration space of a mechanical system as

the set of all possible configurations of such a system.

As an example, a set of n free particles in a 3-

dimensional space has a configuration space isomorphic

to IR3n; if those particles are restricted by k holonomic

constraints, then the configuration space would be an

r-dimensional manifold, Mr ⊂ IR3n, where r = 3n − k.

In general, given a manifold Mr and a point z ∈ Mr, z

can be described either by using a minimal set of r local

coordinates or a non-minimal set of r + k parameters

related by k constraints [5]. This is what happens when

locating a point on the surface of a sphere —which is

isomorphic to S2 ⊂ IR3—; locally, any point on the sphere

can be located using only two coordinates, however, for

an observer which is out of the sphere, three parameters

(e.g. Cartesian coordinates) are required.

Now let us consider the case of a rigid–body —i.e. an

object in which any pair of particles in it is constrained

to keep a constant distance—. It can be shown [1] that

a rigid–body has a pose configuration space (manifold)

of dimension 6. Let this configuration space be

P ≡ IR3 × M3 ⊆ IR3+m (1)

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB08.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2855

where IR3 corresponds to the position part and M3 ⊆ IRm

to the orientation part of the pose; m ≥ 3 is the number

of parameters used to describe the orientation.

In order to specify the pose of a rigid–body let us define

an inertial coordinate frame Σo fixed in space. Also, we

define a frame Σb which is bound to the rigid–body —i.e.

this frame moves together with the body—.

Let p ∈ IR3 be the position vector describing the

relative position of the origin of Σb with respect to

Σo. Even if the orientation does not belong to a vector

space, it is convenient to define an “orientation vector”

φ ∈ M3 ⊆ IRm The pose of the body is then given by

x =

[
p

φ

]
∈ P . (2)

Among the different parameterizations of the orien-

tation manifold, the four most relevant in orientation

control applications are:

1) Euler angles: M3 ≡ IR3.

2) Rotation matrix: M3 ≡ SO(3) ⊂ IR3×3.

3) Angle–axis pair: M3 ≡ IR×S2 ⊂ IR4.

4) Euler parameters: M3 ≡ S3 ⊂ IR4.

These parameterizations are explained in the following

section. Of particular interest are cases 2 and 4, because

they happen to form Lie groups.

The special orthogonal group SO(3) ⊂ IR3×3 is defined

SO(3) = {R ∈ IR3×3 : RT R = I, det(R) = 1}, (3)

while the hypersphere of dimension three S3 ⊂ IR4 is

S3 = {x ∈ IR4 : ‖x‖ = 1}. (4)

III. PARAMETERIZATIONS OF ORIENTATION

A. Euler angles

Leonard Euler (1707–1783) first stablished and proved

that any two independent orthonormal coordinate frames

with a common origin can be related by a sequence of no

more than three rotations around the coordinate axes.

That means that if the secuence of axes to rotate is

known, we only need three Euler angles to completely

define the whole rotation. Even though it is not a

standard notation, here we denote the three Euler angles

as α, β and γ, which can grouped in a vector

φ(α, β, γ) =

α

β

γ

 ∈ IR3 ≡ M3 (5)

becoming a minimal parameterization of orientation.

Given α, β, γ, and the sequence of rotations, the

corresponding orientation is well defined, however, the

inverse problem is not. In fact, it is well–known that

every sequence of Euler angles has inherently singular

points [6], i.e., there is always a particular set of

orientations for which the selected set of Euler angles is

not uniquely defined. This is due to the fact that Euler

angles are local coordinates of the orientation manifold,

and they cannot “cover” the whole manifold.

In spite of this drawback, the use of Euler angles

for representing orientation is still very common, mainly

because of the simplicity of using a minimal vector such

as (5). In Robotics, defining the pose of a manipulator

by means of a vector x ∈ IR6 is the base of what is called

the operational space approach [7].

B. Rotation matrix

Rotation matrices are perhaps the most extended

method for describing orientation, mainly due to the

convenience of matrix algebra operations. Let us consider

again the fixed Σo and moving Σb coordinate frames. As

only orientation is of concern, let us assume that the

origins of both frames coincide. The rotation matrix of

Σb with respect to Σo is named R ∈ SO(3).

Now let ri be the i-th column of matrix R. Bach

and Paielli [8] proposed an interesting representation

of rotation matrices, in which the three columns of a

rotation matrix are stacked in a column vector, i.e.

φ(R) =

r1

r2

r3

∈ M3⊂ IR9. (6)

Vector φ(R) is more adecuate for control applications,

since it allows to handle the whole pose manifold P as

a vector (see equation (2)).

C. Angle–axis pair

Euler also showed that the general displacement of

a rigid–body with a fixed point is a rotation around

some axis [3]. This is known as the Euler’s rotation

theorem, and implies that an arbitrary rotation between

two coordinate frames is equivalent to a single rotation

around an axis. Thus, to completely define a rotation

(or relative orientation between two frames) we need an

angle θ ∈ IR and a unit vector u ∈ S2 ⊂ IR3 in the

direction of the rotation axis.

Hence, the so–called angle–axis pair uses four parame-

ters and a unit norm constraint (‖u‖ = 1) to define a

rotation. Expressed as a vector

φ(θ, u) =

[
θ

u

]
∈ M3 ≡ IR × S2 ⊂ IR4. (7)

Given the angle θ and the rotation axis u, the

corresponding orientation is well defined, and can be

expressed as a rotation matrix R(θ, u) given by [3]:

R(θ, u) = cos(θ)I + sin(θ)S(u) + [1 − cos(θ)]uuT (8)

where, for a vector v = [v1 v2 v3]
T ∈ IR3, the matrix

operator S(v) is given by

S(v) =

0 −v3 v2

v3 0 −v1

−v2 v1 0

 ∈ so(3); (9)

so(3) is the space of skew–symmetric 3 × 3 matrices.

2856

Given two vectors v, w ∈ IR3, the following useful

properties of the skew–symmetric operator stand:

S(−v) = −S(v), (10)

S(v)w = −S(w)v, (11)

S(v)S(v) = vvT − vT vI. (12)

From (8), and considering (10), it should be noticed

that R(−θ,−u) = R(θ, u), so that, for a given orienta-

tion, represented by R, the angle–axis pair is not unique,

but double, whenever θ 6= 2nπ. In fact, the angle–axis

pair is what is called a double cover of the rotation group

SO(3) [5]. The inverse mapping SO(3) → IR × S2 is not

well defined when θ = 2nπ. In such a case R = I (both

frames coincide), and u can be chosen arbitrarily.

D. Euler parameters

Another way of describing orientation is by means of

the so–called Euler parameters, denoted here as η ∈ IR

and ε ∈ IR3. Those parameters satisfy a unit norm

condition given by

η2 + εT ε = 1, (13)

so that they can be seen as unit quaternions which belong

to the unit hypersphere S3. Thus, the orientation vector

φ using Euler parameters is given by

φ(η, ε) =

[
η

ε

]
∈ M3 ≡ S3 ⊂ IR4. (14)

Euler parameters are closely related to the angle–axis

pair, and can be computed directly from them using

η = cos

(
θ

2

)
, ε = sin

(
θ

2

)
u. (15)

For a given η and ε the corresponding orientation is

defined by means of a rotation matrix as follows [10]:

R(η, ε) = (η2 − εT ε)I + 2ηS(ε) + 2εεT ,

with the skew–symmetric operator S(ε) defined as in

(9). Note that R(η, ε) = R(−η,−ε), meaning that S3

is also a double cover of SO(3). But, unlike the angle–

axis pair, Euler parameters truly give a global (though

double) parameterization of orientation.

A more detailed description of Euler parameters and

their applications to Robotics can be found in [9].

IV. LINEAR AND ANGULAR VELOCITIES

In a pure translational motion only a linear velocity

vector is present, indicating the speed and direction of

the displacement. In a pure rotational motion there is an

angular velocity vector, whose magnitud and direction

indicate, respectively, the rate of change of the angular

displacement and the instantaneous axis of rotation.

The linear velocity of the body, denoted by v ∈ IR3,

is simply the time derivative of the position vector,

that is v = ṗ. However, the relation between the

angular velocity ω ∈ IR3 and the time derivative of the

orientation vector φ̇ is not so straight, because it depends

on the current orientation of the body. In general we have

ω = Jφ(φ)φ̇ (16)

where Jφ ∈ IR3×m is called the representation Jacobian,

which depends on the parameterization employed for

describing orientation. Those orientations φ in which Jφ

loses rank are known as representation singularities [10].

A. Jacobian for Euler angles, Jφ(α, β, γ)

Suppose that the orientation of a moving rigid–body

is described by means of the Euler angles α(t), β(t) and

γ(t), around some general frame unit axes wα, wβ, and

wγ , respectively, which depend of the convention (or

sequence of rotations) chosen for the Euler angles.

The angular velocity of the moving body can be

decomposed as follows [10]:

ω = α̇wα + β̇wβ + γ̇wγ = [wα wβ wγ]

α̇

β̇

γ̇

so that

Jφ(α, β, γ) = [wα wβ wγ] ∈ IR3×3. (17)

As an example, consider the representation Jacobian

for the common ZY Z-convention Euler angles, which is

Jφ(α, β, γ) =

0 −Sα SβCα

0 Cα SβSα

1 0 Cβ

 .

Notice that Jφ is singular whenever β = nπ. As

mentioned before, all of the Euler angles conventions

have representation singularities.

B. Jacobian for rotation matrix, Jφ(R)

If the orientation is described by means of R ∈ SO(3),

then the relation between ω and Ṙ is given by [10]:

Ṙ = S(ω)R (18)

where S(·) is the matrix operator defined in (9). Notice

that (18) can be rewritten as

ṙ1

ṙ2

ṙ3

 = S(ω)

r1

r2

r3

 = −

S(r1)

S(r2)

S(r3)

 ω (19)

where property (11) has been used. Also, notice that

[S(r1) S(r2) S(r3)]

S(r1)

S(r2)

S(r3)

 = −2I ∈ IR3×3

so it is possible to resolve ω from (19) to get

ω =
1

2
[S(r1) S(r2) S(r3)]

ṙ1

ṙ2

ṙ3

 .

Considering the orientation vector φ(R) defined in (6),

it is clear that the representation Jacobian (16) is

Jφ(R) =
1

2
[S(r1) S(r2) S(r3)] ∈ IR3×9. (20)

Note that Jφ(R) has no representation singularities.

2857

C. Jacobian for Euler parameters, Jφ(η, ε)

The derivative of Euler parameters is given by the

so–called quaternion propagation rule [10]:
[

η̇

ε̇

]
=

1

2
E(η, ε)ω, (21)

where ω is the angular velocity, and

E(η, ε) =

[
−εT

ηI − S(ε)

]
∈ IR4×3. (22)

By using property (12) and the unit norm constraint

(13) it is easy to prove that E(η, ε)T E(η, ε) = I , so that

ω can be resolved from (21) as

ω = 2E(η, ε)T

[
η̇

ε̇

]
(23)

indicating that the representation Jacobian is

Jφ(η, ε) = 2E(η, ε)T = 2 [−ε ηI + S(ε)] , (24)

which is full rank for all [η εT]
T ∈ S3.

D. Jacobian for angle–axis pair, Jφ(θ, u)

By taking the time derivative of the Euler parameters

given by (15), and comparing with (21), we get
[

θ̇

u̇

]
= F (θ, u)ω (25)

where F (θ, u) ∈ IR4×3 is given by

F (θ, u) =

[
uT

− 1

2 sin(θ

2)

[
sin

(
θ
2

)
I + cos

(
θ
2

)
S(u)

]
S(u)

]
.

By using the properties of the S(·) operator, and the

unit norm constraint of u it is possible to show that

Jφ(θ, u)F (θ, u) = I , where Jφ(θ, u) ∈ IR3×4 is

Jφ(θ, u) = [u sin(θ)
[
I − uuT

]
+ [1 − cos(θ)]S(u)]

(26)

so that, resolving ω from (25), we finally get

ω = Jφ(θ, u)

[
θ̇

u̇

]
.

Notice that Jφ(θ, u) is singular when θ = 2nπ.

V. POSE ERROR FOR CONTROL TASKS

Given the actual pose x = [p φ]
T ∈ P and the

desired pose xd = [pd φd]
T ∈ P of a rigid–body, the

pose control aim is

lim
t→∞

[
p

φ

]
=

[
pd

φd

]
.

In control applications it is common to define an

error variable, which indicates the deviation between the

variable to be controlled and its desired value. Then,

this error is used by the controller for measuring the

difference between those two values (a null error means

that the variable has reached its desired value).

The position error vector, p̃ is simply defined as p̃ =

pd−p. But in the case of orientation an inherent difficulty

arises, due to the fact that the orientation error should

be defined in terms of the algebra of the rotation group

and not of the vector algebra.

Let us consider the frames shown in Figure 1. As

always, Σo and Σb are the inertial and rigid–body frames.

The desired pose can be expressed as an additional frame

Σd. Vectors φ and φd represent the orientation of Σb and

Σd with respect to the inertial frame. The error vector,

however, can be defined in two ways, according to which

coordinate frame is used as reference.

Fig. 1. Coordinate frames for orientation control.

The relative orientation of Σd with respect to Σb, is

called bφ̃. This orientation error is generally used in pose

control applications for autonomous vehicles, where the

variables are generally referred to the rigid–body frame.

However, for the cases where it is required to have the

orientation error referred to the inertial frame, we use

vector φ̃. It can be shown [6] that bφ̃ and φ̃ actually

represent the same relative orientation, but referred to

different frames. In the rest of the paper we consider

only the case where the orientation error is given by φ̃.

In the following subsections we present some orienta-

tion error definitions for the four parameterizations of

orientation given in Section III.

A. Orientation error for Euler angles, φ̃(α̃, β̃, γ̃)

In the operational space approach [7] Euler angles are

used as coordinates of proper vectors in IR3. Thus, if

[α β γ]
T

and [αd βd γd]
T

represent the orienta-

tion of the actual and desired frames of the body, then

the orientation error vector φ̃(α̃, β̃, γ̃) is simply

φ̃(α̃, β̃, γ̃) =

α̃

β̃

γ̃

 =

αd − α

βd − β

γd − γ

 ∈ IR3. (27)

It should be kept in mind, however, that a minimal

representation such as that given by Euler angles, is valid

only in a local sense.

B. Orientation error for rotation matrix, φ̃(R̃)

Let us considere that R, Rd ∈ SO(3) describe the

actual and desired orientation of a rigid body with

respect of the inertial frame, as in Fig. 1, then the error

rotation matrix, expressing the relative orientation from

Σd to Σb, with respect to Σo, is given by [10]:

R̃ = RdR
T ∈ SO(3). (28)

2858

However, the use of R̃ in orientation control tasks

is very limited due to the difficulty of handling the

nine elements of the matrix. It is far better to use an

orientation error vector, in terms of R̃.

For the purpose of this paper we use the following

definition, first proposed by Luh et al [11]:

φ̃(R̃) =
1

2

r̃32 − r̃23

r̃13 − r̃31

r̃21 − r̃12

 ∈ IR3, (29)

where r̃ij is the ij–th element of R̃. Moreover, it is

possible to show [2] that (29) can be written as

φ̃(R̃) =
1

2
[S(rd1)

T S(rd2)
T S(rd3)

T]

r1

r2

r3

 (30)

where rdi and ri stand for the i–th column of Rd and

R, respectively. Notice that φ̃(R̃) = 0 whenever R = Rd.

C. Orientation error for Euler parameters, φ̃(η̃, ε̃)

Let [η εT]
T

and [ηd εT
d]

T
be the Euler parame-

ters of the actual and desired orientation of the rigid

body, respectively. It is possible to show that the Euler

parameters corresponding to R̃ in (28) are given by [10]
[

η̃

ε̃

]
=

[
ηηd + εT εd

ηεd − ηdε + S(ε)εd

]
∈ S3, (31)

When using Euler parameters, it is common to choose

the error vector φ̃(η̃, ε̃) as the vector part of the

quaternion, i.e.

φ̃(η̃, ε̃) = ε̃ (32)

Notice that φ̃ = 0 when the actual and desired orien-

tations coincide (i.e. when [η εT]
T

= ± [ηd εT
d]

T
).

D. Orientation error for angle–axis pair, φ̃(θ̃, ũ)

Let [θ uT]
T

and [θd uT
d]

T
be the angle–axis pairs

representing the actual and desired orientation of the

body, respectively, and [θ̃ ũ
T

]
T

be the corresponding

angle–axis pair for the orientation error, which satisfy

η̃ = cos
(

θ̃
2

)
, ε̃ = sin

(
θ̃
2

)
ũ. (33)

By equating (33) and (31) we are able to obtain:

θ̃ = 2 arccos
(
c
(

θ
2

)
c
(

θd

2

)
+ s

(
θ
2

)
s
(

θd

2

)
uT ud

)

ũ =
c
(

θ
2

)
s
(

θd

2

)
ud − c

(
θd

2

)
s
(

θ
2

)
u + s

(
θ
2

)
s
(

θd

2

)
S(u)ud

s
(

θ̃
2

)

where s(·), c(·) stand for sin(·), cos(·), respectively.

The orientation error vector φ̃(θ̃, ũ) ∈ IR3 can take

the general form φ̃(θ̃, ũ) = f(θ̃)ũ, where f(θ̃) is a scalar

continuous function such that f(0) = 0. Several cases

can be found in the literature. For the purpose of this

paper, let us take f(θ̃) = θ̃ so that

φ̃(θ̃, ũ) = θ̃ũ (34)

VI. APPLICATION TO ROBOTICS

In order to validate the previous analysis on the

definition of the orientation error in a pose control

application, we carried out some Matlab simulations. We

chose to use the model of a real 3–dof spherical wrist built

at the Robotics Lab of CICESE Research Center [12].

A. Robot modeling

Let q = [q1 q2 . . . qn]
T ∈ IRn be the vector of

joint variables of a robot manipulator with n degrees of

freedom, and x = [pT φ
T

]
T ∈ P be the pose of its

end–effector. The relation between the joint and pose

variables is given by the forward kinematics function:

x = h(q) (35)

By taking the time derivative of (35) we get

ẋ =

[
ṗ

φ̇

]
=

∂h(q)

∂q
q̇ = Ja(q)q̇

where q and q̇ are, respectively, the vectors of joint

and pose velocities; Ja(q) ∈ IR(3+m)×n is known as the

analytic Jacobian of the manipulator.

On the other hand, the relation between the joint

velocities, q̇ ∈ IRn and the linear and angular velocities

of the end–effector is given by [10]:
[

v

ω

]
= J(q)q̇

where J(q) is the so–called manipulator geometric Jaco-

bian. Notice that J(q) can be computed from

J(q) =

[
I 0

0 Jφ(φ)

]
Ja(q)

where Jφ(φ) is the representation Jacobian, which,

depending on the chosen parameterization, can be either

(17), (20), (26), or (24). It is worth noticing that J(q)

is independent of the orientation parameterization.

For the case of the spherical wrist used for the

simulations, as n = 3 and only orientation is of concern,

we have x = φ, which in the case of using Euler

parameters becomes [13]:

φ(η, ε) =

η(q)

ε1(q)

ε2(q)

ε3(q)

 =

cos
(

q2

2

)
cos

(
q1+q3

2

)

− sin
(

q2

2

)
sin

(
q1−q3

2

)

sin
(

q2

2

)
cos

(
q1−q3

2

)

cos
(

q2

2

)
sin

(
q1+q3

2

)

In dynamic control it is also required the dynamic

model of the manipulator, given by [14]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (36)

where M(q) ∈ IRn×n is the inertia matrix, C(q, q̇) ∈
IRn×n is the matrix of centrifugal and Coriolis terms, and

g(q) ∈ IRn is the vector of gravitational forces; τ ∈ IR3 is

the vector of external forces applied to the robot joints.

The entries of the wrist dynamics (36) are not included

for reasons of space, but the can be found in [12]:

2859

B. Pose control and simulation results

To test and compare the performance of a pose

controller using different descriptions of the orientation

error, we chose a simple orientation regulation task in

which the wrist is intended to reach a desired fixed

orientation, then we applied a pose controller based in

the inverse dynamics methodology [14].

Four simulations were carried out in Matlab, each with

one of the orientation error vector definitions presented

in Section V, that is, φ̃(α̃, β̃, γ̃), φ̃(R̃), φ̃(η̃, ε̃), φ̃(θ̃, ũ),

given by equations (27),(30), (32) and (34), respectively.

For the case when using Euler angles, we considered

the ZYZ convention, and employed the operational space

linearizing controller first proposed in [7], which in the

case of regulation, and considering only the orientation

part of the pose, is given by

τ =M(q)J−1
a (q)

[
Kpφ̃−Kvφ̇−J̇a(q)q̇

]
+C(q, q̇)q̇+g(q)

where Ja(q) is the analytic Jacobian of the manipulator,

and J̇a(q) its time derivative; Kp and Kv are positive

definite control gains.

For the other three cases, i.e. when φ̃(R̃), φ̃(η̃, ε̃),

and φ̃(θ̃, ũ), we used the well–know resolved acceleration

controller (RAC), first proposed by Luh et al [11]. RAC

controller is widely utilized in pose control task, and

there exist different versions of it, according to the

definition of the orientation error utilized (see e.g. [15]).

The RAC controller used in the simulations is given by

τ =M(q)J−1(q)
[
Kpφ̃−Kvω−J̇(q)q̇

]
+ C(q, q̇)q̇ + g(q)

where now the geometric jacobian is used, and φ̇ is

replaced by ω.

The initial configuration for the simulations, given in

terms of the joint variables, is q|t=0 = [0 π
2

π
2]

T
while

the desired orientation is given by qd = [π
2

π
4 0]

T
. To

measure the orientation error we use the Euclidean norm

of φ̃. The initial value of ‖φ̃‖ for each parameterization

is

‖φ̃(α̃, β̃, γ̃)‖
∣∣∣
t=0

=2.3562, ‖φ̃(R̃)‖
∣∣∣
t=0

=0.9892,

‖φ̃(θ̃, ũ)‖
∣∣∣
t=0

=1.7177, ‖φ̃(η̃, ε̃)‖
∣∣∣
t=0

=0.7571.

Gain matrices where chosen to be diagonal, with

suitable values so as to have a good performance in each

of the simulations. Figure 2 shows the time evolution

of ‖ε̃‖ for the four cases; notice that in all of them the

error measure converges to zero, meaning that the wrist

end–effector orientation reaches the desired orientation.

VII. CONCLUSION

This paper has presented a review of some topics

related with the different parameterizations of the ori-

entation manifold. Four cases were considered: a) the

Euler angles, b) the rotation matrix, c) the angle–axis

pair, and d) the Euler parameters. For each case, some

0.0 0.8 1.6
0.0

1.4

2.8

1

2

3

4

1. Euler angles

3. Rotation matrix

2. Angle-axis pair

4. Euler parameters

t [s]

|| ||φ
~

Fig. 2. Evolution of the orientation error measure.

formulas were given to obtain an orientation vector φ,

and the representation Jacobian, which relates φ̇ with

the body angular velocity. Also an orientation error

vector was defined for each parameterization. Finally,

some simulations were carried out on a prototypical

wrist, and showed the fulfillment of the pose control aim

using the different parameterizations of orientation.

References

[1] H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics,
Addison-Wesley, 3rd. ed., 2001.

[2] C. Natale, Interaction Control of Robot Manipulators: Six
degrees–of–freedom Tasks, Springer, 2003.

[3] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical
Introduction to Robotic Manipulation. CRC Press, 1994.

[4] C. Samson, M. Le Borgne, and B. Espiau. Robot Control. The
Task Function Approach, Clarendon Press, 1991.

[5] J. Gallier, Geometric Methods and Applications for Computer
Science and Engineering. Springer–Verlag, 2000.

[6] J. B. Kuipers, Quaternions and rotation sequences, Princeton
University Press, 1999.

[7] O. Khatib, “A unified approach for motion and force control
of robot manipulators: The operational space formulation”.
IEEE Journal of Robotics and Automation. Vol. 3, pp. 43-53,
1987.

[8] R. Bach, and R. Paielli, “Linearization of attitude–control
error dynamics”, IEEE Transactions on Automatic Control,
Vol. 38, pp. 1521–1525, 1993.

[9] R. Campa, and K. Camarillo, “Unit quaternions: A mathe-
matical tool for modeling, path planning and control of robot
manipulators”, in Robot manipulators, M. Ceccarelli (ed.),
In-Teh, pp. 21-48, 2008.

[10] L. Sciavicco, and B. Siciliano, Modeling and Control of Robot
Manipulators, Springer-Verlag, 2000.

[11] J. Y. S. Luh, M. W. Walker, and R. P. C. Paul, “Resolved-
acceleration control of mechanical manipulators”. IEEE
Transactions on Automatic Control. Vol. 25, pp. 486–474,
1980.

[12] R. Campa, R. Kelly, and V. Santibáñez, “Windows-based real-
time control of direct-drive mechanisms: platform description
and experiments’, Mechatronics, Vol 14, No. 9, pp. 1021–1036,
2004.

[13] R. Campa, K. Camarillo, and L. Arias, “Kinematic model-
ing and control of robot manipulators via unit quaternions:
application to a spherical wrist”, Proc. IEEE Conference on
Decision and Control, San Diego, CA, December 2006.

[14] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot
Modeling and Control, John Wiley & Sons, 2006.

[15] F. Caccavale, C. Natale, B. Siciliano, and L. Villani,
“Resolved–acceleration control of robot manipulators: A criti-
cal review with experiments”, Robotica, Vol. 16, pp. 565–573,
1998.

2860

