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Abstract— This paper presents symbolic analysis of time se-

ries data for estimation of multiple faults in permanent magnet

synchronous motors (PMSM ). The analysis is based on an

experimentally validated dynamic model, where the flux linkage

of the permanent magnet and friction in the motor bearings are

varied in the simulation model to represent different stages of

degradation. The fault magnitudes are estimated from the time

series of the instantaneous line current. The behavior patterns

of the PMSM are compactly generated as quasi-stationary

state probability histograms associated with the finite state

automata of its symbolic dynamic representation. The proposed

fault estimation method is suitable for real-time execution on a

limited-memory platforms, such as those used in sensor network

nodes.

Index Terms— Symbolic Dynamics; Parameter Estimation;

Electric Motors.

1. INTRODUCTION

The role of electrical and electronic systems is ever

expanding in all aspects of modern life. Particularly, for

extreme operating conditions, lightweight, reliable primary

power sources, auxiliary systems and backup storage have

turned out to be increasingly essential and critical compo-

nents. Several innovations in the design of modern direct

drive motor/generator, power conversion and storage tech-

nologies have been made in recent years. In addition, it is

now possible to replace several of the traditional mechanical,

hydraulic and pneumatic mechanisms with electrical config-

urations. As industrial applications become complex, their

functional reliability becomes increasingly dependent on

healthy operation of the electrical motor and the associated

electronics, which makes power system prognostics, diag-

nostics and health management an imperative technology.

The goal is to achieve increasingly reliable, safe and low-

cost power systems by exploiting the recent advances in

embedded sensing and digital information processing.
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The present paper reports an advancement to these data

processing techniques by estimating the health condition

of a motor, which is gradually deteriorating due to the

simultaneous presence of two different fault sources, from

readings obtained via a single sensor. Often evolution of

gradual deviations from the nominal behavior in systems

is an effect of simultaneous deterioration of two or more

components, each of which might be harmless in itself,

but in conjunction, may lead to cascaded faults because of

strong input-output and feedback interconnections between

the system components, and may eventually cause catas-

trophic failures and forced shutdown of the entire system.

In such a scenario, the problem of degradation monitoring

of the system reduces to simultaneous estimation of several

slowly-varying critical parameters.

The primary thrust of the proposed research is to de-

velop techniques for reliable real-time monitoring of mul-

tiple incipient faults in power system components such as

generators and electric motors. The proposed algorithm that

involves both signal preprocessing and symbolic dynamic

filtering has been applied to a simulation model of a surface

mounted Permanent Magnet Synchronous Motor (PMSM ).

This facility is particularly relevant for testing condition

monitoring algorithms, since PMSM are being increasingly

used in commercial and military applications. For example,

both commercial and fighter aircraft use PMSM as critical

components. An early indication about their performance

deterioration is important.

In this algorithm, statistical patterns of the evolving system

dynamics are identified from these symbol sequences through

construction of probabilistic finite-state automata (PFSA).

The state probability vectors that are derived from the

respective state transition probability matrices of PFSA serve

as behavioral patterns of the evolving dynamical system

under nominal and off-nominal conditions. A key feature of

the reported work is statistical fusion of evidence to obtain a

probabilistic estimate of simultaneously varying parameters.

The fundamentals of the symbolic time series analysis is

explained in the next section. The simulation model of the
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PMSM has been developed in Section 3 with the analysis of

failure modes and results following in Section 4. The paper

is concluded with recommendations for future research in

Section 5.

2. REVIEW OF SYMBOLIC DYNAMIC FILTERING AND

MULTIPLE-PARAMETER ESTIMATION

This section succinctly reviews the theory of symbolic

dynamic filtering (SDF) [10] and explains the underlying

concept of multiple parameter estimation [8] in the SDF

framework.

Extraction of statistical behavior patterns from time series

data is posed as a two-scale problem. The fast scale is related

to response time of the process dynamics. Over the span of

data acquisition, dynamic behavior of the system is assumed

to remain invariant, i.e., the process is quasi-stationary at the

fast scale. In other words, variations in the system parameters

are assumed to be negligible on the fast scale. The slow

scale is related to the time span over which deviations (e.g.,

parametric changes) may occur and exhibit non-stationary

dynamics.

A. Construction of Symbolic Dynamic Patterns

This subsection summarizes the construction of behavior

patterns for detection of deviation from nominal behavior in

the SDF setting.

1) Time series data acquisition on the fast scale from

sensors and/or analytical measurements (i.e., outputs

of a physics-based or an empirical model). Data sets

are collected at slow-scale epochs, hereafter called

epochs.

2) Generation of wavelet/Hilbert transform coefficients

with an appropriate choice of the wavelet basis and

scales. The wavelet and Hilbert transforms largely

alleviate the difficulties of phase-space partitioning and

are particularly effective with noisy data from high-

dimensional dynamical systems.

3) Maximum Entropy Partitioning of the transformed

space at a reference condition. This partitioning

scheme ensures that the regions rich in information

are partitioned finer and those with sparse information

are partitioned coarser. Maximum entropy is achieved

by a partition that produces a uniform probability of

all partitions (cells). Partition once obtained is kept

fixed for further calculations. Each segment of the

partitioning is assigned a particular symbol from the

symbol alphabet Σ. This step enables transformation

of time series data from the continuous domain to the

symbolic domain [5].

4) Construction of a probabilistic finite state automaton

(PFSA) at the reference condition. The structure of the

finite state machine is fixed for subsequent epochs until

a new reference is selected.

5) Computation of the reference pattern vector p0 whose

elements represent state occupation probabilities of

the PFSA at the reference condition. Such a pattern

vector is recursively computed as an approximation of

the natural invariant density of the dynamical system,

which is a fixed point of the local Perron-Frobenius

operator [1]. Thus, p0 ≡ [p0
1 p0

2 · · · p0
n], where n is

the number of states in the PFSA.

6) Time series data acquisition on the fast scale at sub-

sequent epochs, t1, t2, ...tk..., and their conversion to

respective symbolic sequences based on the reference

partitioning at epoch t0.

7) Generation of the pattern vectors, p1, p2, ..., pk... at

epochs, t1, t2, ...tk... from the respective symbolic se-

quences using the state machine constructed at epoch

t0. Thus, pk ≡ [pk
1 pk

2 · · · pk
n], where n is the number

of states in the PFSA. Note that the structure of the

PFSA at all epochs is identical while the pattern vectors

pk are possibly different at different epochs. k.

8) Computation of deviation measures: Evolving de-

viation measures M1,M2, ...,Mk, ... at epochs,

t1, t2, ..., tk, ..., are computed with respect to the nomi-

nal condition at t0, by selecting an appropriate distance

function d(•, •) (e.g., the standard Euclidean norm)

such that Mk , d(pk, p0).

B. Forward Problem/Training

For the forward problem, sets of time series data are

generated for each s ∈ S at epochs tk, k = 1, 2, · · · , |S|,
for which experimental runs are conducted to generate the

contour plot. A symbolic dynamic filter is constructed to

analyze each data sequence as outlined in Subsection 2-

A. For n being the number of automaton states, the n-

dimensional pattern vector pk (s) is generated for every

s ∈ S, where k = 1, 2 . . . , |S|. For a given s, let pk(s) ,

[pk
1 pk

2 · · · pk
n]T , where the superscript k represents an epoch

and the subscripts denotes the state number ranging from 1

to n. For each j = 1, 2, · · · , n, a random variable qj(s)

is constructed from the ensemble of k = 1, 2, · · · , |S| data

points to represent the uncertain occupation probability of

the jth state of the the automaton in the SDF setting.

q(s) ≡
[

q1(s) q2(s) . . . qn(s)
]

(1)

where qj(s) ∼ N
[

mj(s), σ
2
j (s)

]

, i.e., qj(s) is assumed to

be Gaussian with mean mj and variance σ2
j (s) as explained
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below from the perspectives of state machine construction in

the SDF setting.

The Symbolic dynamic filter models the underlying dy-

namical system as an irreducible Markov process, where the

state probability vector is the sum-normalized eigenvector of

the state transition matrix corresponding to the unique unity

eigenvalue. Hence, no element in the state probability vector

is either 0 or equal to 1. However, due to process noise,

sensor noise and small uncertainties in parameter vector s,

the random variable qj(s) fluctuates around its mean mj(s).

While analyzing the experimental data, the standard devia-

tion σj(s) of the random variables qj(s) was found to be very

small compared to its expected value mj(s), i.e., the ratio
σj(s)
mj(s)

≪ 1 ∀s ∈ S ∀j = 1, 2, · · · , n. Therefore, a parametric

or non-parametric two-sided unimodal distribution should be

adequate to model the random variable qj(s).

Remark 2.1: The random variables qj(s) must satisfy the

following two conditions:

• Positivity, i.e., qj(s) > 0 ∀s ∈ S ∀j = 1, 2, · · · , n,.

This is made possible by truncating the far end of the

Gaussian distribution tail on the left side. The goodness

of fit of the distribution as Gaussian still remains valid

at a very high significance level.

• Unity sum of the state probabilities, i.e.,
∑n

j=1 qj(s) =

1 ∀s ∈ S. This is achieved by sum-normalization.

Remark 2.2: The automaton states are analogous to en-

ergy states in statistical mechanics of ideal gases [6]. This

fact is used formulating the Inverse problem as explained

below.

C. Inverse Problem/Testing

Time series data are generated for identification of multi-

ple parameters s ∈ S. The data are analyzed using the same

symbolic dynamic filter constructed in the forward/training

problem (see Subsection 2-A), and the resulting random

vector is obtained as: qtest ≡
[

qtest
1 qtest

2 . . . qtest
n

]

. The

likelihood function P (s|qtest) is given by

P (s|q) =
P (qtest|s) P (s)

P (qtest)
(2)

=
P (qtest|s)P (s)

∑

s̃∈S
P (qtest|s̃)P (s̃)

(3)

In the absence of a priori information, an assumption is

made that all operating conditions are equally likely, i.e.,

P (s) =
1

|S|
∀s ∈ S (4)
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Fig. 1. Inverter-driven permanent magnet synchronous motor (PMSM)

system

The above assumption of unbiased probability leads to:

P (s|qtest) =
P (qtest|s)

∑

s̃∈S
P (qtest|s̃)

(5)

It is noted that accuracy of the above distribution would be

improved if the actual probabilistic risk mapping is known.

As stated in the previous section, each random variable

qj that is related to occupation probability of the state

j could be modeled by a parametric or non-parametric

two-sided unimodal distribution. Therefore, the choice of

Gaussian distribution for qj would facilitate estimation of the

statistical parameters and involve only second order statistics.

This assumption has been validated by using the χ2 and

Kolmogorov-Smirnov tests for goodness of fit [2] of each

qj for Gaussian distribution. In this context, each random

variable qj is postulated to be Gaussian with a mean value

mj and variance σ2
j .

The parameters of the conditional probability distribution

P
(

qtest
j |s

)

are evaluated from the mean and variance of the

state occupation probability at s and the resulting Gaussian

distribution is obtained as

P
(

qtest
j |s

)

=
1

√

2πσ2
j (s)

exp
(−(qtest

j − mj(s))
2

2σ2
j (s)

)

(6)

Furthermore, it has been observed from experimental data

that fluctuations of qj are uncorrelated with those of qk for

all j 6= k. Therefore, the jointly Gaussian distribution of all

qj’s can be reduced to the product of individual Gaussian

distributions of the random variables.

The assumption of statistical independence of fluctuations

of the (n−1) elements of the random vector qtest for a given
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parameter pair s permits the joint probability distribution

in Eq. (5) to be converted into a product of individual

distributions.

P (s|qtest) =

∏

j=1,2,...,n−1 P
(

qtest
j |s

)

∑

s̃∈S

∏

j=1,2,...n−1 P
(

qtest
j |s̃

) (7)

A most likely estimate of s is obtained from the proba-

bilistic map in Eq. (7).

3. DESCRIPTION OF THE SIMULATION EXPERIMENT

This section describes the simulation model that is a

representation of an inverter-driven permanent magnet syn-

chronous motor (PMSM) [7], as depicted in Fig. 1. The

simulation model of a generic PMSM , without a damper

winding, is similar to that of a wound-rotor synchronous

machine under the following simplifying assumptions:

• Negligible magnetic field saturation;

• Negligible eddy current loss and hysteresis loss;

• Negligible field current dynamics;

• Sinusoidal induced electromotive force (EMF);

In rotor reference frame, the governing equations of the

stator voltage are given as:

vq = Riq +
dλq

dt
+ ωsλd (8)

vd = Rid +
dλd

dt
− ωsλq (9)

where the subscripts q and d have their usual significance

of quadrature and direct axes in the equivalent 2-phase

representation; and

λq = Lqiq and λd = Ldid + λaf (10)

with v, i, and L being the corresponding axis voltages, stator

currents and inductances; R and ωs are the stator resistance

and inverter frequency, respectively, while λaf is the flux

linkage of the rotor magnets with the stator.

The generated electromagnetic torque is expressed as:

Te = 1.5P [λaf iq + (Ld − Lq)idiq] (11)

and the equation of motor dynamics is given by:

Te = TL + Bωr + J
dωr

dt
(12)

where P is the number of pole pairs, TL is the load torque,

B is the damping coefficient, ωr is the rotor speed, and J is

the moment of inertia. The rotor speed ωr = ωs/P .

In state-space setting, the governing equations of the

PMSM take the following form:

diq
dt

= (vq − Riq − ωsLdid − ωsλaf ) /Lq (13)

did
dt

= (vd − Rid + ωsLqiq) /Ld (14)

dωr

dt
= (Te − TL − Bωr) /J (15)

In the control scheme shown in Fig. 1, id is forced to be

zero. Consequently,

λd = λaf and Te = 1.5Pλaf iq (16)

In the above equation, the torque Te is proportional to the

quadrature axis current because the magnetic flux linkage

λaf is constant.

In the simulation test bed, the motor model is a three-phase

four-pole device rated at 1.1 kW , 220 V , 3000 rpm and is

fed by a pulse-width-modulated (PWM) inverter. The stator

resistance of the motor is Rs = 0.05 Ω; the quadrature-

axis and direct-axis inductances are: Lq = Ld = 6.35 ×
10−4H ; the nominal flux linkage λaf = 0.192 Wb; the rotor

inertia J = 0.011 kg m2; and the friction factor is B =

0.001889 kgm2 s.

A simple hysteresis current controller has been employed

for controlling the power circuit that drives the PMSM , as

seen in Fig. 1. Two control loops have been employed. The

inner loop regulates the motor’s stator currents, while the

outer loop uses a proportional-integral controller to regulate

the motor’s speed. In this control scheme, the line currents

ia, ib and ic are measured. The reference values are compared

with the actual values of the currents, and the error signal,

thus constructed is used for generating the gate turn on/off

commands. In the present scenario a hysteresis band of

0.25A on either side of the reference current i is employed.

4. FAILURE MODES AND RESULTS

Failure due to demagnetization of the permanent magnet

in both surface-mounted and buried-magnet PMSMs have

been widely studied in literature [12]. Demagnetization can

occur due to several reasons, notable among which are

demagnetization due to a strong opposing magnetic field,

and also due to high temperature.

A strong opposing magnetic flux can be created in the

event of a short circuit between one terminal of the machine

and the (normally) isolated neutral point of the machine,

short circuit between two or three terminals of the machine

and short circuit in one of the diodes or electronic valves

of the inverter, giving rise to a direct current (DC) in the

machine even in short circuit steady state.
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Fig. 2. Demagnetization property of Neodymium-Iron-Boron (Nd-Fe-

B) [12]

Risk of irreversible demagnetization is present if the

counter-acting flux lowers the flux density in the magnet

to a point (HD, BD) that is just above the so-called critical

knee of the magnets BH-curve, which has been illustrated in

Fig. 2. The common method to check the demagnetization of

the permanent magnets due to armature reaction is described

in [4]. The disadvantage of this method is the assumption that

the permanent magnet pole has uniform saturation. A more

accurate way to check the demagnetization is with the finite

element method.

Partial or complete demagnetization can also result from

high temperature of the magnets and the winding insulation.

The temperature increases the resistance of the winding wires

and the increased resistance affects the applied current to the

motor. At higher temperatures (∼ 1000C), an appreciable

deterioration in acceleration might be noticed, as the torque

generated by a reduced magnetic flux drops below its nom-

inal value.

Fatigue failure of bearings is quite common even under

normal operating conditions with balanced load. Factors

which affect smooth operation of the bearing are normal

internal operating stresses caused by vibration, inherent

eccentricity, and bearing currents due to solid state drives

[3], as well as external causes, such as abnormal mounting.

Ball bearing related defects manifest themselves as outer

bearing race defect, inner bearing race defect, ball defect,

and train defect. Specific information concerning the bearing

construction is indispensable for predicting the exact failure

characteristics. However it may be safely assumed, that all

such performance deteriorations principally manifest them-

selves as increase in the bearing friction.

A. Results on simulation model

In this paper, health-monitoring of permanent magnet

synchronous motors has been proposed by a nonlinear time

series analysis technique called symbolic dynamic filtering in

conjunction with Hilbert Transform Space Partitioning [11].

The motor described in Section 3 is simulated to undergo

a steady deterioration in terms of permanent magnet flux

linkage, due to either of the two reasons mentioned above.

This is guaranteed by decreasing the flux linkage λaf from its

nominal value of 0.192Wb to 0.007Wb in incremental steps.

At the same time the friction in the bearing is increased from

the nominal value of B = 0.5Nms to a value of B = 1Nms.

The line current signals ia, ib, ic, which in principle reflect

both these deteriorations are collected from the motor output

at each of these off-nominal partially-demagnetized state

of the rotor running on bearings with gradually increasing

friction.

This data is then Hilbert Transformed and converted

into discrete symbols. Maximum Entropy partitioning is

employed in the radial direction while the data is uniformly

partitioned in the angular direction. The discretization pro-

cedure has been briefly discussed in Section 2 while details

are available in previous publications [10] [9]. Here an

alphabet size of |Σ| = 15 and a depth of D = 1 has been

employed. This information on time series data was then

fed into the SDF to compute the components pj of pattern

vectors p at different values of the parameter pair λaf , B.

The pattern vector obtained by constructing the D-Markov

machine representation of the motor characterizes the health

condition of the motor in general. As the dynamics of the

PMSM system changed due to deterioration in flux linkage,

as well as friction coefficient, the statistics of the symbol

sequences were altered and so were the pattern vectors.

For the inverse problem, experiments were conducted at

several random predetermined values of the parameters that

were different from those in the forward problem/training of

SDF. The components pj of pattern vectors p at different

values of the parameter pair were computed from the data

sets that were generated with these assigned values of pa-

rameters. The parameter pair is crisply identified by a single,

sharp spike in the probability distribution plot. Table I shows

the results for mean and confidence intervals of the parameter

estimates for four different test runs that did not belong to the

set of training data. It is seen that the estimated mean values

of the flux linkage (λaf ) and friction coefficient (B) are very

close to their true values and are orders of magnitude greater

than the respective standard deviations σ̂λaf
and σ̂B .
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TABLE I

PREDICTED VALUES OF

(

λ̂af , B̂
)

AND CONFIDENCE INTERVALS FOR THE PMSM

Test

No.

Estimates

Parameter λaf Parameter B 95 % Confidence Interval 90 % Confidence Interval

λtest
af

λ̂af σ̂λaf
Btest B̂ σ̂B

(

λafmin
, λafmax

)

(Bmin, Bmax)
(

λafmin
, λafmax

)

(Bmin, Bmax)

1 0.075 0.075 1.6e − 7 0.60 0.60 1.6e − 8 (0.075, 0.075) (0.60, 0.60) (0.075, 0.075) (0.60, 0.60)

2 0.09 0.09 6.2e − 7 0.80 0.80 1.2e-8 (0.09, 0.09) (0.80, 0.80) (0.09, 0.09) (0.80, 0.80)

3 0.11 0.11 1.5e − 9 0.70 0.70 2.3e − 8 (0.11, 0.11) (0.70, 0.70) (0.11, 0.11) (0.70, 0.70)

4 0.10 0.10 3.8e − 9 0.90 0.90 7.0e − 9 (0.10, 0.10) (0.90, 0.90) (0.10, 0.10) (0.90, 0.90)

5. SUMMARY, CONCLUSIONS, AND FUTURE WORK

This paper addresses the issues of degradation monitoring

in a simulated permanent magnet synchronous motor. The

Degradation Monitoring algorithm is based on analysis of

time series data observed from the motor. A simulated model

of the PMSM has been monitored for accelerated failure

from two sources, namely degradation of the flux linkage of

the permanent magnets and a slow increase in the bearing

friction coefficient. The health condition estimated from

analysis of the current signal has been found to be consistent

with the actual degradation condition.

A. Pertinent Conclusions and Recommendations for future

research

The above discussion evinces that SDF is potentially a

useful tool for detecting various levels of multiple degra-

dation combinations in the performance of electric motors.

However, further theoretical, computational, and experimen-

tal research is necessary before the SDF-based anomaly

detection tool can be considered for incorporation into the

Instrumentation and Control system of commercial-scale

plants using these motors.

• For example, an important issue, not addressed in this

paper, is quality assurance and automated calibration

[18] of the sensor time series data, because a sensor

providing faulty signal at a particular time epoch, may

lead to an incorrect estimate of the damage measure of

interest.

• The inverse problem to the one discussed here is po-

tentially beneficial in practical scenarios. The inverse

problem involves prediction of the remaining life of the

machine by inspecting the health condition estimated at

a certain point of time in the slow time scale, and map-

ping that information to an already established bank of

health condition data to estimate the available remaining

useful service life of the motor under consideration.

This might have a desirable impact on extending the

service life of motors and prevent unscheduled shut-

downs.
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