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Abstract — In this paper, we extend the previous results on
trajectory linearization observer (TLO) for SISO to MIMO
nonlinear time-varying (NLTV) systems, and extend the high-
gain observer theory for linear time-invariant (LTI) observer
error dynamics to linear time-varying (LTV) observer error
dynamics, using the (time-varying) PD-eigenvalue assignment
method. In addition, the time-varying high gain TLO alleviates
the slowly varying restriction, and relaxes the restriction of
existing time-invariant nonlinear high gain observer to affine
nonlinear systems to allow for any linearizable NLTV system.
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I.   INTRODUCTION
Most nonlinear control design techniques are developed for
full state feedback, assuming that measurements of all states
are available. However, in practical control problems,
usually not all states are measured due to economical or
technical reasons. Thus, nonlinear observer design tech-
niques are needed to perform output feedback .[1, 2]

An effective approach to nonlinear observer design is to
reduce the observer error dynamics (OED) to linear
dynamics. There are essentially two classes of methods for
the reduction: (i) transforming the OED to a topologically
equivalent linear system via a diffeomorphism or homeo-
morphism, and (ii) approximating the NLTV OED in the
neighborhood of the null equilibrium by using the linear
term of its Taylor expansion.

The Class (i) approaches are typified ranging from the
pioneering work of Krener and Isidori [3] to the most recent
advancements by Xiao [4] and Kravaris . . [5] (see alsoet al
references therein). The linear OED are obtained either by a
homeomorphism, as typified by [4] or a diffeomorphism, as
typified by [5], whereby the OED is stabilized in the trans-
formed coordinate, and stability in the original coordinate is
ensured by the boundedness of the transformations. In
theory, this class of linearization is exact. In practice,
finding the transforms may necessitate approximations, and
the implementation entails output injection, which is subject
to sensor dynamics, precision and noise. These practical
artifacts introduce regular and singular perturbations into the
implemented design. While in principle this class of
methods are applicable to NLTV systems, the present results
are confined to time-invariant nonlinear systems.
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The Class (ii) methods are more classical, whereby linear
approximation of the OED is taken either along the (yet to
be estimated) state trajectory, as typified by
extended/linearized (EKF/LKF) Kalman filter type
techniques [ ], or at discrete points either along the state6, 7
trajectory or in the operating envelope, as typified by the
classical work of Baumann and W  J. Rugh [ ]. Note thatÞ 8
trajectory linearization results in LTV OED even if the
nonlinear plant is time-invariant. The premise of this class of
approach is that the observer errors are sufficiently small so
that the neglected nonlinearity terms can be treated as a
vanishing regular perturbation. Exponential stability of the
linearized OED is retained for the nonlinear system due to
the vanishing nature of the neglected nonlinearity.
Additional regular perturbations are introduced from the use
of alternative nominal trajectories for trajectory li-
nearization, since the nominal trajectory is yet to be es-
timated, or from discrete-point linearization.  Stabilization of
the LTV OED is achieved either by Kalman filter techni-
ques, where process and sensor noise models need to be
assumed even if the design is only for a deterministic
system, or by gain-scheduling method, which is subject to
the slowly varying assumption on the state trajectory and
NLTV plant parameters. Perhaps the single most desirable
feature of Class (ii) approach is its wide applicability to any
NLTV system defined by a differentiable vector field.

In order to accommodate the unavoidable regular and
singular perturbations, disturbances and sensor noise that
enter the observer dynamics,  regardless of which class of
design approach, the linearized OED should be designed for
exponential stability, albeit locally. The stabilized linearized
observer dynamics are almost invariably synthesized to LTI
dynamics using eigenvalue (pole) placement for Class (i)
methods and for gain-scheduling Class (ii) methods. The
stabilized OED for EKF/LKF type of methods are LTV in
nature, which ensures that the error covariance is minimized
along the (time-varying) trajectory and in the presence of
NLTV plant parameter variations. It is noted that, although
widely used in practice for decades, the optimality of
Kalman filter for linear systems and the principle of
certainty equivalence do not carry over to NLTV systems.
Therefore, these methods are more for stabilization than
optimality. However, the stability of EKF was not proven
until very recently (Krener [9], 2003) for uniformly
observable Class  systems.V#

Employing an observer for output feedback control,
introduces a singular perturbation into the full state feedback
control law design.  High-gain observer design techniques
[ 10, 11] have been introduced for LTI OED to reduce the2, 
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perturbation in order to recover the performance of full-state
feedback. High-gain observer can also reduce regular pertur-
bation to the observer dynamics due to plant modeling
errors. High-gain observers may cause a peaking phenome-
non, which can be dealt with using control saturation [12].

The trajectory linearization observer (TLO) method
presented in [13] is a Class (ii) technique for NLTV systems,
which had broad applicability. In this paper, we extend the
results for SISO TLO to MIMO NLTV systems, and[13] 
extend the high-gain observer theory for LTI OED to LTV
OED. Both extensions are nontrivial and rely heavily on the
unique (time-varying) PD-eigenvalue assignment stabiliza-
tion method [14]-[16] for the LTV OED. TLO can be
viewed as an extension of gain-scheduled observer that is
designed and exponentially stabilized along the state
trajectory, rather than at discrete operating points, thereby
alleviating the slowly varying restriction on state trajectory
and NLTV system parameters. Comparing to EKF/LKF type
of observers, the PD-eigenvalue assignment method
provides a more intuitive way that not only guarantees
exponential stability of the OED, but also allows time-
varying observer gain (bandwidth) to be employed for real-
time adaptation or tradeoff between steady-state observer er-
rors, peaking and robustness to modeling errors.

The PD-spectral theory, regular perturbation,[14]-[16] 
singular perturbation and  observernonlinear high-gain
theories are applied to analyze the stability and robustness of
the TLO with time-varying observer gains. The main result
shows that, using high-gain (high-bandwidth), the TLO
based output feedback recovers the state feedback
performance, even for time-varying observer gains
(bandwidth). Moreover, the time-varying high-gain TLO
relaxes the existing time-invariant nonlinear high gain
observer's restriction to affine nonlinear systems to allow
any linearizable  system. A MIMO high-gain TLONLTV
design example with hardware-in-loop simulation test for a
3 Degrees-of-Freedom (3DOF) differential thrust control
testbed named “Quanser UFO” is presented in [17]. A
simulation comparison study of the proposed TLO with EKF
for an unstable, nonminimum phase, stiff nonlinear
benchmark model is presented in [18].

The paper is structured as follows. In section II, trajectory
linearization control (TLC) and existing results of TLO are
briefly reviewed, and the TLO method is extended to MIMO
systems. In section III existing LTI high-gain observer
theory is extended for LTV OED. A summary of the paper is
presented in section IV.

II.  MIMO Trajectory Linearization Observer
Consider output tracking by a nonlinear time-varying

dynamic system
 , 1
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It is noted that the nonlinear tracking error dynamics and
its linearization are time-varying for time-varying nominal
trajectories, even if the nonlinear plant (1) is time-invariant.
This fact calls for intrinsically time-varying controller and
observer design methods, such as the TLC and TLO.

A.  Trajectory Linearization Control
As shown in Figure 1, state trajectory linearization con-

trol consists of two parts: a dynamic inverse I/O mapping of
the plant to compute the nominal control function  for

_
.Ð>Ñ

any given nominal output trajectory , and a tracking(Ð>Ñ

error stabilizing control law  to account for modeling˜ ˜ –
. 0 0Ð ß Ñ

simplifications and uncertainties, and disturbances.
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Figure 1   State feedback TLC Configuration
The nominal control  can be designed using a pseudo

_
.

nonlinear dynamic inversion technique . With the[19]
assumption that the tracking errors are small by performance
requirement, the tracking error dynamics can be linearized
along the nominal trajectory as
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which can be stabilized using a LTV control law
? œ OÐ>ÑB, with the assumption that the system is strongly
controllable [20]. The LTV gain  can be computedOÐ>Ñ
symbolically using the PD-eigenstructure assignment
approach .[ 1419, ]

B.  TLO Design procedure
The TLO design method is inspired by and based on the

TLC algorithm. The output tracking error TLC is shown in
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Fig. 2 , where the state error  is estimated from the input˜1 0Ð>Ñ
. (Ð>Ñ Ð>Ñ and the output error . The output error TLO differs˜
from the state TLO [13] in that the latter is derived in the
state coordinate, whereas the former is in the tracking error
coordinate. However, the observer gain obtained in both
configurations can be proven to be identical [18].

Given the nonlinear system (1), design a nonlinear
tracking error observer as
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are the estimated state error and output error vectors, respec-
tively, and is the observer gain to be designed usingO Ð>Ñ9

the trajectory linearization method for exponential stability.
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Figure 2 Output feedback TLC with tracking error observer
Step (a) Linearization along the nominal trajectory

Linearize (5) along the nominal trajectory  to obtain0̃Ð>Ñ
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Step (b) PD-eigenvalue assignment for MIMO LTV system
It is noted that the PD-eigenvalues are not the frozen-time

eigenvalues, the latter have been proven to be neither a
sufficient [21] nor a necessary [22] condition for stability.
The observer PD-eigenvalue assignment consists of three
steps: (i) transform the linearized OED into the LTV
observer canonical form, (ii) assign the desired PD-
eigenvalues using the synthesis formula given in ,[15][16]
and (iii) perform the inverse transformation to obtain the
observer gain matrix. The procedure for SISO system is
presented in [13]. In this paper, we extend the algorithm to
MIMO systems. The procedure is described in detail below.
(i) Observer canonical form transformation

Controller canonical form transformation for LTI MIMO
systems is presented in [23].Silverman [24] developed the
transformation to controller canonical form for SISO LTV
systems, which was extended to observer canonical form by
Bestle [25]. Wolovich [26] first developed controller
canonical form transformation for MIMO LTV systems, and
Seal [27] improved the procedure and notations. However,

1The integral feedback shown in Fig. 2 is not considered in this paper.

the transformation for LTV MIMO systems is still difficult
to follow. Inspired by [23]-[27], we use time-varying Lie
derivatives to reconstruct the algorithm and extend it to
MIMO observer canonical form based on the duality of con-
trollability and observability.

Consider the -th order LTV system,8
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Þ a b8
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and  is an  invertible upper-triangular matrixVÐ>Ñ 7 ‚7
with unity diagonal entries. Define the following operators
and interim variables that will be used in the sequel
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Then the time-varying coordinate transformation
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B œ X Ð>ÑDs "  to obtain the observer canonical form
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(ii) PD-eigenvalue assignment [15][16]
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subsystem of is given asẼD 
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The coupled terms between different subsystems will be
canceled by the observer gain, which yields the observer
gain under the canonical coordinate as
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(iii) Computing the observer gain
Taking the inverse canonical transformation of (10), the

observer gain is given by
O > œ X > O > ˆ9 D

"a b a b a b
Step (c) Implementation

A problem in implementation is that  is a functionO Ð>Ñ9

of , which is yet to be estimated. A solution that is0̃Ð>Ñ
similar to the one proposed in [13] is to use (  as aO !ß Ð>ÑÑ9 .

substitution for  to implement the observer. A˜O Ð Ð>Ñß Ð>ÑÑ9 0 .
theory [18] was derived in the same manner as the one in
[13] to prove that the stability of the overall system is
retained with the replacement.

III.   TIME-VARYING HIGH GAIN TLO
In the preceding section, the TLO is designed assuming no
modeling error. However, in practice, modeling errors are
unavoidable and can be nontrivial, which enter the OED as a
regular perturbation, and may degrade the performance or
even destabilize the overall system. In this section, a non-
linear time-varying bandwidth (TVB) observer is developed
as an effective means for handling modeling errors and
more. The proposed approach is inspired by the nonlinear
high-gain observer developed by Khalil in [2], in which
high-gain and control saturation are employed in output
feedback controller to effectively recover the performance
under state feedback controller. However, the Khalil high-

gain observer (HGO) suffers from the following two main
restrictions. First, it is only applicable to nonlinear time
invariant systems in the affine form such that feedback li-
nearization can be performed to obtain the time invariant
normal form. Moreover, the Khalil HGO is restricted to non-
linear systems with relative degree  and with all the mo-8
deling errors satisfying the corresponding matching condi-
tions. For systems with relative degree less than , applying8
feedback linearization renders the  internal states unob-8  <
servable. The second limitation of Khalil HGO is that it
allows only constant observer gain, while time-varying gain
is highly desirable in the nonlinear observer design. For ins-
tance, in coping with the peaking phenomenon in HGO,
control saturation is used, which is actually nothing but a
time-varying gain scheme. Thus, better performance may be
achieved by effectively varying the controller or observer
gain in some optimal way. The proposed TVB TLO design,
on the other hand, only requires linearizable model, which is
more general than the affine form. Furthermore, time-
varying eigenstructure assignment is enabled by virtue of the
PD-spectrum theory adopted in the TVB TLO design, which
allows the observer gain to vary in coping with the perfor-
mance and robustness tradeoffs. Some restrictions in Khalil
HGO are not relaxed in this paper, such as requirement of
relative degree  and matching condition, which will be left8
as open topics for future research that are very likely
solvable using the TLO approach.

A Motivation and SolutionÞ

Two technical difficulties arise when attempting to extend
the high-gain observer theory to the time-varying case: one
is how to scale the observer gains without jeopardizing the
stability of the time-varying system; the other is how to
relate the steady state error with the scaling factor in time-
varying systems. These two problems will be solved in the
following sections using the PD-spectral theory such that the
high gain theory is extended to the time-varying TLO.

Consider NLTV tracking error dynamics (3). We use a
two-step approach to design the output feedback error
regulating controller. First, a state feedback controller is
designed to exponentially stabilize the origin assuming all
state variables are measured. Then, a time-varying high-gain
observer is used to estimate  from the output . The stateB C
feedback control law is

. 0˜ ˜ (15)œ OÐ>Ñ
For convenience, we write the closed-loop system under
state feedback as
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The output feedback control law is implemented as
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where  is generated by the time-varying high-gain observer0̃s
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Linearize the observer dynamics along its nominal trajectory
0̃, and obtain the OED as
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and  is a vanishing perturbation consisting of lineariza-$@Ð † Ñ
tion error, vanishing part of the modeling error and imple-
mentation error, as discussed in [13] and  is a non-$8@Ð † Ñ
vanishing perturbation which accounts for the non-vanishing
part of the modeling error. Notice here, we assume that the
perturbations satisfy  the matching condition .2

Assumption 1  Assume ,  and˜ ˜ ˜$ 0 .@Ð ß Bß ß > Ð>Ñß Ð>ÑÑs  0 .

$ 0 .8@Ð ß Bß ß >Ñ >s˜ ˜ ˜  are Lipschitz in all its arguments except  over
the domain of interest, uniform in t and satisfy¼ ¼

¼ ¼ , ˜ ˜ ˜
˜ ˜ ˜

$ 0 .

$ 0 .

@ "

8@ #

Ð ß Bß ß > Ð>Ñß Ð>ÑÑ Ÿ P a >   !s  

Ð ß Bß ß >Ñ Ÿ Ps

0 .

where  and  are positive constants.P P ˆ" #

Equation ( ) can be transformed into LTV observer19
canonical form by a Lyapunov coordinate transformation
A œ X Ð>Ñ Bs˜ ˜ , yielding"

A œ ÐE Ð>Ñ  O Ð>ÑG Ð>ÑÑA  F Ð>Ñ
Þ
˜ ˜ ( )A 9 A AA

? 20
where ,  and  are obtained by equation (11), andE O GA Ao  A

? $ 0 . $ 0 .œ Ð ß X Ð>ÑAß ß > Ð>Ñß Ð>ÑÑ  Ð ß X Ð>ÑAß ß >Ñ
 ˆ ‰@ 8@" "

" "˜ ˜˜ ˜ ˜ ˜, 0 .

and  The observer gain  is obtainedF Ð>Ñ œ X F Ð>ÑA 9
"
" . O Ð>Ñ9A

as in (14). Only for high gain observer, the PD-spectrum is
chosen as , , whereE 3 3 %L L 5

:
5œ"3 5

3œ Ö Ð>Ñ œ Ð>ÑÎ × 3 œ "ßâß7

E 33 5
:
5œ"œ Ö Ð>Ñ× 3 œ "ßâß73 , , is the PD-spectrum chosen

for TLO introduced in the preceding section, hereafter called
the reference TLO, and  is a positive constant.!   "%

Next, we present a convenient and practical scheme to
scale the observer gains for time-varying systems such that
the stability of the systems is retained and the scaling factor
"
%  possesses some physical meanings.

In practical applications, it is convenient  to choose the3

PD-spectrum as . Thus,
_

E 3 3 =3 5 5
:
5œ"œ Ö Ð>Ñ œ Ð>Ñ× 3

E 3 3 =L L L5
:
5œ"3 5

3œ Ö Ð>Ñ œ † Ð>Ñ×  
_

where, The PD-modal matrix = = %LÐ>Ñ œ Ð>ÑÎ Þ Z:3Ð ÑE3  for
the reference TLO can be written as

Z Z Z:3Ð Ñ œ Ð Ñ Ð Ñs 
E3 : :3 3

= 3
_

21( )
where

Z


Ð Ñ:3 3
3 3 3

3 3 3

_
œ

" " â "
  â

ã ã ä ã
  â

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

" # :

: " : "
" #

: "
:

3

3 3 3
3

2The assumption of the matching condition weakens the strength and the
applicability of the proposed theory. While it is needed for the proof of the
theorem in the next section, it is not essential. This limitation is a
consequence of the method of proof inhered from the time-invariant HGO
theory [12]. Future work is needed to relax the assumption.

3When the PD-spectrum is chosen as the product of constant nominal
eigenvalues  and a time-varying bandwidth , the synthesis formula

_
3 =5 Ð>Ñ

becomes much simpler.

is the Vandermonde matrix associated with , andÖ ×3 3
:
3œ"
3

Zs Ð Ñ:3 = œ

" ! â !

! @ Ð>Ñ ä ãs

ã ã ä !

! @ Ð>Ñ â @ Ð>Ñs s

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

##

8# 88

where
@ Ð>Ñ œ @ Ð>Ñ  Ð>Ñ@ ß # Ÿ 4 Ÿ 3 Ÿ 8s s s

Þ
34 3"ß 4 3"ß 4"=

For example the Zs Ð Ñ:3 =  of a fourth order system is given as

Zs Ð Ñ:3 =
=

= =

= = = =

œ

" ! ! !
! Ð>Ñ ! !

! Ð>Ñ Ð>Ñ !
Þ

! Ð>Ñ $ Ð>Ñ Ð>Ñ Ð>Ñ
ÞÞ Þ

Ô ×Ö ÙÖ Ù
Õ Ø#

$

The PD-modal matrix Z:3Ð ÑEL3
 for high-gain TLO can be

written as
Z Z Z:3Ð Ñ œ Ð Ñ Ð Ñs 

EL : :3 3 3
= 3L

_
22( )

where

Zs Ð Ñ:3 =L
##

8# 88

œ

" ! â !

! @ Ð>Ñ ä ãs

ã ã ä !

! @ Ð>Ñ â @ Ð>Ñs s

Ô ×Ö ÙÖ ÙÖ ÙÖ Ù
Õ Ø

where , .@ Ð>Ñ œ @ Ð>Ñ  Ð>Ñ@ # Ÿ 4 Ÿ 3 Ÿ 8s s s
Þ

34 3"ß 4 L 3"ß 4"=

For example the Zs Ð Ñ:3 =L  of a 4th-order system is given as

Zs Ð Ñ:3 =
=

= =

= = = =

L

"

" "#

" " "$

œ

" ! ! !

! Ð>Ñ ! !

! Ð>Ñ Ð>Ñ !
Þ

! Ð>Ñ $ Ð>Ñ Ð>Ñ Ð>Ñ
ÞÞ Þ

Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø

%

% %

% % %

#

# $

 (23)

It is noted that both the TVB reference TLO dynamics
and the high gain scaling  allow the observer dynamics to%"

be time-scaled with a constant damping. Moreover, the
relationship (23) facilitates the extension of the HGO theory
to LTV observer dynamics.

B  Theorem and ProofÞ

In this subsection, we develop a theorem which shows that
the steady state error of the overall closed-loop system under
output feedback control caused by modeling error can be
made arbitrarily small by scaling up the time-varying
bandwidth of the observer dynamics.

The OED ( ) can be transformed into LTV observability19
canonical form by a Lyapunov coordinate transformation
D œ X Ð>ÑBs˜ ˜ , yielding#

D œ ÐE Ð>Ñ  O Ð>ÑG Ð>ÑÑD  F Ð>Ñ
Þ
˜ ˜D 9 D DD

?
where ,  and  are obtained by equation (11),E O GD Do  D
F Ð>Ñ œ X F Ð>Ñ XD 9 #

"
# . Details on how to construct  and the

conditions for existence is described in [18]. Assume
relative degree  for each of the  subsystems. Then: 73

F Ð>Ñ œ ! â ! "D "‚:
X

8‚7
diagš ›c d

3

Apply the Lyapunov coordinate transformation D œ X Ð># Ñ0̃
to the closed-loop system under state feedback, equation
(16), and obtain

D œ JÐX Ð>Ñ ß ß ß Ð>Ñß Ð>ÑÑ
Þ  

œ ÐX Ð>ÑDß ß ß Ð>Ñß Ð>ÑÑ
 

"

"

D >

L >

. 0 .

. 0 .

˜
˜(̃

(24)

Thus the state feedback law (15) is now
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.̃ (25)œ O DD
and, the closed-loop system under state feedback in the
transformed coordinate is

D œ J Ð ß ß ß Ð>Ñß Ð>ÑÑ
Þ  

œ ÐDß ß ß Ð>Ñß Ð>ÑÑ
 

D D O D >

L O D >
D

D D

0 .

0 .(̃

(26)

where  O œ O XD
"
# and  and  are obtained fromJ Ð Ñ L Ð ÑD D† †

J a b† † and  accordingly. Note that since system La b (16) is
exponentially stable and Lyapunov transformation preserves
the stability for the transformed system, system (26) is still
exponentially stable.

Also apply the Lyapunov transformation D œ X Ð>Ñs # 0̃ tos

the observer dynamics (18), and obtain

Ds s
Þ
œ J ÐDß Ð>Ñß Ð>Ñß Ð>Ñß >Ñ  O Ð † ÑÐ  Ñ

  s

s œ L ÐDß Ð>Ñß Ð>Ñß Ð>ÑÑs
 

D 9

D

. 0 .

. 0 .

˜ ˜ ˜
˜ ˜

27
L

( (

(

( )

Accordingly, the output feedback control law ( ) is now17
.̃ (28)œ O DsD

Note that .D̃ œ D  Ds
The following theorem extends time-invariant high-gain

theory in [2] (Theorem 14.6 in [12]) to time-varying case.
The theorem shows that the output feedback controller
recovers the performance of the state feedback controller for
sufficiently small , or equivalently, sufficiently high%
observer bandwidth, or observer gain.
Theorem Consider the closed-loop system of the plant (24)
and the output feedback controller (27) & (28). Suppose the
origin of (26) is exponentially stable and  is the region ofe
attraction. Let  be any compact set in the interior of  andf e
d  be any compact subset of . Then,V:

(i)  there exists  such that, for every  ,% % %" "
‡ ‡ ! !  

the solutions (  of the closed-loop system, startingDÐ>Ñß DÐ>ÑÑs
in , are bounded for all .f d‚ >   !

(ii)  given any , there exists  and , both5 % !  ! X  !#
‡

#

dependent on , such that, for every , the solution5 !  % % #
‡

of the closed-loop system, starting in , satisfiesf d‚l l l lDÐ>Ñ Ÿ DÐ>Ñ Ÿ ß a >   Xs5 5and ( )# 29
(iii) given any , there exists  dependent on5 % !  !$

‡

5 % %, such that, for every  , the solution of the!   $
‡

closed-loop system, starting in , satisfyingf d‚l lDÐ>Ñ  D Ð>Ñ Ÿ ß a >   !< 5 ( )30
where  is the solution of (26), starting at .D Ð>Ñ DÐ!Ñ<

(iv)  there exists  such that , for every ,% % %% %
‡ ‡ ! !  

the origin of the closed-loop system is exponentially stable
and  is a subset of its region of attraction. f d‚ f

The theorem contains four parts. In Part (i) the bound-
edness of the closed-loop state variables is established. Part
(ii) asserts that the bound of the solutions can be made
arbitrarily small in the steady state by increasing the
observer bandwidth. Part (iii) establishes the recovery of the
performance under state feedback using the high-bandwidth
(high-gain) observer. Part (iv) assures the recovery of the
exponential stability.

Due to page limit, detailed proof of the Theorem is
omitted here, which can be found in [18]. Here we outline
the key steps of the proof, including an enabling lemma. The
proof utilizes singular perturbation theory. Let

;
% %

34
34 34 34

: 4 : 4
œ œ

D  D Ds
3 3

˜

" Ÿ 3 Ÿ 7 " Ÿ 4 Ÿ : and  be the scaled observer error.3

Hence, we have , whereD œ D HÐ Ñs % ;

; ; ; ; ;

%

%

œ ß âß ß âß ß âß

HÐ Ñ œ H ß âß H

H œ ß âß "

c dc dc d
"" ": 7" 7:

X

" 7

3
: "

: ‚:

" 7

3

3 3

block diag
diag

Then, the dynamics of the closed-loop system is
D œ J Ð ß ß ß Ð>Ñß Ð>ÑÑ
Þ  

œ ÐDß ß ß Ð>Ñß Ð>ÑÑ
 

Þ
œ E Ð>Ñ 

D

! ,

D O ÐD  HÐ Ñ Ñ >

L O ÐD  HÐ Ñ Ñ >
D

D D

% 0 .

% 0 .

;

( ;

%; ; %?

˜

where , due to the special forms? % ? ?, D D
"œ H Ð ÑF œ F

of  and  and  F HÐ Ñ "Î E œ H Ð ÑÐE Ð>Ñ D ! D
"% % %a b Ð>Ñ

O Ð>ÑG Ð>ÑÑHÐ Ñ Z ÐDÑ [Ð Ñ9 DD
% ;. Let  and  be the Lyapunov

functions of the slow and fast model, respectively. Define
the sets  and  by  and  H D H D ;- - œ ÖZ D Ÿ -× œ Ö[Ð Ñ Ÿa b
4%#×. The first step of the proof for Part (i) is accomplished
by showing that for sufficiently large , there exists an ,4 %"
such that for all , the origin of the closed-loop!  Ÿ% %"
system is exponentially stable and the set  is a posi-H D- ‚
tively invariant subset of the region of attraction. The second
step shows there exists an , such that for all ,% % %# #!  Ÿ
the trajectory enters the set  in finite time. Part (ii) isH D- ‚
also proved in two steps. The first step shows that we can
find an , such that for every ,% % 5 % % %$ $ $

‡
"œ Ð Ñ Ÿ !  Ÿl l; 5 % 5Ð>Ñ Ÿ Î# a>   XÐ Ñ œ XÐ Ñ , . Then it is shown that˜

$

we can choose , such that for all ,% % 5 % % %% % %
‡
"œ Ð Ñ Ÿ !  Ÿl l l lDÐ>Ñ Ÿ Î# a>   X DÐ>Ñ Ÿ Î# D œ D s s5 5, . Then , since  ˜

HÐ Ñ HÐ Ñ œ "% ; %, and . Part (iii) is proved by dividing thel l
interval  into three intervals ,  andÒ!ß _Ñ Ò!ß X Ð ÑÑ ÒX Ð Ñß X Ñ% % $

ÒX ß _Ñ$ , and showing (30) for each interval. The proof of
the last part uses the fact that (26) is exponentially stable. A
Lyapunov function of the overall closed-loop system is
constructed based on the Lyapunov function of (26), and is
shown to satisfy the exponential stability condition.

The proof also relies on (Theorem 7.4, p117, [23]),
(Theorem 7.8, p120, [23]) and (Theorem 4.14, p102, [12]) to
guarantee the existence of Lyapunov function for the
reduced system and the boundary layer system, and the
following Lemma that facilitates the proof of the standard
singular perturbation problem by time-scale separation for
time-varying dynamics. From the synthesis formula in
[15][16], the coefficients of the LPDO associated with the
observability canonical form contain  and the=Ð>Ñ
derivatives of . Let =Ð>Ñ 7 % =œ >Î . Ð>Ñ .> œ, then /a ba b a b"Î . Ð ÑÎ. "Î% = %7 7 % and TheEÐ> .>Ñ œ EÐ . Ñ, , . %7 7
following Lemma relates the high gain TLO with the
reference TLO through time-scaling.

Lemma Suppose the PD-spectrum of a SISO LTV system is
represented as . If the PD-spectrumE 3 3 =8 5 5

8
5œ"œ Ö Ð>Ñ œ Ð>Ñ×

_

is scaled up by , such that ,"Î% E 3 3 =L L L5
8
5œ"8 5

œ Ö Ð>Ñ œ † Ð>Ñ× 
_

where, , the observability canonical realiza-= = %LÐ>Ñ œ Ð>ÑÎ
tions of and denoted as  and  respectively,   , E E8 L8

EÐ>Ñ E Ð>ÑL

satisfy a b"Î% EÐ . Ñ œ H Ð ÑE Ð . ÑH Ð Ñ%7 7 % %7 7 %, , 31"
L a b

where .H œ fß âß "a b c d% %diag 8"
8‚8
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The proof of the Lemma utilizes PD-modal matrix ( )21
and synthesis formula  of LPDO from a PD-[15][13]
spectrum. First, a second-order example is presented to
illustrate the idea and validity of the Lemma.

Suppose the PD-eigenvalues of a second order LTV sys-
tem is given by  The observ-3 3 = 3 3 =" " # #Ð>Ñ œ > Ð>Ñ œ > a b a b, .
ability canonical form realization is given by the synthesis
formula [15][13] and LPDO canonical form realization [18]
as

EÐ>ß .>Ñ œ
! "

 Ð>ß .>Ñ  Ð>ß .>Ñ” •! !" #

where
! 3 3 =

! 3 3 =
=

=

" " #
#

# " #

Ð>ß .>Ñ œ Ð>Ñ 

Ð>ß .>Ñ œ Ð  Ñ Ð>Ñ  
Þ
Ð>Ñ

Ð>Ñ
Now scale up the bandwidth  by  and obtain = =Ð>Ñ Ð>Ñ"

L%

œ Ð>ÑÎ= %. Then the observability canonical form becomes

E Ð>ß .>Ñ œ
! "

 Ð>ß .>Ñ  Ð>ß .>ÑL
" #

” •! !
L L

where
! 3 3 = %

! 3 3 = %
=

=

" " #
# #

# " #

L

L

Ð>ß .>Ñ œ Ð>ÑÎ 

Ð>ß .>Ñ œ Ð  Ñ Ð>ÑÎ  
Þ
Ð>Ñ

Ð>Ñ
Let  and notice that  then7 % = % = %7 7œ >Î . Ð>Ñ .> œ "Î . Ð ÑÎ. / ,a ba b

E Ð Ñ œ
! "

 Ð ÑÎ  Ð ÑÎL
" #

#%7 7
%7 7 %7 7

ß .
ß . ß .” •! % ! %

thus

H Ð ÑE Ð ß . ÑH œ EÐ ß . Ñ"
L% %7 7 % %7 7a b "

ˆ
%

Proof of the Lemma
As defined in , the coefficients  of the[15][13] !5Ð>Ñ

companion form realization can be synthesized from the PD-
spectrum  byÖ Ð>Ñ×33

8
3œ"

!
3 3

5
5ß8"

8 " 8
Ð>Ñ œ

@ Ð>Ñ

Ð Ð>Ñß âß Ð>ÑÑ

˜
detZ

With the assumption in the previous section that
E 3 3 =3 5 5

8
5œ"œ Ö Ð>Ñ œ Ð>Ñ×

_
, we have

det Z8
"Ÿ34Ÿ8

4 3Ð Ð>ÑÑ œ œ Ð>Ñ Ð  Ñ = = 3 3det detZ Zs Ð Ð>ÑÑ


8 8=
8Ð8"Ñ

# $
And  denotes the algebraic cofactor of  in the@̃ Ð>Ñ @ Ð>Ñ34 34

Ð8  "Ñ ‚ Ð8  "Ñ matrix
Z

Z

8" " 8

34
8 " 8

8 8 8

Ð ß âß ß Ñ

œ Ò@ Ó œ

"
Ð ß âß Ñ Ö"×

ã
Ö"× â Ö"× Ö"×

3 3 3

3 3 W

W W W

Ô ×Ö ÙÖ Ù
Õ Ø

3

3 3 3" 8

With the time-varying bandwidth being scaled up by ,"Î%
i.e. , we now proceed to show that the= = %LÐ>Ñ œ Ð>ÑÎ
coefficients  are scaled up by .! %5

Ð8"5ÑÐ>Ñ
The determinant of the PD-modal matrix is given by

det

det

Z

Z

8 L
"Ÿ34Ÿ8

4 3

8

Ð Ð>ÑÑ œ "Î Ð>Ñ Ð  Ñ 

œ "Î Ð Ð>ÑÑ

= % = 3 3

% =

a b  $
a b

8Ð8"Ñ
#

8Ð8"Ñ
#

8Ð8"Ñ
#

Now, we look into the numerator of the synthesis formula of
!5Ð>Ñ. We want to show that

@ Ð Ð>Ñß .>Ñ œ @ Ð Ð Ñß . Ñs s
"

34 L 343"
= = %7 7

%
(32)

using mathematical induction on . For3  1,3 œ
@ Ð Ð>Ñß .>Ñ œ "s"" L=  and thus  1, @ Ð Ð Ñß . Ñ œ Ð Ð>Ñß .>Ñs s11 = %7 7 =@"" L

œ @ Ð Ð Ñß . Ñs"
""%"" = %7 7 , and Equation (32) holds for 1.3 œ

Now assume Equation (32) holds for . For ,3 œ 5  " 3 œ 5
@ Ð Ð>Ñß .>Ñ œ @ Ð Ð>Ñß .>Ñ  Ð>Ñ@ Ð Ð>Ñß .>Ñs s s

Þ

œ
" . @ Ð Ð Ñß . Ñs

.>

 Ð Ñ@ Ð Ð Ñß . Ñ
" "

s

œ @
"

s

34 L 3"ß4 L L 3"ß4" L

3#

3"ß4

3# 3"ß4"

3" 34

= = = =

%

= %7 7

% %
= %7 = %7 7

%

a b

Ð Ð Ñß . Ñ ß a 4 Ÿ 5= %7 7

Thus
Z Ð Ð>Ñß .>Ñ œ ÐÒ"ß ß âß ÓÑZ Ð Ð Ñß . Ñs s

8" L 8"
" 8= % % = %7 7diag

and

@ Ð Ð>Ñß .>Ñ œ Ð"Î Ñ @ Ð Ð Ñß . Ñ˜ ˜5ß8" L 5ß8"

3œ!

8
3 5"= % % = %7 7$

Therefore
! = ! = %7 7

=

= %
5 L 5

5ß8" L

8 L
85"

Ð Ð>Ñß .>Ñ œ œ Ð Ð Ñß . Ñ
@ Ð Ð>Ñß .>Ñ

Ð Ð>ÑÑ

"˜
detZ

With the above relationship established, (31) is ready
verified by direct computation.

Remark 1. The theorem is stated and proved in the
transformed coordinate. However, due to the nature of the
Lyapunov transformation, i.e. the boundedness of , X X"

"
"

and , the theorem still hold in the original coordinate forX
Þ
"

Bß B B 3 œ "ßâß %s and  with different , .˜ %‡3
Remark 2. According to the theorem, the tracking

performance should be improved with the decrease of .%
However, the system output may exhibit an impulse-like
behavior, which is called peaking phenomenon ([12], p613),
when  is sufficiently small. The peaking phenomenon can%
be overcome by saturating the control to create a buffer that
protects the plant from peaking, which, in effect, reduces the
observer gain of the output feedback system during peaking.
Thus a TVB TLO can be used to handle peaking as well.

Remark 3.  Theoretically speaking, reducing  will%
enhance the steady state tracking performance. However,
besides the peaking phenomenon, the measurement noise
and unmodeled high-frequency sensor dynamics also put a
practical limit on how small  could be, which should be%
considered in the tuning process.

Remark 4. Expanding the bandwidth of the observer
dynamics by reducing  results in faster response of the%
observer dynamics, yielding quicker decay rate of vanishing
perturbation  in (19). However, from the proof, one$@Ð † Ñ
can see that the main purpose of the high-gain observer is to
deal with the non-vanishing perturbation and to reduce the
steady-state error cause by non-vanishing perturbation.

IV. NUMERICAL EXAMPLE
A numerical example of the proposed TLO for an unstable,
nonminimum phase, stiff nonlinear benchmark model is
presented in [18]. A simulation comparison study of the
proposed TLO with EKF based on the same model is also
presented in [18].
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A MIMO high-gain TLO design example with hardware-
in-loop simulation test for a 3 Degrees-of-Freedom (3DOF)
differential thrust control testbed named “Quanser UFO” is
presented in [17].

V.   CONCLUSION
In this paper, a time-varying high gain trajectory lineari-

zation observer for nonlinear system is presented. Some
remaining problems that were not solved or even addressed
in the previous TLO paper [13] are dealt with in this paper,
such as the robustness of the proposed observer design
method to modeling errors, and the application to MIMO
nonlinear systems. The main result has shown that, using
high-gain (bandwidth), the TLO based output feedback
recovers the state feedback performance, even for time-
varying observer gains (bandwidth). Moreover, the time-
varying high gain TLO relaxes the restriction of existing
time-invariant high gain observer to affine nonlinear systems
to allow any linearizable nonlinear system. Real-time hard-
ware-in-the-loop test using the proposed design on a 3DOF
flight control testbed is presented in [17], and a simulation
comparison study is given in [18]. Detailed proof of the
main theorem in this paper and more design case studies are
included in [18].
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