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Abstract— Slow sensors arise in many applications, including
sensing of concentrations of chemicals in tracking of con-
taminant plumes. Slow sensors are often the cause of poor
performance and a potential cause of instability. In this paper
we design a modified extremum seeking scheme to account for
and even to exploit slow sensor dynamics. We also consider
the worst case, which is sensor dynamics governed by a pure
integrator. We provide stability results for several distinct
variations on our ES scheme. We use metal-oxide microhotplate
gas sensors as a real world example of slow sensor dynamics,
model the sensor based on experimental data, and provide
extremum seeking simulation results employing the identified
sensor model.

I. INTRODUCTION

Recent advances in extremum seeking have shown it to
be a powerful tool in real time non-model based control and
optimization [3], [17], [19], [20], [21]. Success has been
achieved in compensating slow actuator dyncamics [22],
[23], [6], [4], [5], but no work has been done with extremum
seeking for plants with slow sensor dynamics, or, in the
extreme case, sensors governed by a pure integrator (drifting
sensors). In this paper we introduce a new idea of how to
extend the applicability of extremum seeking to plants with
a slow or drifting sensor.

For simplicity, we consider a single-parameter extremum
seeking problem with a static map, but with sensor dynamics.
The classical extremum seeking scheme [1] is modified by
observing that the integrator, a key adaptation element, is
already present in sensor dynamics, if they are governed by
a pure integrator. We perform an appropriate (time-varying)
swap of the integrator block and the demodulation block
(Section III), and as a result obtain a scheme where the
map output converges to the extremum fast, while the sensor
output may converge slowly, or it may even drift to infinity.

Stability and simulation results are presented first for a
system with a slow sensor (Section IV). This is followed by
results for a sensor governed by a pure integrator (Section V).
(These results do not imply one another.)

Traditional methods for gas plume seeking using slow
metal oxide sensors [11], [12], [13] (reviewed in Section II)
either wait for a big enough change in the sensor reading
or for the sensor reading to settle before they act. Most of
these search methods ([2], [14], [15]) are based on mimicking
insect behavior (mainly moths) to localize source of odor
without much consideration of the sensor dynamics. The
modified ES scheme reacts to the sensor reading continu-
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ously, which allows the overall system to converge to an
optimum much faster than the sensor settling time.

Our compensation of slow sensor dynamics does not

amount to employing a differentiator after the sensor to
cancel the integrator in the sensor and act on the trend
of the signal, rather than on the value of the signal. This
approach would result in amplification of noise. Instead, our
approach leverages the integrator action in the sensor, to have
it assume the role of the tuning element in the extremum
seeking loop. We highlight this by considering both a version
of the modified scheme with the standard washout filter in
the loop and a version without the washout filter, proving
stability in each case.

To show the capabilities of the modified extremum seeking
scheme with the metal oxide sensors we consider the realistic
one dimensional problem of trying to localize a gas leak
along a pipe with a single moving sensor.

II. MODEL OF A METAL OXIDE SENSOR

Due to their small size, metal oxide based microhotplate
sensors can be used to develop a portable, sensitive, and low-
cost gas monitoring system to detect, for example, leakage
of hazardous gases. Modeling metal oxide microhotplate
sensor dynamics accurately can prove to be very difficult,
as seen in [8], [9], and [10]. In this section we make some
reasonable assumption to simplify the complicated models.
The basic premise of the sensor model in [8], [9], and [10]
is that the sensor reading is driven by an exponential of
the concentration of several gases, and the gas concentra-
tions are governed by several coupled ordinary differential
equations (corresponding to several chemical reactions) if the
temperature is constant. The problem that we are concerned
with in this paper is locating the maximum of a single gas
with little fluctuation in temperature. Tests were performed to
better understand the leading dynamics of the sensor. A gas
with a certain concentration was released at 30 [sec] into the
experiment then the gas was flushed out at 600 [sec]. Fig. 1
shows the reaction of a TGS2602 metal oxide microhotplate
sensor [7] to ethanol at four different concentrations. Note
in Fig. 1 that the sensor reading takes around 120 [sec] to
settle, independently of the gas concentration.

From these test we see that the dominant dynamics of the
sensor are governed by a first order system,

Gsensor(s) =
b

s + ε
, (1)

where b and ε are positive constants that depend on the sensor
and the type of gases. As evident from Fig. 1, there is also an
offset parameter in the sensor reading, which does nothing
more than shift the plot up or down. After performing several
tests we observed that, although ε is positive, its magnitude is
quite small (on the order of 10−2), which is apparent in Fig. 1
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Fig. 1. An example of metal oxide sensor TGS2602 responding to four
different concentrations of ethanol.
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Fig. 2. Comparison of the first order sensor model and the real sensor
reaction to ethanol.

where it takes the sensor two minutes to settle. By inspection
we set b = 0.037, ε = 0.046 and the offset to 1.6 [kΩ] to get
the model for the TGS2602 gas sensor reacting to ethanol.
Fig. 2 compares the identified sensor model against the real
TGS2602 gas sensor reading. The sensor model parameters
change for different gases and different sensors but always
stay positive.

III. EXTREMUM SEEKING DESIGN FOR SLOW SENSORS

We consider applications in which the object is to max-
imize the output of an unknown nonlinear map f(θ), by
varying the input θ, but where the signal f(θ(t)) is measured
through a slow sensor, namely, where only the signal y(t),
governed by the ODE

ẏ = −εy + bf(θ) , (2)

is measured. Let the maximizing value of θ be denoted as
θ∗. This value is unknown and so is f(θ∗). For simplicity of

(a) Classical extremum seeking algorithm

(b) Modified ES for slow sensor

Fig. 3. The modified extremum seeking algorithm (b) applies both to the
case with a slow sensor (ε > 0) and to the case with a sensor modeled
as a pure integrator, which we also refer to as a ‘drifting sensor’ (ε = 0).
In both cases, the washout filter is optional (both h > 0 and h = 0 are
permissible).

our analysis we assume that the nonlinear map is quadratic,

f(θ) = f∗ − qθ(θ − θ∗)2 , (3)

where, besides θ∗ and f∗ being unknown, qθ is an unknown
positive constant.

We modify the classical extremum seeking scheme, which
allows fast sensor dynamics, to work with very slow sensors,
and, in the extreme case, with sensors governed by a pure
integrator, namely drifting sensors. We start with a key
observation that an integrator is already a part of the classical
extremum seeking loop in Fig. 3(a). We need to modify the
scheme so that the sensor itself is performing the task of this
integrator (and then eliminate this integrator). To do this, we
need to swap the integrator and the multiplication by sin(ωt)
in Fig. 3(a), i.e., to move the integrator upstream in the signal
path. This is not a simple swap of linear blocks because a
multiplication by a time varying signal is involved. However,
using integration by parts, we get that
∫ t

0

η(τ) sin(ωτ)dτ = sin(ωt)

∫ t

0

η(τ)dτ

− ω

∫ t

0

cos(ωτ)

∫ τ

0

η(σ)dσdτ . (4)

We use this observation to convert the scheme in Fig. 3(a)
to the scheme in Fig. 3(b), where the guiding idea is that the
sensor is a pure integrator, namely, ε = 0. As we shall see,
this modification also works when ε > 0.
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In the following sections we will show, using averaging
theory, that the modified extremum seeking scheme drives θ
to a small neighborhood of θ∗, using just the output of the
sensor and without any knowledge of the map parameters or
the sensor parameters (except for the knowledge that qθ > 0
and ε is small or zero).

IV. SLOW SENSOR

In this section we study the case of a slow sensor (ε > 0
but small). We consider both the ES scheme with a washout
filter (h > 0) and without a washout filter (h = 0). In the
next section we address the same two cases but for a sensor
modeled as a pure integrator (ε = 0).

Let θ̂ be the estimate of θ∗ and θ̃ be the error,

θ̃ = θ̂ − θ∗ (5)

θ = θ̂ + a sin(ωt) , (6)

which yields

θ − θ∗ = θ̃ + a sin(ωt) . (7)

From Fig. 3 we write the equation for θ̂ in terms of η

θ̂ = k

(

η sin(ωt) +
1

s
[−ηω cos(ωt)]

)

, (8)

where we mix the time and frequency domain notation by
using the brackets [·] to denote that the transfer function acts
as an operator on a time-domain function.

To prove stability we are going to look at the three signals

θ̃ (the estimation error), η (the signal after the washout filter),
and y (the sensor reading). Assuming the nonlinear map in
(3) we write an equation for y in terms of θ, then we apply
the washout filter to the sensor output y to get η, and finally

we get θ̃ directly from replacing θ̂ in (5) with (8):

y =
b

s + ε

[

f∗ − qθ(θ − θ∗)2
]

(9)

η =
s

s + h
[y] (10)

θ̃ = k

(

η sin(ωt) +
1

s
[−ηω cos(ωt)]

)

− θ∗. (11)

Using (7) we can now replace θ with θ̃ in (9). By
rearranging (9) and (10) and multiplying (11) by s we obtain
the ODEs

ẏ = − εy + b
(

f∗ − qθ(θ̃ + a sin(ωt))2
)

(12)

η̇ = − hη − εy + b
(

f∗ − qθ(θ̃ + a sin(ωt))2
)

(13)

˙̃
θ = − k

(

hη + εy − b
(

f∗ − qθ(θ̃ + a sin(ωt))2
))

sin(ωt) .

(14)

Setting τ = ωt we get

dy

dτ
=

1

ω

[

−εy + bf∗ − bqθ(θ̃ + a sin(τ))2
]

(15)

dη

dτ
=

1

ω

[

−hη − εy + bf∗ − bqθ(θ̃ + a sin(τ))2
]

(16)

dθ̃

dτ
= −

1

ω
k(hη + εy − bf∗ + bqθ(θ̃ + a sin(τ))2) sin(τ) .

(17)

Using the following two identities

1

2π

∫ 2π

0

(θ̃ + a sin(τ))2dτ = θ̃2 +
a2

2
(18)

1

2π

∫ 2π

0

(θ̃ + a sin(τ))2 sin(τ)dτ = θ̃a, (19)

to average (15), (16) and (17) become

dyavg

dτ
=

1

ω

[

−εyavg + bf∗ − bqθ

(

θ̃2 +
a2

2

)]

(20)

dηavg

dτ
=

1

ω

[

−hηavg − εyavg + bf∗ − bqθ

(

θ̃2 +
a2

2

)]

(21)

dθ̃avg

dτ
= −

kbaqθ

ω
θ̃avg . (22)

The equilibrium of the averaged system (20)-(22) is ye
avg =

b
ε

(

f∗ + qθa2

2

)

, ηe
avg = 0, and θ̃e

avg = 0. The Jacobian of

(20), (21) at (ye
avg, η

e
avg, θ̃

e
avg) is

Javg =
1

ω





−ε 0 0
−ε −h 0
0 0 −kbaqθ



 . (23)

Given that the nonlinear map has a maximum (qθ > 0) and
that the sensor is stable (ε > 0) and non-inverting (b > 0), it
follows that, if we choose a, ω, k, h > 0, the Jacobian (23)
is Hurwitz and the equilibrium of the averaged system (20)-
(22) is locally exponentially stable. From averaging theorem
[16] we get the following result.

Theorem 1: There exists ω∗ such that for all fi-
nite ω > ω∗ the system in Fig. 3 with nonlinear
map (3) has a unique exponentially stable periodic solution

(y2π/ω(t), η2π/ω(t), θ̃2π/ω(t)) of period 2π/ω which satis-
fies
∥

∥

∥

∥

∥

∥

∥







y2π/ω(t) − b
ε

(

f∗ + qθa2

2

)

η2π/ω(t)

θ̃2π/ω(t)







∥

∥

∥

∥

∥

∥

∥

≤ O(1/ω), ∀ t ≥ 0. (24)

Since θ − θ∗ = θ̃ + a sin(ωt) = (θ̃ − θ̃2π/ω) + θ̃2π/ω +
a sin(ωt), the theorem implies that the first term is zero, the
second term is O(1/ω), and the third term is O(a). Thus
lim supt→∞

|θ(t) − θ∗| = O(1/ω). Hence, we get

lim sup
t→∞

|f(θ(t)) − f∗| = O(a2 + 1/ω2) , (25)

which characterizes the asymptotic performance of the ex-
tremum seeking loop in Fig. 3.

Fig. 5 shows a simulations of a moving sensor along the
length of a pipe, whose objective is to localize a gas leak
on the pipe with the use of sensor-compensated extremum
seeking. The extremum seeking parameters were chosen as
ω = 30, a = 0.2, k = 10, and h = 1. The plant map, shown

in Fig. 4, is modeled in the form f(θ) = δ∗

1+pθ(θ−θ∗)2 , with

δ∗ = 250, pθ = 0.5, and θ∗ = 0 to simulate a more realistic
gas distribution of a gas pipe with a leak of 250 ppm of
ethanol at position θ∗. We assume the sensor model in (1)
with the parameters ε = 0.046 and b = 0.037, which were
obtained by fitting the model to data from the TGS2620
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Fig. 4. Gas concentration distribution along the pipe with gas leak at
position 0.

gas sensor being exposed to ethanol. The moving sensor
starts 3 [m] away form the gas leak. Fig. 5(a) shows the
gas concentration at the position of the gas sensor. Fig. 5(b)
shows the position of the of the sensor in reference to the gas
leak. The nonlinear map output (J) and the sensor position
(θ) quickly converge to a periodic motion around f∗ and θ∗,
respectively. The signal after the washout filter (η), shown
in Fig. 5(c), goes to zero.

Note in Fig. 5(d) that the sensor reading converges very

slowly. The time interval for which J and θ̂ are shown in
Fig. 5 is only one tenth of the time interval on which η and y
are shown. This is done in order to display the details of the

rapidly convergent sensor position θ̂, while the sensor reading
y is about ten times slower. More specifically, even though
it takes the sensor reading 120[sec] to settle the extremum

seeking algorithm is able to tune θ̂ to achieve maximum
output from the nonlinear map in less then 6[sec].

The convergence would be orders of magnitude slower if
the algorithm had to wait for the sensor reading to settle
every time it wanted to tweak θ.

In some applications the use of washout filters may be
undesirable because they act as approximate differentiators
and therefore may result in the amplification of noise. We
now drop the washout filter and show that the resulting
scheme is still stable, namely, the washout filter is used for
performance reasons, not for stability reasons, and not to
‘cancel’ the extremely slow (integrator-like) dynamics of the
sensor. The proof for this case (omitted) is very similar to the
proof for the case where the sensor is a pure integrator but
the ES scheme does employ a washout filter (Theorem 3),
with the Jacobian of the averaged system given as

Javg =
1

ω

[

−ε 0
0 −kbaqθ

]

. (26)

Theorem 2: Consider the system in Fig. 3 with the nonlin-
ear map of form (3) and without the washout filter. There ex-
ists ω∗ such that for all finite ω > ω∗ the system has a unique

exponentially stable periodic solution (y2π/ω(t), θ̃2π/ω(t)) of
period 2π/ω which satisfies

∥

∥

∥

∥

∥

[

y2π/ω(t) − b
ε

(

f∗ + qθa2

2

)

θ̃2π/ω(t)

]
∥

∥

∥

∥

∥

≤ O(1/ω), ∀ t ≥ 0 . (27)

Simulation (not included) for the system in Theorem 2
shows convergence rate that is inferior to that of the algo-
rithm with the washout filter (Theorem 1). This convergence
rate difference is not captured by the averaging analysis
because the approximation accuracy of averaging is low
when some of the eigenvalues of the average system are
small (due to small ε).

V. DRIFTING SENSOR

Our scheme works even when ε = 0, namely when the
sensor is a pure integrator. This is a rather extreme situation
of a sensor that responds, but permanently drifts in its value
(towards infinity). All that we can achieve in this case is to
maximize the sensor’s input, since its output never settles.

The stability analysis for this case mimics some parts
of the proof for Theorem 1. Assuming the nonlinear
map in (3) and setting ε = 0, we write (9) as

y = b
s

[

f∗ − qθ

(

θ̃ + a sin(ωt)
)2

]

.

Since the sensor output y is not going to settle when its

input θ̂ settles, we do not include the sensor output as one of
our states for which we are proving convergence. We study

only the states θ̃ and η, whose equations are

dη

dτ
=

1

ω

[

bf∗ − bqθ(θ̃ + a sin(τ))2 − hη
]

(28)

dθ̃

dτ
= −

1

ω
k(hη − bf∗ + bqθ(θ̃ + a sin(τ))2) sin(τ) . (29)

Using the identities (18) and (19) we obtain the following
averaged equations

dηavg

dτ
=

1

ω
[bf∗ − bqθ(θ̃

2 +
a2

2
) − hηavg] (30)

dθ̃avg

dτ
=

1

ω
[−kbaqθ θ̃avg]. (31)

The equilibrium of the averaged system (30), (31) is ηe
avg =

b
h

(

f∗ + qθa2

2

)

and θ̃e
avg = 0. The Jacobian of (30), (31) at

(ηe
avg, θ̃

e
avg) is

Javg =
1

ω

[

−h 0
0 −kbaqθ

]

. (32)

Theorem 3: There exists ω∗ such that for all finite ω > ω∗

the system in Fig. 3 with the nonlinear map of form (3) and
ε = 0 in the sensor dynamics has a unique exponentially

stable periodic solution (η2π/ω(t), θ̃2π/ω(t)) of period 2π/ω
which satisfies
∥

∥

∥

∥

∥

[

η2π/ω − b
h

(

f∗ + qθa2

2

)

θ̃2π/ω

]
∥

∥

∥

∥

∥

≤ O(1/ω), ∀ t ≥ 0 . (33)

Fig. 6 shows a simulation with a sensor Gsensor(s) = b/s
with θ∗ = 0, f∗ = 1, qθ = 0.5, and b = 1. The ES
parameters are chosen as ω = 30, a = 0.2, k = 10, and
h = 1. Fig. 6(a) shows the ability of the sensor-compensated
ES scheme to maximize the output of a nonlinear map even

with a marginally stable sensor. As shown in Fig. 6(b), θ̂
starts from θ̂(0) = 3 and converges to a periodic motion
around θ∗ = 0. Fig. 6(c) shows how the signal after the
washout filter (η) converges to a periodic motion around
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Fig. 5. Simulation results for extremum seeking on a metal oxide sensor model moving along a pipe with a leak showing (a) output of the nonlinear
map, (b) the sensor position, and (c) the signal after the high pass filter, and (d) the metal oxide sensor reading. Note that the time interval for which J
and θ̂ are shown is only one tenth of the time interval on which η and y are shown. This is done in order to display the details of the rapidly convergent
sensor position, while the sensor reading is about ten times slower.

ηe
avg = 1.02. The response for y(t) is not shown since it

drifts in a linear manner towards infinity, as expected.

The scheme studied in Theorem 3 contains a cascade of the
sensor’s integrator dynamics and of a washout filter. It may
appear that the key to the result is that a differentiator cancels
an integrator. This is not the case at all, as we illustrate with
the next theorem, for the system with Gsensor(s) = b/s and
without the washout filter (i.e., with h = 0). This simple
result is given without a proof, which follows from the fact
that the (scalar) Jacobian is −kbaqθ/ω (in the τ time scale).

Theorem 4: Consider the system in Fig. 3 without the
washout filter, with ε set to zero in the sensor dynamics, and
the nonlinear map of form (3). There exists ω∗ such that
for all ω > ω∗ the system has a unique exponentially stable

periodic solution θ̃2π/ω(t) of period 2π/ω which satisfies
∥

∥

∥
θ̃2π/ω(t)

∥

∥

∥
≤ O(1/ω), ∀ t ≥ 0.

Simulation results for the system in Theorem 4 are shown
in Fig. 7 for f∗ = 1, qθ = 0.5, b = 1, ω = 30, a = 0.2,
k = 10, and h = 1. As expected, θ and f converge to a
periodic motion around θ∗ and f∗, respectively. The drifting
sensor without the washout filter has significant oscillations
after settling compared to the case of drifting sensor with
the washout filter.

The significance of the result in Theorem 4 are shown in
Fig. 7 is that it demonstrates that the modified extremum
seeking scheme is not merely acting based on the signal

trend/derivative (rather than on the signal value), which
would have been the case if the inclusion of a washout
filter had turned out to be crucial. Rather than ‘canceling’
the sensor’s integrator, our scheme leverages it, by using its

presence for the function of tuning of θ̂(t) in the ES loop.
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