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Abstract—This study discusses a robust controller synthesis 
methodology for linear time invariant systems characterized by 
probabilistic parameter uncertainty. The optimization of the 
robust performance is considered. The extension of pre-
existing, synthesis approaches, such as multi-objective H2 
design, to account for probabilistic uncertainty is investigated. 
A design based on the concept of the reliability of the system 
response output is also considered. Analysis and synthesis 
methodologies based on stochastic simulation techniques are 
discussed. The design approach is applied in a structural 
control example. The results illustrate the differences between 
the various probabilistic performance objectives and the 
importance of adopting a probabilistic characterization for 
model uncertainty when compared to nominal design or to the 
design using a worst-case scenario approach. 

I. INTRODUCTION 

HE existence of model uncertainty is important for 
modern control applications, as one of the main 

objectives is to establish optimum robustness over all 
possible operational conditions. Standard tools for robust 
control design, such as H B, μ-synthesis [1] and the many 
offshoots of these, consider only compact set of possible 
models for the system. Information implying that some 
model parameters are more probable than others is not 
explicitly treated. However in most real engineering 
applications, there is considerable knowledge about the 
relative plausibility of the different model parameter values. 
A probability logic approach provides a rational framework 
for quantifying this knowledge [2] by characterizing the 
relative plausibility of the system properties by appropriate, 
based on the available information, probability models.      

This observation has motivated researchers to investigate 
the stability and performance of linear and nonlinear 
controlled systems under probabilistic parameter 
uncertainty. This is established by optimizing statistics of 
the objective function (probabilistic performance) under 
plant uncertainty, rather than the objective function resulting 
from the nominal model (nominal performance). The design 
process incorporating such measures is called robust 
stochastic design [3, 4], where the term robustness pertains 
to the stochastic, i.e. probabilistic, model description.  
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A number of studies have been developed exploring such 
ideas. The methods proposed in [4, 5] characterize the 
robust performance of a controller in terms of the 
probabilities that the closed loop system will have 
unacceptable response in terms of either its stability or 
performance. The design objective was expressed as a 
weighted sum of these probabilities, and evolutionary 
algorithms were proposed for performing the optimization 
for the controller parameters.  Field et al. [6] focused on the 
probability of instability for controlled systems and used 
first order reliability calculations to approximate it. Boers et 
al. [7, 8] discussed the expected performance related to the 
H2 norm of the closed loop system. They proved that the 
design problem is well-posed but restricted their attention to 
a simple subclass of parametric model uncertainty 
characterizations. The concept of the reliability for the 
system output has also been used as a controller design 
objective, an approach initially introduced in [9]. The 
optimal reliability-based controller is selected by 
minimizing the probability of first-passage of the output 
over a region that defines acceptable performance. 
Theoretical issues related to this approach were investigated 
in detail in [10].  

The present paper discusses the robust-performance 
optimization of linear time invariant dynamical systems with 
probabilistically-described parametric model uncertainties 
and focuses on systems including a stochastic disturbance 
input. It discusses efficient analysis and synthesis 
methodologies, based on recently-developed stochastic 
simulation techniques. It also sheds light on appropriate 
characterization of the probabilistic performance and 
discussed differences for reliability-based and multi-
objective H2 control. Finally, it draws comparisons between 
probabilistically-robust control design, and nominal system 
design or the “worst-case” interpretation of robustness. 

II. PROBLEM FORMULATION AND NOMINAL DESIGN 

We assume a linear dynamical system under stochastic 
excitation with a state space model that depends on a set of 
parameters θ; i.e., 
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where x(t)nx is the system state vector, consisting of the 
structural states together with any ancillary states used to 
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model sensor and actuator dynamics, spectral characteristics 
of the external excitation and dynamic states of the 
controller. Vector u(t)nu consists of control forces that 
are assumed to be formulated based on a feedback vector 
y(t)ny, which is linearly related to x(t). The performance 
of the controlled system is assessed through z(t)nz. 
Disturbance input w(t) is a zero-mean Gaussian white-noise 
vector process. Control input u(t) is assumed to be a 
feedback function of the response measurements, 
u(t)=K(φ)y(t) where Knuxny is the feedback gain matrix 
and φΦ denotes the free parameters of this matrix, which 
constitute the design variables of the problem. Φnφ 
corresponds to the admissible design space. The image of Φ 
under K is denoted K. 

The nominal performance is conditioned on an assumed 
system model, and thus is always parameterized by a 
presumed θ vector. The measure assessing the nominal 
performance of the system corresponding to vector θ will be 
denoted by J(K|θ). Probabilistic performance measures, on 
the other hand, presume a distribution for  and evaluate 
some statistical representation of the nominal performance 
measure over this distribution.  Note that in the present work 
the nominal performance is evaluated considering a 
stochastic influence, the one of the disturbance input w.  In 
principle though, the methodologies described can extend 
many standard optimal control methods predicated on 
completely deterministic system models. The design 
adopting the probabilistic performance as objective function 
is defined as robust stochastic design, with the term 
stochastic referring here to the probabilistic (i.e. stochastic) 
description for the system model [3, 4] and not to the 
disturbance input w. In this context, the design adopting the 
nominal performance as objective function is going to be 
referenced as nominal design.  

Considering first the nominal performance, note that in 
stationarity the closed loop linear controlled system yields a 
zero-mean Gaussian distribution for the output z with zero 
mean and covariance matrices that can be readily obtained 
(see, for example, [10]). Thus, the uncertainty stemming 
from the stochastic disturbance can be analytically 
propagated to the system response output, in terms of its 
stationary statistics. Based on this observation, two different 
instances for the nominal performance characterization will 
be considered here. The first one is the multi-objective H2 
performance (referenced herein mH2) defined as: 
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where E{.} denotes expectation with respect to the 
stochastic input w, given θ and σ z

 2 
 denotes the stationary 

variance for response variable z. The associated controller 
design problem has received a lot of attention and though it 
corresponds to a non-convex optimization, convexifying 
techniques have been developed for its solution [11].    

The second, and less familiar, quantification is motivated 
by the concept of system-reliability, defined here as the 
probability that the response output will not exceed 
acceptable bounds. These bounds define a hyper-cubic safe 
region Ds={|zi(t)<1|, i=1,…,nz}. The optimal reliability-based 
controller, introduced initially in [9], is then the one that 
minimizes the probability of unacceptable performance over 
some time duration t[0,T] usually chosen to correspond to 
the duration of the event causing the dynamic excitation of 
the system . This probability associated with controller K, 
PF(K|T,θ)=P(z(t)Ds for some t[0,T]|K,θ), is commonly 
referred to as probability of failure and in stationarity, may 
be expressed as the probability of first passage across SD, the 
boundary of the safe region Ds, 

 

( | , ) ( | , )  1 exp( ( | ) )R F zJ T P T T  Κ θ K θ K θ ,  (3) 
 

where vz(K|θ) is the mean out-crossing rate of the boundary 
SD, conditioned on no previous out-crossing having occurred 
[10]. This rate can be approximated as a sum of the out-
crossing rates corresponding to each failure mode i and can 
be analytically evaluated based on the stationary statistics 
for z [10]. The reliability optimal controller is finally 
equivalent to the minimization of the stationary out-crossing 
rate, and the dependence on the time duration T vanishes 
 

* arg min ( | )R z ΚΚ Κ θK . (4) 
 

Numerical details pertaining to this optimization and 
theoretical comparisons to other controller synthesis 
methods (including mH2) are presented in detail in [10]. 
Also, Field and Bergman [12] have discussed incorporation 
of similar reliability constraints in covariance control.    

III. ROBUST STOCHASTIC DESIGN 

Let Θ denote the set of possible model parameter values 
for the model in (1). Some of these values may be more 
probable than others. This relative plausibility of different 
model parameter vectors constitutes prior knowledge about 
the system and can be quantified by assigning a probability 
distribution function PDF p(θ) to the model parameters. 
Νon-parametric modeling uncertainty may be addressed by 
introducing a model prediction error, i.e. an error between 
the response of the actual system and the response of the 
model adopted for it. This error may be probabilistically 
characterized and augmented into θ.   

A. Robust performance: general case 

The robust performance quantification requires the 
extension of the nominal performance J(K|θ) to a 
probabilistic one H(K).  This can established in various 
ways but in general will be expressed by an integral of the 
following form, which we will refer to as stochastic integral: 
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where Εθ[.] denotes expectation over the uncertain 
parameter space and the utility function j(K|θ) is related to 
the deterministic performance measure J(K|θ) by some 
mapping.  By appropriate definition of j(K|θ) different 
probabilistic measures H(K) can be quantified. The 
stochastically-robust controller is then given by: 
 

* arg min ( | ) ( )j p d K θ
K Κ θ θ θK . (6) 

 

In the present work we will focus on two basic choices for 
Η(Κ) the (a) average value of J(K|θ), or (b) the probability 
that J(K|θ) will exceed some acceptable threshold. The 
corresponding performance measures (and designs) will be 
characterized as average robustness (AR) and reliability 
robustness (RB) and are given, respectively, by:  
 

( )  [ ( | )] ( | ) ( )AR Θ
H E J J p d  K Κ θ Κ θ θ θ  (7) 

 

( ) ( ( | ) | ) ( | ) ( )RB bΘ
H P J b I p d  K Κ θ K Κ θ θ θ  (8) 

 

where the indicator function Ib(.)=1 if the system behavior is 
unacceptable, i.e., J(K|θ)>b, and Ib=0 if not. Which of the 
two probabilistic performance quantifications, AR or RB,  is 
more appropriate for control design is directly related to the 
nature of the metric J(K|θ) and the criteria adopted in the 
design, i.e., which objective is more important, regulation of 
the average performance or the performance that exceeds 
acceptable bounds? With respect to the multi-objective H2 

nominal performance characterization, both probabilistic 
quantifications could be appropriate depending on the 
application, but RB seems in general to be a better choice. 

B. Robust performance: reliability-based design 

In reliability-based design the robust performance 
definition follows from the basic principals of probability 
logic; the failure probability may be simply expressed by the 
total probability theorem: 
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Contrary to the certain parameter case (4), the choice of 

the time duration, T, influences the design optimization. To 
further characterize this influence, a Taylor series expansion 
is implemented for (9), leading to the optimal controller 
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Thus, robust reliability-based design weighs the mean value 
of vz (obtained for j=1 in the last infinite sum) against its 
higher-order moments over the uncertain parameter space. 
Time duration T enters the problem as a sensitivity 
parameter which defines the relative importance of the 
higher-order statistics. For small time durations Τ→0, the 

optimal controller is the one that minimizes the expected 
value of the out-crossing rate, evaluated over the uncertain 
parameter space, without considering the higher order 
statistics. As T increases these statistics become important.  

This discussion shows that choice of T must therefore be 
made with some care.  A logical assumption is to take this 
duration T as the duration of the dynamic excitation, 
(depending on the purpose of the control system), which 
suggests that it should be also treated as an uncertain 
parameter.  A reasonable probability distribution for T is the 
exponential distribution; i.e., p(T)=1/Tmexp(-T/Tm) if T>0; 0 
else, where Tm corresponds to the mean value. The 
probability of failure may be then calculated as: 
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leading to a reliability-based optimal controller: 
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Employing a Taylor series expansion, as before, leads to 
interesting limiting cases for the controller optimization. For 
small time durations we have 

 
*

0| arg min { [ ( | )]}
mRR T θ zE   ΚK K θK . (13)  

 

This optimization is identical to the one for deterministic 
short-time durations. This is not surprising, because T is 
being treated as probabilistic with an arbitrarily-narrow 
distribution, thus converging to the case of deterministic 

0T  . For the infinite time duration we have: 
 
* 1arg max { [ ( | ) ]}

m
RR θ zT

E  


 ΚK K θK . (14) 

 

This expression has a very intuitive interpretation. It is 
straight-forward to show that, for a given θΘ, the quantity  
vz(K|θ)-1 is the expected (i.e., average) time duration 
between out-crossings in stationary response. Thus the 
optimal robust reliability-based controller for the infinite 
time horizon case is the one that maximizes the expected 
time between out-crossings. Note that a similar result does 
not hold for (10), the case with deterministic time duration.  

IV. STOCHASTIC ANALYSIS AND OPTIMIZATION 

A. Stochastic analysis  and optimization 

The general form of the stochastic integrals encountered 
in the robust performance quantification, expressed in terms 
of the design variables for the controller φ, is 

 

( ) ( ) [ ( , )] ( , ) ( )
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for some appropriate selection of the utility function h(φ,θ). 
If the dimension of θ is large the integral in (15) can rarely 
be numerically evaluated. An efficient alternative approach 
is to estimate the integral by stochastic simulation [13]. 
Using a finite number, N, of samples of θ drawn from some 
importance sampling density pis(θ), an estimate for (15) is 
given by the stochastic analysis:  
 

1
ˆ ( , ) 1/ ( , ) ( ) / ( )

N

N i i is ii
H N h p p

φ  Ω φ θ θ θ , (16) 

 

where ΩN=[θ1 ... θΝ] is defined as the sample set, and vector 
θi denotes the sample of the uncertain parameters used in the 
ith

 simulation. As N  , then Ĥ→Η but even for finite, 
large enough N  (16) gives a good approximation for (15). 
The importance sampling density pis(θ) may be used to 
improve the efficiency of this estimation.  This is established 
by focusing on regions of the Θ space that contribute more 
to the integrand of the stochastic integral in (15) [13].  

The optimal design choice is finally given by the 
stochastic optimization: 
 

ˆarg min ( , )*
NH φ φ φ ΩΦ . (17) 

 

The estimate for the objective function for this 
optimization involves an unavoidable estimation error and 
significant computational cost (since N evaluations of the 
model response are needed for each stochastic analysis), 
which make the optimization problem challenging. 
References [14, 15] provide a review of appropriate 
algorithms. These algorithms require though a large number 
of iterations, thus a large number of stochastic analyses. Αn 
efficient,  two-stage alternative framework is discussed next.  

B. SSO and two-stage framework  

In the first stage of the framework a novel method called 
Stochastic Subset Optimization (SSO) [3] is applied for 
efficiently exploring the sensitivity of Eθ[h(φ,θ)] to both φ 
and θ. The basic idea in SSO is the formulation of an 
augmented stochastic problem where the design variables 
are artificially considered as uncertain with uniform 
distribution p(φ) over the design space Φ. An auxiliary PDF 
π(φ,θ) is defined then as: 
 

,( , ) ( , ) ( , ) / [ ( , )]h p E h  φ θφ θ φ θ φ θ φ θ  (18) 
 

with p(φ,θ)=p(φ)p(θ). The integral in the denominator of 
π(φ,θ) is simply a normalization constant; it corresponds to 
the expected value for h(φ,θ) in the augmented uncertain 
space and is not required in the analysis. In the context of 
the augmented stochastic problem, the objective function 
Eθ[h(φ,θ)] is proportional to the marginal PDF π(φ):  
 

,[ ( , )] ( ) [ ( , )] / ( ) ( )E h E h p  θ φ θφ θ φ φ θ φ φ  (19) 
 

( ) ( , )
Θ

d  φ φ θ θ . (20) 

Since Eφ,θ[h(φ,θ)] and p(φ) are constants, the marginal 
PDF π(φ) expresses the sensitivity of the objective function 
Eθ[h(φ,θ)] with respect to the design variables.  Samples of 
this PDF can be obtained through stochastic simulation 
techniques [3], for example using direct Monte Carlo or 
Markov Chain Monte Carlo sampling.  These algorithms 
will give sample pairs [φ,θ] that are distributed according to 
the joint distribution π(φ,θ), that is, according to 
h(φ,θ)p(φ,θ). Their φ component corresponds to samples 
from the marginal distribution π(φ).   

A sensitivity analysis can be efficiently performed by 
exploiting the information in these samples; this is 
established in SSO by identifying the subset, within some 
class of admissible subsets A, that has the smallest estimated 
average value of Eθ[h(φ,θ)]. This is equivalent to identifying 
the subset, within A, that has the smallest density of samples 
of π(φ). At iteration k of the algorithm, additional samples 
that are distributed according to π(φ) are obtained in the 
subset that was identified in the previous step Ik-1. A new 
region Ik for the optimal design parameters is then identified. 
Fig. 1 illustrates some of these concepts for a two 
dimensional design application. Note that for each iteration 
of the SSO algorithm, the computational burden for 
obtaining the samples is similar to the one for the analysis in 
(16); thus the computational cost is comparable to the cost 
required for a single evaluation of the objective function in 
(16). More details about SSO, including discussion on 
appropriate selection of the admissible subsets and stopping 
criteria for the iterative process may be found in [3].   

When SSO has converged, all designs in the identified 
subset, ISSO, give nearly the same value of H(φ) and so can 
be considered near-optimal [3]. The center of the set ISSO, 
φSSO, can be taken as an approximation for φ*. If higher 
accuracy is required, a second optimization stage can be 
performed for pinpointing more precisely the optimal 
solution. Problem (17) is solved in this second stage 
exploiting all information available from SSO about the 
sensitivity with respect to both the design variables as well 
as the uncertain model parameters. The second type of 

(b)

(a)

φ1

φ1

φ2

φ2 Ι1

Ι2

Ι3

Φ

 
Fig. 1.  Illustration of SSO process: (a) samples of design variables 
and first optimal subset (ellipse) and (b) sequence of identified 
subsets over 3 iterations. Rectangle corresponds to Φ and x to φ*. 
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information can be used to develop importance sampling 
densities pis(θ) since the θ component of the available 
samples is distributed proportional to the integrand in (15). 
The information for the sensitivity of the objective function 
to the design variables (corresponding to the orientation and 
relative size of the ellipses in Fig. 1) can be used to tune the 
characteristics of the algorithms used in the second stage. 
The search may be restricted only within ISSO and efficient 
normalization of the design space or selection of the starting 
point for iterative algorithms may be established. Reference 
[3] provides details on how SSO can be efficiently 
combined with the Simultaneous Perturbation Stochastic 
Approximation (SPSA) algorithm which has been proven 
efficient for controller optimization problems [15].   

V. ILLUSTRATIVE EXAMPLE 

The design concepts discussed in this paper are illustrated 
through a control example that considers the protection of a 
3 story-building against dynamic earthquake excitation. The 
structure, shown in Fig. 2, is modeled as a 3-story shear 
building. An ideal active actuator between the ground and 
first floor implements a critically-damped positive position 
feedback control law with transfer function, as illustrated in 
Fig. 2, where K and ωc are the free parameters (design 
variables) of the controller, corresponding to the controller 
gain and bandwidth parameter respectively, and 2ζ=(2)1/2.  

The excitation model chosen is the stationary response of 
a modified Kanai-Tajimi filter with transfer function: 

 
2 2 2( ) (2 ) / [( 2 )( )]w g g g g g g vH s s s s s            (21) 

 

where ωg is the bandwidth, ζg=0.5 is the damping ratio and 
v=15 Hz is a high-frequency pole. The gain σο is selected 
so that the RMS intensity of the earthquake input is aRMS.   

The performance variables z(t) are taken as the vector d(t) 
of inter-story drifts, the vector a(t) of absolute story 
accelerations, and the actuator force u(t), normalized by 
appropriate thresholds (quantifying their relative 
importance)  z(t)=[dT(t)/0.01m aT(t)/0.9g  u(t)/500kN]T

. 

The model parameters assumed to be uncertain are the 
bandwidth and RMS intensity of the earthquake excitation 
and the inter-story stiffnesses ki. Each is parameterized by 

ωg= ˆ ωgθg, aRMS= ˆ aRMSθR and ki= ˆ kiθs,i, i=1,2,3, where  ˆ ωg,  ˆ aRMS, 
 ˆ ki denote the most probable values for these parameter, 
selected as 2 Hz, 0.09g and the parameters given in Fig. 2, 
respectively. These model parameter values define the 
nominal system model. The parameters θg and θR are 
modeled to be independent uncertain variables while the 
{θs,i} are assumed to be to correlated with correlation matrix 
R with elements Rij={exp[-(j-i)2/22]}. The linear 
transformation θus=S-1θs where S is the upper triangular 
Cholesky decomposition matrix for R, is then introduced to 
obtain uncorrelated parameters {θus,i}. Finally the set of 
model parameters for the problem is chosen as the vector 
with independent components θ=[θR, θg, θus,i i=1,2,3]. Each 
of these parameters is assumed to take values in range 
[0.875 1.125] which creates a compact feasible set Θc for the 
model parameters. The set of admissible controllers is 
defined as the set that guarantee closed loop stable system 
for all θΘc. The probability models considered for θ 
correspond to independent to Gaussian distributions with 
mean value 1 and standard deviation 0.05, truncated within 
Θc. The optimization is performed using the two stage 
framework discussed before with characteristics same as the 
ones reported in [3].  SPSA is used for the second stage.  

A worst-case scenario design (denoted WC), a notion 
closer to the classical interpretation of robust feedback 
control, is considered for the mH2 case, described by: 

 

2

* arg min (max ( | ))
cWC Θ mJ  K θK Κ θK H . (22) 

 

This problem is solved by means of a nonlinear min-max 
optimization using the powerful TOMLAB toolbox [16]. 

For better comparison when presenting the results the 
controller gain is normalized with respect to the optimal 
nominal reliability gain given by (4) and the bandwidth 
parameter with respect to the fundamental natural frequency 
of the uncontrolled structure 18.54 rad/sec. 

Initially the mH2 performance is discussed. We consider 
all designs instances discussed in this study, that is, nominal 
(Nom), WC, AR and RB. For the RB design the threshold b is 
considered as a scaling of the optimal nominal performance, 
b=0.0622γ, where 0.0622 is the optimal mH2 performance 
for the nominal system and γ is the scaling factor that 
defines the acceptable performance bound relative to that 

y=d1

m3 =200t

ag(t)

m2 =200t

m1 =200t

u

3
ˆ 2.1MN/mk 

2
ˆ 3.3MN/mk 

1
ˆ 4.6MN/mk 

2

2 22
c

c c

K
s s


  

 
Fig. 2.  Structural model. 

TABLE I 
RESULTS FOR MULTI-OBJECTIVE H2 DESIGN 

K* Performance Design
Case 

Κ ωc 
AR 

(10-2) 
RB1 

RB1.4 
(10-1) 

RB2 
(10-3) 

WC 

Nom 0.89 1.56 6.91 0.78 0.44 0.68 0.21 
AR 0.98 1.52 6.72 0.76 0.41 0.60 0.22 
RB1 0.99 1.60 6.76 0.75 0.57 0.84 0.27 
RB1.4 0.95 1.44 6.76 0.81 0.31 0.32 0.19 
RB2 0.91 1.31 7.21 0.93 0.69 0.28 0.16 
WC 0.93 1.17 7.51 0.96 1.14 0.31 0.15 
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optimal performance. Three values are considered for γ, 1, 
1.4 and 2, and the associated design and performance are 
denoted by RBγ. The results are reported in Table 1. For 
each performance quantification, corresponding to the 
columns of the table, the associated optimal design is 
denoted by bold characters. The AR and Nom designs are 
close with respect to both optimal controllers as well as 
associated AR performance. Also the sensitivity of the AR 
performance around the optimal design configuration is 
small. The RB optimal design configuration, now, is close to 
the aforementioned two for γ=1. Αs the threshold for 
acceptable performance increases though, i.e., as we focus 
on rare events for quantifying failure, that design moves 
further away from the Nom and the AR designs and it gets 
closer to a worst-case scenario design approach. Also the 
sensitivity of the performance objective around that optimal 
configuration becomes larger. This leads to an important 
implication: for designs problems for which the focus is on 
rare events, i.e., larger thresholds that determine acceptable 
system performance, the benefits from using an explicit 
reliability-based design approach are greater, compared to 
the designs that consider the nominal or the average 
performance. These remarks illustrate that important 
differences may exist between the two probabilistic 
objectives, AR and RB, especially for rare events. Thus, the 
designer needs to exercise some level of caution when 
defining performance in the stochastic design framework. 

For the reliability-based design we discuss the nominal 
and the robust design, denoted respectively by R and RR. 
For the latter we consider the cases with fixed time duration 
(RRc) and uncertain time duration (RR). Fig. 3 shows the RR 
and RRc optimal controllers for various selections of Tm and 
T respectively, along with the nominal reliability controller.  
For small time durations (Tm or T), RR and RRc designs are 
practically identical and converge to the controller that 
minimizes the expected value of the out-crossing rate (13). 
Only for time durations above a certain threshold differences 
become apparent. Comparing the nominal and robust 
reliability-based designs now, it is evident that again 
differences exist, and these differences become greater for 
large time horizons. A similar remark holds for the 

comparison between optimal reliability-based and optimal 
mH2 controllers, which shows that these two objectives 
represent different priorities for controller synthesis. 

VI. CONCLUSION 

The robust stochastic performance optimization of linear 
dynamical systems with probabilistically described 
parametric model uncertainties was discussed in this paper. 
Both (i) reliability-based design and (ii) extension of pre-
existing control methodologies to account for probabilistic 
information were considered. The design approach was 
illustrated in a structural control application. 
Probabilistically-robust controllers were demonstrated to 
yield considerable different designs compared to controllers 
optimized using only a nominal model, or the notion of 
worst-case scenario design. Also, significant differences 
were shown in the design characteristics between the 
concepts of average robustness and reliability robustness for 
quantifying the probabilistic performance.  
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Fig. 3.  Optimal controllers for reliability-based design.  
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