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Abstract— A chance-constrained optimization problem, in-
duced from a robust design problem with polynomial depen-
dence on the uncertainties, is, in general, non-convex and
difficult to solve. By introducing a novel concept – the kinship
function – an easily computable convex relaxation of this
problem is proposed. In particular, optimal polynomial kinship
functions, which can be computed a priori and once for
all, are introduced and used to bound the probability of
constraint violation. Moreover, it is proven that the solution
of the relaxed problem converges to that of the original robust
optimization problem as the degree of the polynomial kinship
function increases. Finally, by relying on quadrature formulae
for computation of integrals of polynomials, it is shown that
the computational complexity of the proposed approach is
polynomial on the number of uncertainty parameters.

I. INTRODUCTION

In this paper, we provide a new approach aimed at

determining approximate solutions of uncertain optimization

problems which often arise in systems and control. In

particular, deterministic convex relaxations of robust and

chance-constrained optimization problems are developed and

shown to be solvable in polynomial time.

More precisely, consider a convex uncertain optimization

problem

min
x∈X

c⊤x (1)

subject to f(x, q) ≤ 0 for all q ∈ Q

where f(x, q) is convex in x for fixed q and polynomial

in q for fixed x. Given this robust formulation, one can

define its probabilistic counterpart. That is, assume that the

uncertainty q is random with known probability density

function µ(q) and that a fixed level of violation probability ǫ

is given. Then, one can formulate a probabilistic relaxation of

the robust problem above, the so-called chance-constrained

problem, as

min
x∈X

c⊤x (2)

subject to Prob{q ∈ Q : f(x, q) > 0} ≤ ǫ.

Motivations for considering a probabilistic approach are

numerous, from philosophical to computational ones; e.g.,

see [8], [21].

However, both these problems are known to be in general

very hard. The first one is usually referred to as a “semi-

infinite” optimization problem, since it has an infinite number
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of constraints, one for every q in Q. It is known that exact

solutions can be computed by tractable algorithms only for

very specific problem instances. For example, if one has

affine or multi-affine dependence on the uncertain parameters

and the support set for the uncertainty is an hypercube, then

one can solve the problem by using only the extreme points;

e.g., see [4], [7]. In general, however, this problem is known

to be NP-hard [2]. Therefore, various relaxations have been

proposed to find approximate solutions, which can be very

conservative. In [2], an approximate solution is found by

projecting the “optimizer” in an augmented feasible set of

higher dimension. In the case of linear matrix inequality

(LMI) constraints, a solution has been proposed for the case

when the parameters enter in a so-called linear fractional

transformation form; see [13].

Since a robust solution is usually conservative, it is desired

to have a tradeoff between the robustness and the risk of

failure in many practical problems. Therefore, the so-called

chance-constrained optimization problem has been proposed.

This problem, as formulated above, is, in general, non-

convex. Randomized algorithms have been widely used for

finding approximate solutions to this problem. It was shown

in [9], [19] that one can use stochastic approximation algo-

rithms to address this problem. Also, by randomly sampling

the uncertainty, one can get a “large number” of constraints

(rather than infinite many) to obtain an approximate solution

with given confidence [6]. However, the results obtained

by these techniques are only shown to hold with a given

degree of confidence; i.e. given the stochastic nature of the

algorithms, the solutions always entail a positive (though

arbitrary small) probability of failure.

In this paper, we take a different approach. By introducing

the concept of kinship function, we are able to extend the

results in [1], [10], and provide algorithms that not only

estimate the probability of performance violation but also

address the chance-constrained design problem (2) via a

convex deterministic relaxation. The proposed relaxation

enjoys the following interesting properties: i) it is solvable in

polynomial time; ii) has a provable probability of constraint

violation; and iii) its solution can be made arbitrarily close

to the solution of the robust optimization problem (1).

One crucial characteristic of kinship functions is that they

can be computed a priori and once for all. Moreover, if poly-

nomial kinship functions are chosen, particular combinations

of quadrature formulae, the so-called Smolyak formulae,

can be used to ensure polynomial-time complexity of the

proposed algorithm.
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II. NOTATION AND PROBLEM FORMULATION

A. Notation

Given a vector x, ‖x‖p denotes its ℓp norm. For a sym-

metric matrix F , F � 0 denotes semi-positive definiteness

of F . We denote by ⌈x⌉ the smallest integer larger or equal

than x ∈ R, and ⌊x⌋ the largest integer smaller or equal than

x. We define the space of one dimensional polynomials of

degree ν as

Pν
.
=

{

p(x) : R → R | p(x) =
ν

∑

k=0

akxk

}

.

Similarly, P
d
ν defines the space of all polynomials in d

variables of total degree (i.e. the sum of the degrees with

respect to the individual variables1) at most ν.

B. Problem Formulation

With this notation introduced, we are now ready to pre-

cisely state the problem addressed in the paper: We aim at

finding a solution of problem (2) for the case where the

following formal assumptions are satisfied:

Assumption 1 (Assumptions on Problem (2)):

(i) the set X ⊂ R
nx is a bounded convex set,

(ii) for fixed q ∈ Q, the function f(·, q) is convex in x,

(iii) for fixed x ∈ X , the function f(x, ·) is a polynomial

of total degree σ in x,

(iv) the function f(·, ·) is bounded from below in X ×Q,

(v) for fixed q = q̄, a (sub)gradient ∂f (x, q̄) of f(x, q̄) is

available.

Since a rescaling of f is alway possible, without loss of

generality, we assume that the lower bound on the function

f is one; i.e.,

f : X ×Q → [−1,∞). (3)

As for the uncertainty, the only assumption made is that

the entries of q are independently distributed. More precisely,

one makes the following assumption:

Assumption 2: The probability density function of the

uncertainty q is of the form

µ(q) = µ1(q1)µ2(q2) · · ·µd(qd) (4)

and the uncertainty support set Q can be written as the

cartesian product of (possibly unbounded) intervals

Q = Q1 ×Q2 × · · · × Qd. (5)

III. CONVEX RELAXATION BASED ON KINSHIP FUNCTION

In this section, we define the central concept of this paper

and show how to use it to construct a convex relaxation

of problem (2). To this end, first consider the following

definition of a kinship function.

Definition 1: A function κ : [−1,∞) → R is said to be a

kinship function if

(a) κ(0) = 1,

1The total degree of a monomial m(x) = x
̺1
1 x

̺2
2 · · ·x

̺d
d

is the sum
of the exponents deg(m(x)) = ̺1 + ̺2 + · · · + ̺d. The total degree
of multivariate polynomial is defined as the maximum total degree of its
monomials.

(b) κ(y) is a convex, nonnegative and nondecreasing func-

tion for y ∈ [−1, ∞).
Then we have the following key properties regarding the

kinship function.

Theorem 1: Let κ(·) be a kinship function, define

Vκ(x)
.
=

∫

Q

κ[f(x, q)]µ(q)dq, (6)

then

Prob{q ∈ Q : f(x, q) > 0} ≤ Vκ(x).

Proof. By definition, the kinship function κ[f(x, q)] is non-

negative in [−1,∞) and greater than 1 if f(x, q) ≥ 0. Thus,

for any probability measure µ on Q,

Vκ(x) ≥

∫

{q∈Q:f(x,q)>0}

µ(q)dq

= Prob{q ∈ Q : f(x, q) > 0}.

�

In words, Theorem 1 indicates that, given a kinship

function κ satisfying Definition 1, one can define a relaxation

of the chance constrained problem (2) as:

min
x∈X

c⊤x (7)

subject to Vκ(x) ≤ ǫ.

Theorem 2 (Convexity of the relaxation): The relaxed op-

timization problem (7) is convex.

Proof. As assumed, f(x, q) is convex in x for any fixed q.

Also, the kinship function κ(·) is non-decreasing and convex.

The composite function κ[f(x, q)] is thus convex. Hence,

the integral Vκ(x) is convex since µ is a probability (non-

negative) measure on Q. Note that non-negative weighted

integration and function composition are standard operations

that preserve convexity; see e.g. [5]. �

The class of all kinship functions is rather large. Hence, in

the remainder of this paper, we concentrate on the subclass

of polynomial kinship functions. It is shown that, as the

degree of the kinship functions increases, the solution of the

relaxed problem (7) converges to the solution of problem (1).

Moreover, it is shown in Section V how to efficiently

numerically solve the minimization problem (7).

A. Optimal Polynomial Kinship Functions

We now consider the case of designing “optimal” polyno-

mial kinship functions. We stress again that, for our purposes,

these functions are computed a priori and once for all.

Definition 2 (Optimal polynomial kinship function): The

optimal polynomial kinship function of degree ̺ is defined

as the solution of the following optimization problem

min
a0,...,a̺

∫ 0

−1
p(y)dy (8)

subject to (a)-(b) in Definition 1,

p(y) ∈ P̺.

The following lemma shows that, in the case of polynomial

kinship functions, the constraints above can be substantially

simplified. Due to space constraints, the proof is omitted.
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The reader is referred to [11] for an extended version of this

paper.

Lemma 1: The optimal polynomial kinship function of

degree ̺, denoted as κ̺(y), is the solution of the following

optimization problem

min
a0,...,a̺

∫ 0

−1

p(y)dy (9)

subject to p(y) ∈ P̺.

p(0) = 1, (10)

p(−1) = 0, (11)

p′(−1) = 0, (12)

p′′(y) ≥ 0 for y ∈ [−1, ∞).(13)

�

It is obvious that, with respect to the coefficients

a0, . . . , a̺, the objective function and the first three con-

straints (10), (11) and (12) are linear. Moreover, con-

straint (13) can be recasted as an LMI. To see this, following

the reasoning in Section 3.2 in [15], define two series

of Hankel matrices H1,k ∈ R(n1+1)×(n1+1) and H2,k ∈
R(n2+1)×(n2+1), with n1 = ⌊̺−2

2 ⌋ and n2 = ⌊̺−3
2 ⌋, as

H
(rl)
i,k =

{

1, if r + l = k + 1,
0, otherwise.

, i = 1, 2.

Then, the optimization problem in Lemma 1 can be refor-

mulated as follows.

min
a0,...,a̺,Y1,Y2

∑̺
i=0

(−1)i

i+1 ai

subject to a0 = 1,
∑̺

i=0(−1)iai = 0,
∑̺

i=1 i(−1)i−1ai = 0,
Y1H1,k + Y2H2,k−

−
∑̺

i=k+2
i!(−1)i−k−2ai

k!(i−k−2)! = 0,

for k = 0, . . . , ̺ − 2,

Yk � 0, for k = 1, 2.

Remark 1 (Interpretation of optimality): The above opti-

mization problem is indeed the one of seeking a polynomial

that minimizes its L1 norm on [−1, 0] among all possible

polynomial kinship functions with degree ̺. The function

κ(·) here is acting as a weighting function for f(x, q). In this

way, one can expect that the subset {q ∈ Q : f(x, q) < 0}
contributes less possible on calculating the integral Vκ(x).
In more general cases, an additional weighting function w(·)
may be introduced, to minimize the weighted norm of p(·)

on [−1, 0]:
∫ 0

−1
p(y)w(y)dy.

B. Connection to Robust Optimization Problem

With these optimal polynomial kinship functions at hand,

the intuition is that, for any given x ∈ X , the set

{q ∈ Q : f(x, q) < 0} contributes less and less to the inte-

gral Vκ(x) as the degree ̺ increases. Moreover, the con-

tribution of the set {q ∈ Q : f(x, q) ≥ 0} increases

with the degree of the optimal kinship function. Theorem 3

below shows that the reasoning above is indeed true. In this

theorem, asymptotic properties of the relaxed problem (7)

are provided for the case where optimal polynomial kinship

functions are used. Due to space constraints, the proof is

omitted. The reader is referred to [11] for an extended version

of this paper.

Theorem 3: Assume that the uncertainty set Q is compact,

and the probability measure µ is continuous and strictly pos-

itive on Q. Also assume that the original robust problem (1)

admits an unique solution x∗. Let x∗
̺ be the solution of

the optimization problem (7), with κ̺(·) being the optimal

polynomial kinship function of degree ̺, i.e.

x∗
̺

.
= arg min

x∈X
c⊤x (14)

s.t. Vκ(x, ̺) ≤ ǫ,

with

Vκ(x, ̺)
.
=

∫

Q

κ̺[f(x, q)]µ(q)dq. (15)

Then

lim
̺→∞

x∗
̺ = x∗.

�

The theorem above formally guarantees that the solution

of the relaxed problem (7) can be made arbitrarily close to

the unique solution of the robust problem (1), as long as the

degree ̺ is chosen large enough. In the next sections, we

show how to compute Vκ(x, ̺) efficiently.

IV. A FINITE REPRESENTATION OF Vκ

The idea at the basis of the technique we propose for

numerically solving the optimization problem (7) is to com-

pute the integral in (15) using a quadrature formula (QF),

as briefly recalled next.

A. Quadrature formulae

It is a well-known fact that, for a given function

g : Qj → R, the one-dimensional definite weighted integral

I[g] =

∫

Qj

g(qj)µj(q)dqj

can be computed using an N -point quadrature formula of

the form

QN,j [g]
.
=

N
∑

k=1

ωk,j g(θk,j) (16)

where θk,j , ωk,j , k = 1, . . . , N , are, respectively, the nodes

and weights of the quadrature formula2. Equation (16) cor-

responds to evaluating the function g(·) on the non-uniform

grid Θj
.
= {θ1,j , . . . , θN,j}.

Associated to a given quadrature formula, we define the

error, or residual as RN [g]
.
= I[g]−QN [g]. Then, the degree

of exactness (DoE) of a QF, denoted by deg(QN ), is defined

2The notation with double suffix N, j is introduced to indicate that
the quadrature rule is constructed over N nodes, and it is relative to the
interval Qj and weighting function µj (different quadrature rule are usually
constructed depending on the different intervals and weighting functions).
In the sequel, for the ease of readability and when clear from the context,
the unnecessary suffixes will be dropped.
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as the maximum integer s such that the QF is exact for all

polynomials of degree less or equal than s, that is

RN [p] = 0 ∀p ∈ Ps, s ≤ deg(QN )

and there exists at least a polynomial p in Ps+1 such

that RN [p] 6= 0. In particular, when µ is the uniform

distribution, if the nodes are chosen as the zeros of the N -

th order Legendre orthogonal polynomial PN (x), and the

weights are computed by integrating the associated Lagrange

polynomials, then the QF (16) has the maximum achievable

degree of exactness

deg(QN ) = 2N − 1,

and is called a Gauss formula.

It is evident that the approach previously described can be

extended in a straightforward way to the general multidimen-

sional problem of computing the multivariate integral (15),

for d ≥ 1. Let us consider the computation of the generic

multidimensional integral

Id[g] =

∫

Q

g(q)µ(q)dq (17)

for g : Q = Q1 × · · · × Qd → R.

In particular, let the function g(q) have total degree ν in

the variable q. Then, it may be easily verified that the integral

(17) can be computed by means of the tensor product formula

Td[g]
.
=

(

Q1⊗ · · · ⊗Qd

)

[g] (18)

.
=

N1
∑

k1=1

· · ·

Nd
∑

kd=1

(ωk1
· · ·ωkd

)g(θk1
· · · θkd

)

by choosing the number of nodes Nj such that the one-

dimensional QFs have DoE ν, i.e. deg(Qj) ≥ ν.

B. Computation of Vκ

From these above premises, it follows we can apply

the tensor formula (18) to compute the integral in (15).

Indeed, we notice that, from our assumptions, it follows that

κ̺[f(x, q)] is a polynomial in q (for fixed x) of total degree

less or equal that σ̺. Then, we can choose N such that

deg(QN ) ≥ σ̺ and obtain

Vκ(x, ̺) =
N

∑

k=1

ωkκ̺[f(x, θk)].

Remark 2 (Complexity of the tensor quadrature formula):

Unfortunately the multidimensional quadrature formula (18)

may become untractable due to the exponential growth,

with respect to the dimension d, of the number of functional

evaluations. To see this, assume that Qj is constructed on

Nj nodes and Then, applying formula (18) corresponds to

evaluating the function on the multidimensional grid

Hd
.
=

(

Θ1 × · · · × Θd

)

⊂ Qd,

which has cardinality |Hd| =
∏d

i=j Nj , which exhibits

exponential dependence3 on d.

3To see that, just consider the case when Nj = N for each j = 1, . . . , d.

To avoid this exponential behavior, we introduce next

special combinations of low-order QF which exhibit a poly-

nomial dependence on d.

C. Sequences of QF and Smolyak formulae

For every j = 1, . . . , d, we consider a sequence of one-

dimensional quadrature formulae of increasing precision

Q
(i)
j [g]

.
= QNi,j [g] =

Ni
∑

k=1

ω
(i)
k,j g(θ

(i)
k,j), i = 1, 2, . . . (19)

with nodes Θ
(i)
j

.
=

{

θ
(i)
1,j , . . . , θ

(i)
Ni,j

}

and weights

ω
(i)
1 · · · ω

(i)
Ni

. The number of nodes Ni in (19) is assumed to

be a function of the precision index i. In order to apply our

construction, we consider special sequences of quadrature

formulae that satisfy particular requirements (see [10], [18]

for a more formal description). The introduced sequences are

at the basis of the formula proposed by Smolyak in 1963

[20] for the construction of particular cubature rules with

low number of points. Formally, the Smolyak formula with

precision index ℓ is defined as follows.

S
(ℓ)
d [g] =

∑

ℓ+1≤‖i‖1≤ℓ+d

(−1)ℓ+d−‖i‖1

(

d − 1

‖i‖1 − ℓ − 1

)

(20)

(

Q
(i1)
1 ⊗ · · · ⊗Q

(id)
d

)

[g],

where i
.
= [i1 · · · id]

⊤, i ∈ N
d
+ is the vector of precision

indices for each dimension.

Looking at the formula, it is evident that the Smolyak

cubature rule is a linear combination of product formulae

involving only relatively-low precision quadrature formulae,

chosen in such a way that the interpolation property for d = 1
is maintained for d > 1. The Smolyak formula gives rise to

a highly non uniform grid, which is composed of a subset

of the nodes of a full cartesian grid. Thus, we expect the

number of nodes of a sparse grid H
(ℓ)
d to increase much

slower with respect to the dimension d. The characteristics

of such formula are reported in the next two propositions,

see [16] for formal proofs.

Proposition 1 (Polynomial complexity): For fixed ℓ, the

Smolyak formula is polynomial in d, that is N
(ℓ)
d = O

(

dℓ
)

.

In particular, we have

N
(ℓ)
d ≈

2ℓ

ℓ!
dℓ.

Proposition 2 (DoE of Smolyak formulae): The degree of

exactness of the Smolyak formula is such that

deg(S
(ℓ)
d ) ≥ 2ℓ + 1.

The first result shows that the overall complexity of the

Smolyak construction is polynomial in d, while the second

shown that the degree of exactness of S
(ℓ)
d is at least 2ℓ + 1

(Indeed, better results hold for specific sequences introduced

in the literature, see e.g. [16], [18]).

Remark 3 (Independence from problem instance): An

important point which should be remarked is that, for given

ℓ and d, the N
(ℓ)
d nodes of Smolyak cubature formula S

(ℓ)
d [g]

can be computed once for all and stored for successive
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computations. Indeed, these quantities do not depend

on the integrand, but only on ℓ, d. The procedure for

actually computing the nodes and weights is the most time

consuming part of the proposed computational scheme. For

this reason, a repository of nodes and weights for different

values of ℓ, d has been created and is available on request.

Specific algorithms for fast construction of the coefficients

of Smolyak formulae are provided in [17].

V. AN EFFICIENT NUMERICAL ALGORITHM

Define by Θk and wk, k = 1, . . . ,N
(ℓ)
d , the nodes and

weights of formula (20), then this formula can be written in

N
(ℓ)
d -points cubature

S
(ℓ)
d [g] =

N
(ℓ)
d

∑

k=1

wkg(Θk).

Hence, as long as these nodes and weights are computed a

priori for given ℓ, d, formula (20) represents a cubature rule

with a number of nodes4 which increases polynomially with

respect to d. Hence, it is now possible to state the main result

of this section, which provides an efficient formulation of the

optimization problem (7).

Theorem 4: Consider problem (7) and let Θk, wk, k =

1, . . . ,N
(ℓ)
d be the nodes and weights of a Smolyak formula

with precision index ℓ =
⌈

σ̺−1
2

⌉

. Then, the optimization

problem (7) is equivalent to the following one

min
x∈X

c⊤x (21)

subject to

N
(ℓ)
d

∑

k=1

wkκ̺[f(x, Θk)] ≤ ǫ.

Moreover, for fixed ν, the number of points N
(ℓ)
d is polyno-

mial in d.

Proof. The theorem follows from a direct application of

Propositions 1 and 2. �

Problem (21) is now a standard convex optimization

problem, and standard tools as (sub)gradient descent or

ellipsoidal/cutting plane localization methods can be ap-

plied for his solution. For completeness, we report next the

(sub)gradient of Vκ, which can be easily verified by direct

computation.

Proposition 3 (Subgradient of Vκ): For given q ∈ Q, let

∂f (x, q) be a (sub)gradient of the function f with respect to

x. Consider a polynomial kinship function of degree ̺

κ̺(y) =

̺
∑

j=0

ajy
j .

Then

∂Vκ
(x)

.
=

N
(ℓ)
d

∑

k=1

wk∂f (x, Θk)





̺
∑

j=0

j aj [f(x, Θk)]j−1



 (22)

is a (sub)gradient of Vκ(x, ̺).

4In computing the weights wk , some of them may turn out to be zero,

therefore leading to a formula with less than N
(ℓ)
d

nodes.

VI. APPLICATION EXAMPLE: THE PORTFOLIO PROBLEM

In the example, we consider a one-period portfolio prob-

lem. Assume that there are n investment options. Denote xi

the amount of budget put in the i-th option and let ri be the

corresponding return. The general goal is to minimize the

risk while maximizing the total return rT x. Here we choose

the factor model and adopt the Value at Risk (VaR) approach.

Then, for a given risk level η ∈ (0, 1), the portfolio selection

problem can be stated as follows (see e.g. [3], [14]):

min
γ,x∈X

γ

subject to h(x, q) ≤ γ for all q,

where h(x, q) = k(η)
√

xT (A(q)ΣA(q)T + D)x−xT A(q)φ̂.

The variable γ is usually referred to as loss level, while

k(η) is a given function of η. The parameters φ̂, Σ and D

are computed from real market data. In this example, the

sensitivity matrix A(q) is assumed to be an interval matrix

of the form

A(q) = A0 +
∑

i,j

qijAij ,

where ‖q‖∞ ≤ qmax and Aij has all elements equal to zero

except the i,j-th one that [Aij ]i,j = [A0]i,j . The allowable

investment policy set X is assumed to be

X :=

{

x :

n
∑

i=1

xi = 1, xi ≥ 0, i = 1, 2, ..., n

}

.

A. The Convex Feasibility Problem

Note that h(x, q) is not polynomial in q. However, if we

fix the loss level γ and aim at finding the optimal investment

policy that is feasible, the constraint is equivalent to

f(x, q) ≤ 0 for all q ∈ Q,

where

f(x, q) = xT
(

A(q)
(

k2(η)Σ − φ̂φ̂T
)

A(q)T + k2(η)D
)

x

−2γwT A(q)φ̂ − γ2.

Hence one obtains an equivalent constraint which is polyno-

mial in q.

Moreover, by assuming that

k2(η)Σ − φ̂φ̂T ≻ 0, (23)

the function f(x, q) is also convex in x. Hence, the problem

is ready to be handled in our framework. It worth to point

out that assumption (23) is indeed satisfied in real market

data for low risk level; e.g., see Table 2 in [12] for η = 5%.

Finally, we notice that a lower bound of the function

f(x, q) can be easily calculated,

f(x, q) ≤ −2γxT A(q)φ̂ − γ2

≤ −2γ max
q

{‖A(q)φ̂‖∞} − γ2.

Hence, we can always pick a constant α > 0 such that

αf(x, q) ≥ −1 for all x and q.
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B. Numerical results

In the numerical example, we considered a portfolio

problem with number of assets n = 3 and number of factors

m = 2. The risk level was chosen to be η = 5%. The nominal

sensitivity matrix A0, the covariance matrices Σ and D, and

the expect value of the factors φ̂ were randomly generated,

A0 =





0.4666 −0.6952
0.2447 −0.5934
0.9796 0.6386



 ,

D = diag{
(

0.1902 0.5995 0.2923
)T

},

Σ =

(

0.2009 0.1791
0.1791 0.4489

)

, φ̂ =

(

0.0584
0.5385

)

.

To illustrate, we fix the uncertainty magnitude qmax =
0.05, to find an investment x (if any) such that the VaR is

less than a given loss level γ. This is relaxed, in the proposed

framework, to find a policy x that Prob{f(x, q) > 0} ≤ ǫ.

The optimal kinship function is chosen to be of order ̺ = 3,

which leads to a total degree ν = 6. Then the integral
∫

Q
f(x, q)dq can be evaluated exactly by using Smolyak

rules with l = 3 and d = nm = 6. The simulation was run

for γ increasing from 2 to 4. Figure 1 shows for different γ,

the estimates of the upper bound of the probability, or the

volume percentage of the “bad” set in Q.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

γ

V
* κ
(γ

)

Fig. 1. V ∗

κ3
(γ) v.s. γ for qmax = 0.05.

At the point γ = 2.6, the best policy

x =
(

0.4518 0.1852 0.3630
)T

leads to the estimate V ∗
̺3

= 0.06. By sampling 10,000,000

points over the set Q, we found actually that none of them

violates the inequality f(x, q) ≤ 0.

VII. CONCLUSIONS

In this paper, novel convex relaxations of chance-

constrained problems are proposed. These problems are,

in general, non-convex and difficult to solve. Hence, a

novel concept, kinship function, is introduced and used to

bound the probability of constraint violation. By using this

bound, one is able to obtain a relaxation which is shown

to be convex. Another concept introduced in the paper is

the concept of optimal polynomial kinship functions. These

members of the class of kinship functions can be efficiently

computed a priori by using standard LMI solvers. Moreover,

it is proven that, under “mild” conditions, as the degree of the

optimal polynomial kinship function increases, the solution

of the proposed relaxation converges to the solution of the

robust optimization problem; i.e., the problem for which

the probability of constraint violation is zero. To efficiently

solve the relaxed problem, the so-called Smolyak quadrature

formulae is used to compute the integral that bounds the

probability of constraint violation. By using this approach,

one is able to show that the computation complexity in-

creases polynomially with uncertainty dimension and that

the (sub)gradient of the constraints can be easily computed.

Hence, one can use standard gradient descent algorithms to

solve the proposed relaxed problem.
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