
  

  

Abstract— To a large extent, tailpipe emissions are 

influenced by the accuracy and reliability of the intake manifold 

sensors and the predictive models used for cylinder charge 

estimation. In this paper, mathematical models of an internal 

combustion engine are employed to detect failures in the intake 

manifold. These can be associated with the upstream sensors 

such as the pressure and temperature sensors as well as 

systemic faults such as a leakage in the intake manifold. Any 

fault will adversely affect the proper operation of the air-fuel 

ratio control system and must be detected at an early stage. 

Through the use of dedicated observers, residual errors can be 

generated and thresholds established.  Methods for the isolation 

of the detected faults  are proposed and applied to a 5.7 L V8 

engine model. Simulation results for the Federal Test Procedure 

(FTP) driving cycle indicate that fast and reliable detection and 

isolation of the faults is possible. 

I. INTRODUCTION 

ault detection in combustion engines has been the subject 

of a number of investigations [1], [2], [3]. Current 

production systems are based mainly on the simple limit 

and plausibility checks of measured signals. Some simple 

signal-based methods like frequency based analysis methods 

are also employed [4]. Stringent demands on the detection 

speed and the ability to accurately pinpoint the source of a 

fault require more rigorous techniques. In addition, the 

current On-Board Diagnostics II (OBDII) systems may not 

be capable of detecting relatively small offsets and drifts of 

the sensor data. In the following we will concentrate on the 

“intake manifold” fault detection problem to demonstrate the 

capabilities of the proposed model-based estimation, method 

coupled with a physical analysis of the system. 

 The analysis of the intake manifold system has been 

considered earlier in [5] and [6]. The hypothesis testing 

framework based on the system model was used for the 

intake manifold leaks and sensor faults detection. In the 

following the non-linear observer-based fault detection for 

the intake manifold is considered. The fault detection, 

isolation and identification are carried out based on a 

generalized observer approach. 

The faults appearing in the system are modeled as additive 

signals. The intake manifold pressure and the temperature 

sensor faults are modeled as additive perturbations. The 

intake manifold leak is modeled by one-dimensional flow 

equations in a similar way to the throttle flow. The product 

of the leakage area and the discharge coefficient is defined as 
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the unknown input 
leak
f . The pressure sensor fault ,imP nf  is 

modeled as an additive saturated ramp signal. The 

temperature fault 
, ,im measT nf  is also modeled in the same way as 

an additive signal. These changes simulate the measurement 

offset. In practice, a common situation is when the sensor is 

stuck, which may also be simulated by the time-varying 

additive signal. The intake manifold leak is assumed to 

appear more abruptly. This may be seen as a vacuum hose 

being pulled off the intake manifold. The leak area will be 

assumed to be constant.  

In this work it is assumed that faults do not appear 

simultaneously. Also, the electronic throttle is assumed to be 

equipped with redundant position sensors and consequently 

the fault diagnosis may be based on the physical redundancy 

within its dedicated control system.  Simulation results use 

data obtained from a real vehicle as inputs and external 

parameters. The analysis is limited to the simulations of the 

proposed methodologies on the FTP driving cycle transients.  

II. RESIDUALS GENERATION – DEDICATED OBSERVER 

SCHEME 

The most important task in fault detection lies in the residual 

generation. In the system diagram in Fig. 1, faults consist of 

two sensor faults and one system fault represented by the 

intake manifold leak. Sensor faults are modeled as additive 

signals on outputs. The system fault is modeled as an 

unknown input to the system.  

 
Fig. 1: System faults and a dedicated estimator scheme 

A. The system model 

The model of Fig. 1 for an 8-cylinder (V8) engine is 

discretized using an “event-based” sampling rate of 90º 

crank angle. This implies that the sampling period varies 

with the engine speed. In an event-based sampling of the 

engine model, the variable sampling period is given 

by [ ], 120 8s n nT N s= , where nN  is the engine speed in 
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revolutions per minute at the discrete event n. The first part 

of the overall model is first defined: that is the electronic 

throttle model is given by the following state-space equations 

[7], [8]: 

, 1 , , ,

, ,

( ) ( )ET n ET n ET n ET n SP n ET n

n ET ET n ET n

x A N x B N w

C x v

α

α
+ = + +

= +
 (1) 

where ,ET nx  is the throttle state vector, 
,SP n

α  is the angle 

setpoint signal and  nα  is the indicated throttle angle. System 

matrices are non-linear functions of the engine speed. 

The intake manifold is modeled by the following non-

linear state-space system:  

( ), 1 , , ,

, , , ,

, , ,IM n IM n n leak n n EM n

IM n IM IM n IM n EM n

x f x f N w

y C x f v

α+ = +

= + +
 

(2) 

where ,IM nx  is the state vector, 
,leak n

f  is the product of the 

leak area and the discharge coefficient for one-dimensional 

flow through the orifice, 
,EM nw  is the intake manifold process 

noise, , , ,im im

T

IM n P n T nf f f =    is the sensor faults vector with 

the intake manifold pressure sensor fault and air temperature 

sensor fault, ,EM nv  is the intake manifold pressure 

measurement noise and , , , , ,IM n im meas n im meas ny P T =    is the 

vector of pressure and temperature measurements. 

The intake manifold model is parameterized in a state-

dependent form and augmented with the throttle model [8]: 

( ) ( ) ( )1 , ,

,

n n n n n n n n leak n leak n n

n n n S n n

x A x x B x u F f f w

y C x f v

+ = + + +

= + +
 (3) 

where 

 
,n SP n

u TA= , , ,

T
T T

n ET n IM nx x x =   , , ,0
T

T

S n IM nf f =   , 

,

T
T

n n IM ny TA y =   , , ,

T
T T

n ET n IM nw w w =   , 

, ,

T
T T

n ET n IM nv v v =   . 

Note that the throttle position sensor fault is not considered 

here due to physical redundancy present in modern 

electronic throttle actuators. 
n
w  and 

n
v  are independent 

white Gaussian noise signals with { }cov
n
w Q=  and 

{ }cov
n
v R= . Q and R are diagonal semi-positive and 

positive definite matrices, respectively. An identification of 

the stochastic properties of the system based on real vehicle 

data was carried out to obtain matrices Q and R representing 

noise magnitudes. 

B. Sensor faults directional residuals generation 

Each dedicated observer uses the throttle angle setpoint 

command SPα , the throttle angle measurement 
n

α  and either 

the temperature 
. ,im meas n

T  or the pressure 
, ,im meas n

P  

measurement. Each observer carries out diagnosis of only 

one output signal that may be the subject of fault. This 

provides the isolation of each individual estimator. The 

intake air temperature sensor estimator detects the 

temperature sensor fault and is not sensitive to the pressure 

sensor fault. Similarly the intake air pressure sensor 

estimator detects the pressure sensor fault and is insensitive 

to the temperature sensor fault. Under the hypothesis that the 

intake manifold leak is not present, the sensor fault detection 

may be established through the analysis of residuals which 

are the differences between the estimated and the measured 

outputs generated by each estimator. 

For the throttle angle estimation, a separate state-

dependent Kalman filter was designed (see Fig. 1). The 

throttle angle estimate is used by the open-loop observer to 

compute the intake manifold pressure and temperature. The 

non-linear closed loop estimator (e.g. state-dependent 

Kalman filter) requires state estimates for the model update. 

In the presence of an additive sensor fault the state estimates 

will diverge from the actual system state values. This may be 

demonstrated using the following equation: 

( )1

,

ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ

n n n n n n n n n n

n n S n n n n n n

x A A K C x A K C x

A K f A K v B u

+ = − + +

+ +
 (4) 

The matrix Kn is a Kalman gain obtained from the solution of 

the discrete algebraic equation computed for the system 

matrices frozen at the current state. The senor fault 
,S n

f  

which is assumed to have a non-zero mean value acts as an 

additional unknown input to the estimator resulting in the 

state estimation offset. This offset will result in the 

discrepancy between the model matrices: ( )ˆ ˆ ˆ
n n
A A x= , 

( )ˆ ˆ ˆ
n n
B B x= , ( )ˆ ˆ ˆ

n n
C C x=  and the actual system matrices 

( )n n
A A x= , ( )n n

B B x= , ( )n n
C C x= . The discrepancy 

depends on the particular system non-linearity for which a 

general analysis is not available. For linear systems with 

constant matrices, model mismatch does not occur due to this 

cause. In closed-loop operation, this results in an improved 

estimation. The same effect is not guaranteed for general 

non-linear systems. The state-dependent Kalman filter error 

signal generated for i-th output and used as the residual is 

given by the following expression: 

, ,
ˆ ˆ

i n n n n n S n n
r C x C x f v= − + +  (5) 

The residual ,i nr  will directly reflect the sensor fault 
,S n

f . 

Unfortunately, the past values of the fault signal 
,S n

f  are 

also present in the state estimate ˆ
n
x  (see equation (4)). This 

results in rather unpredictable response of the residual 
,i n
r  to 

the fault 
,S n

f . This is due to the non-linear characteristics of 

the system and the state-dependent model mismatch may 

have a negative effect on the residual signal sensitivity to the 

fault. This negative influence is caused by the state estimate 

ˆ
n
x  bias and the model matrix ˆ

n
C  mismatch. However, these 

effects are absent if the open-loop system is used.  

Extensive simulations of the open-loop stable intake 

manifold indicate that the direct use of the non-linear system 

model provides improved results. The state of the system in 

open-loop may be obtained using the following equation: 
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, 1 , , ,
ˆ ˆˆ ˆ

OL n OL n OL n OL n n
x A x B u+ = +  (6) 

where  

( ), ,
ˆ ˆ ˆ
OL n OL nA A x= , ( ), ,

ˆ ˆ ˆ
OL n OL nB B x=  and ( ), ,

ˆ ˆ ˆ
OL n OL nC C x= .  

The state 
,

ˆ
OL n
x  estimation mismatch results from the process 

noise 
n
w  that is not attenuated in the open loop estimation 

(as opposed to the closed-loop estimation in equation (4)). 

However, the fault 
,S n

f  does not influence the state estimate 

in any way. The residual is proportional to the state 

estimation error (
, ,

ˆ ˆ
n n OL n OL n

C x C x− ), the measurement noise 

n
v  and the fault magnitude

,S n
f . Note, that the negative 

effect of the state estimation error ˆ ˆ
n n n n

C x C x−  present in (5) 

has been eliminated in (7).  

, , , , ,
ˆ ˆ

OL i n n n OL n OL n S n n
r C x C x f v= − + +  (7) 

The residual for the pressure sensor fault is presented in 

Fig. 2. This shows the simulated data for the transient 

conditions.  
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Fig. 2: Pressure measurement residual – open-loop 

estimator 

 

The corresponding simulation results for temperature 

sensor fault residual are shown in Fig. 3.  

C. The intake manifold leak directional residual 

generation 

The intake manifold leak residual is generated by the non-

linear fault detection filter presented in [9]. The dynamic 

observer is formulated in the following form. Note that 

system matrices denoted as time varying depend on the 

current state estimate. 

( ),1

ˆ ˆ

ˆ ˆ ˆn

n n UIKF n n

n

n n

n n n n n

n

A B u K W

y C x

x x y y+

Σ
= + +

Τ

=

 
−    

 
ɶ ɶ

ɶ ɶ ɶ

 (8) 

where 
,UIKF nK  is the filter gain and nW  is the matrix that 

propagates the effect of faults/unmeasured inputs into the 

next time instant.  

Additionally, two matrix coefficients nΤ  and nΣ  are 

introduced with the following properties: 

( )
,

ˆ
ˆ

ˆ

n n

n n

nleak n

q
y y

f

  Σ 
= −   Τ    

ɶ  (9) 

where 
,

ˆ
leak n
f  is the leak directional residual and ˆ

nq  are 

residuals decoupled from the faults/unmeasured inputs used 

for the process/measurement noise attenuation. Details of 

how the matrices nΤ  and nΣ   are computed may be found in 

[9]. The leak estimator shown in Fig. 1 is a part of the 

overall system. The filter (equations (8) and (9)) generates 

the directional residual that is sensitive to the leak (
,

ˆ
leak n
f ). 

The intake manifold leak directional residual is shown in Fig. 

4.  
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Fig. 3: Temperature measurement residual – open-loop 

estimator 
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Fig. 4: The intake manifold leak directional residual 

 

The remaining estimator residuals decoupled from the fault 

are shown in Fig. 5 ( ˆ
nq ). The decoupled residuals facilitate 

the unbiased estimation and the attenuation of the process 

and the measurement noise.  

In its fundamental form, the leak estimation is carried out 

under the assumption that output (sensor) faults are not 
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present in the system. A method for separating the influence 

of sensor and system faults will be described in the next 

section. 
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Fig. 5: The intake manifold leak decoupled residuals 

 

D. Dedicated estimators sensitivity to other faults 

In the analysis, the sensor faults residuals were generated for 

the assumption that the leak is not present in the system. A 

similar assumption about the sensor faults was made for the 

leak directional residual generation. It is important to assess 

the impact of the leakage on the pressure and temperature 

sensor residuals. Also, in the design of the fault detection 

logic, the intake manifold leak directional residual response 

to the pressure and temperature fault is important. As an 

example, the response of the temperature and pressure 

residuals to the intake manifold leak is shown in Fig. 6 and 

Fig. 7, respectively.  
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Fig. 6: Temperature residual response to the leak – the 

open-loop observer 

 

It may be noted that the leak entails the change in the level 

of pressure and temperature residuals. It is important to 

notice that the levels for these residuals vary with the 

operating conditions. It is clear that for the intake manifold it 

may be difficult to detect the leak when the throttle is wide-

open. Depending on the extent of the leak, the influence of 

such fault may however be negligible. In such a situation, the 

fault detection may not be critical. 
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Fig. 7: Pressure residual response to the leak – open-loop 

observer 
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Fig. 8: Leak directional residual resulting from the pressure 

sensor fault 
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Fig. 9: Leak directional residual resulting from the 

temperature sensor fault 

 

The leak directional residuals are affected by the sensor 

faults since the pressure and temperature measurements are 

used by the leak estimator. An example of how the pressure 
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sensor fault impacts the leak directional residual is shown in 

Fig. 8. For the temperature sensor fault, the leak directional 

residual is plotted in Fig. 9.  It should be noticed that the leak 

residual strongly relies on the pressure sensor information. 

This is due to a lower fault detectability index for this output. 

The temperature sensor fault, however, results in a 

significantly lower residual change.  

III. DETERMINATION OF THE THRESHOLDS 

Residuals generation is the first step in fault detection. For 

fault-free stochastic or uncertain systems, residuals are non-

zero and therefore the threshold for the residuals must be 

established. If the residuals are within pre-defined limits, the 

system is assumed to be fault-free. Residuals exceeding the 

thresholds indicate possible faults in the system. It is 

important to define thresholds in a way that the system noise 

or uncertainty does not trigger the false alarm or system 

reconfiguration. In practice, thresholds should be based on 

the information about the extreme values for the fault-free 

system. A formal analytical derivation of the thresholds for a 

complex system, such as the intake manifold may not be 

possible. Additionally, the thresholds so estimated may also 

be too conservative if a multiple-model approach or the 

worst-case analysis is used. 

In the work presented in this paper, thresholds are 

determined based on analysis of the real vehicle data 

compared with the model. An analysis of a number of FTP 

datasets provided the thresholds for fault-free conditions (a 

part of that data is shown in Fig. 10). The safety margin was 

also included to improve the design robustness.  
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Fig. 10: Fault-free residual trace for  thresholds 

determination 

 

For the pressure sensor residuals, the threshold of 

[ ]2 kPa±  was determined. For the temperature sensor 

residual the threshold is set to [ ]0.5 K± . The intake manifold 

leak residual in Fig. 4 is assumed to stay within the range 

±0.7 N m g s kPa ⋅ ⋅ ⋅   for the fault-free system. The fault in 

the system will be detected when the value of any of the 

residuals violate the above threshold levels.  

IV. FAULT ISOLATION AND IDENTIFICATION 

The faults occurring in the system result in residuals 

violating the thresholds. The threshold violation indicates 

that the fault is present in the system but does not locate the 

fault. The fault isolation method based on the generalized 

observer scheme uses the table with the ‘fault signatures’ 

[10]. The pressure sensor fault causes its dedicated residual 

to violate the threshold but the temperature sensor residual 

remains unchanged. The temperature sensor fault moves the 

residual over the threshold while the pressure sensor residual 

remains within the usual limits. The intake manifold leak 

results in the pressure sensor and temperature sensor 

directional residuals moving over the thresholds. The fault 

signatures table is extracted from the analysis of the residuals 

behavior presented in section II. Note that the leak 

directional residual does not provide much information for 

the fault isolation system. The logical value of 1 denotes that 

the threshold is violated, 0 denotes that the residual is within 

the limits. The ‘X’ value denotes that either 0 or 1 is 

possible. 
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Pressure directional residual 

over threshold 
1 0 1 

Temperature directional residual 

over threshold 
0 1 1 

Leak directional residual over 

threshold 
X X 1 

Table 1: The fault signatures table 

The fault isolation is carried out assuming that only one 

fault occurs at any time. Due to the intake manifold dynamic 

characteristics, the thresholds established for the pressure, 

temperature and leak directional residuals are not violated 

simultaneously. The timing is also influenced by the system 

noise and the driving pattern which interact with the fault 

detection system. The time window that allows the checking 

of the threshold violations must be established. For the 90° 
event-based sampling and the allowed fault detection lag, the 

number of events for the algorithm time window is 

established. To achieve good robustness properties, a 100-

event window was selected. This results in a delay of 1.5 s at 

an engine speed of 1000 rpm or 0.3 s at 5000 rpm. This 

delay may be reduced in some cases with the method 

presented in the following Section A. An alternative robust 

method in Section B will rely on a statistical analysis with a 

wider window to increase the detection reliability. 

A. Threshold-based method 

The threshold-based fault isolation method relies upon 

Table 1 and uses Boolean logic to test for residuals. The 

logical test may be structured in a way that the fault isolation 

lag is reduced. The test must detect zeros that identify the 

type of the fault in Table 1. In the case of the intake manifold 
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leak, all three residuals violate the thresholds. If three 

threshold violations are detected, the presence of the leak in 

the manifold is concluded. If within the selected data 

analysis window, and by the end of the lag period, either of 

the residuals does cross the threshold, it will indicate that 

either the pressure or the temperature fault is present. This 

concludes the fault isolation procedure. The example 

simulation results for the fault detection and isolation are 

shown in the sequel.  
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Fig. 11: The pressure sensor fault isolation 

 

The pressure sensor fault detection is shown in Fig. 11. 

The pressure sensor fault in the system is detected when its 

directional residual (and only this residual) moves outside 

the thresholds. The violation of a pressure residual threshold 

is also possible by the manifold leak. However, the leak will 

also impact the temperature residuals. There is a need for 

some wait-time for the fault to propagate. Therefore a 

window of 100 events is assumed for this purpose. For the 

pressure sensor fault, the temperature residual should not 

cross its threshold. This does not happen within the window, 

providing the signature of the pressure sensor fault, and 

therefore the fault isolation is complete.  

The case for the temperature sensor fault detection is 

shown in Fig. 12. In a similar way to the pressure sensor, the 

fault is first detected and then isolated. The fault signature 

reveals the temperature sensor fault. The intake manifold 

leak isolation is shown in Fig. 13. The procedure is clearly 

faster than the same for the sensor fault isolation. The fault 

isolation time event is characterized by the moment when all 

directional residuals cross over their thresholds.  

B. Threshold method with statistical and expert analysis 

Fault isolation methods may be enhanced by the 

incorporation of system-specific knowledge and a statistical 

analysis of results. For example, system knowledge with 

respect to the pressure sensor faults may be used. The fault 

detection is triggered by the pressure sensor and the leak 

directional residuals violating the thresholds. The leak 

residual violating the negative threshold immediately 

indicates that a pressure sensor fault has occurred. The leak, 

for a naturally aspirated engine, can only be positive. If the 

leak directional residual is found to be negative immediate 

fault isolation is possible. The pressure sensor fault isolation 

shown in Fig. 11 may be completed much quicker (i.e. within 

0.1 [s] after the fault detection). 
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Fig. 12: The temperature sensor fault isolation 
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Fig. 13: The intake manifold leak fault isolation 

 

To test the fault detection efficiency the following test was 

carried out. Faults are injected at different points of the 

driving cycle. The pressure sensor fault 
,imP nf  and the 

temperature fault 
, ,im measT nf  were modeled as drifts that saturate 

after 1 second at a level of +5kPa and -20°K, respectively. 

Note that during this test the pressure sensor fault is 

simulated with positive values to avoid trivial detection when 

the leak residual becomes negative. The intake manifold leak 

appears in a more abrupt way and is modeled as a drift signal 

that saturates after 0.2s  at a level of 2 N m g s kPa ⋅ ⋅ ⋅  . In 

this work only one fault magnitude level is considered. It 

may however be argued that the higher level of faults would 

result in higher value of residuals and consequently more 

reliable detection. The opposite situation, where the extent of 

the fault is less significant, is in fact more likely to impair the 

ability to detect these events. The fault detection speed is 

shown in Fig. 14. The time required for the detection of the 
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pressure and temperature faults is determined by the time 

when residuals cross over the thresholds and the window 

width (i.e. 100 events). Due to non-linearities, the initial fault 

isolation algorithm fails to detect the leak for faults which 

start to at 15.1 s and 20.1 s. This is due to the fact that within 

the test window, the temperature residual did not cross the 

threshold. Similar problems have been reported by other 

authors [6] for the intake manifold fault isolation. 

  A more robust method presented here aims to improve the 

fault isolation accuracy by the reasonable assumption that the 

leak area and the discharge coefficient of the leak source are 

constant. The variance of the leak directional residual is 

monitored to help isolate the fault more reliably. For the 

statistical analysis, the number of data points determines the 

accuracy. As a result, the window length is increased to 200 

events. Within the 200-event window from the moment of 

the fault detection (see Fig. 13), the temperature directional 

residual only marginally violates the threshold. If the 

temperature did not violate the threshold within the data 

window, the pressure sensor fault would be isolated. Such a 

situation is shown in Fig. 14 for the leak occurring at time 

15.1 s where the pressure sensor fault was isolated wrongly. 
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Fig. 14: Fault detection efficiency: simple threshold method 

  

The monitoring of the variance of the leak directional 

residual will however improve the robustness. The leak 

directional residual that represents the leak area is assumed 

constant. It is then possible to establish the upper bound of 

this parameter. The upper bound for the variance of the leak 

residual based on the data analysis for the FTP cycles was 

determined to be 0.04. If the variance of the leak remains 

below its maximum value, it indicates that there might be a 

leak in the intake manifold. The data window is shifted 

forward in time until the temperature residual violates the 

threshold which indicating the leak, or until the variance 

violates its threshold indicating the pressure sensor fault.  

The fault isolation logic is formulated in Table 2. The 

improved robustness of the method is presented in Fig. 15.  

It should be noted that the robustness of the method comes at 

the expense of the speed of isolation. 

Accurate fault isolation is important for the control system 

re-configuration. For the re-configuration, the identification 

of the fault extent is essential. The fault identification is only 

required for the intake manifold leak. The directional 

residual estimate 
,

ˆ
leak nf  provided by the process fault 

detection filter is used for this purpose. The residual is a 

combination of the product of the leak discharge coefficient, 

the leak area estimate and the noise. Since the fault 
,leak nf  is 

assumed to be constant and the noise is filtered out, the leak 

estimate may therefore be used by the control algorithm. 
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Pressure directional residual over 

threshold 

1 0 1 1 

Temperature directional residual 

over threshold 

0 1 1 0 

Leak directional residual over 

threshold 

X X 1 1 

Leak directional residual variance 

over threshold 

1 X 0 0 

Table 2: Extended fault signatures table 
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Fig. 15: Robust isolation of the intake manifold faults  

V. CONCLUSION 

  For a vehicle emissions control system, continuous 

monitoring of the engine variables to ensure proper 

functioning is critical. Typical faults were considered 

associated with the intake manifold sensors and systemic 

faults such as the presence of leakage in the intake manifold 

were exploited to develop reliable methods for fast detection 

and isolation of the faults.  

The results presented in the paper use system inputs and 

external variables such as engine speed and ambient 

conditions from the real vehicle. The intake manifold 

subsystem is simulated by a non-linear event-based discrete 

time model. 

The proposed fault detection and isolation method performs 

threshold tests on the directional residuals. The residuals are 
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generated by a combination of a state-dependent Kalman 

filter, an open-loop observer and an unknown input 

estimator. The use of the state-dependent Kalman filter is 

unusual and appears promising. An interesting conclusion is 

that the open-loop observer is more effective than the closed-

loop observer for the non-linear system under consideration 

here. The proposed fault detection was followed by an 

isolation strategy. Due to the presence of the unknown input 

estimator, the fault magnitude is also estimated. This will 

also enable its use for the fault compensation. To increase 

robustness, a fault signature diagnosis algorithm was 

proposed that will be triggered by the fault detection 

mechanism.  

In this approach, a set of measurements over a fixed 

period of time was made and the properties of the residuals 

analyzed. A fault isolation enhancement was also proposed 

which involves the introduction of the residual statistical 

analysis. For this purpose, the variance of the leak residual 

signal was monitored. Additionally, the system-specific 

knowledge was incorporated which has improved the 

robustness of the fault detection algorithm. It was 

demonstrated that all the three types of faults can be safely 

detected and isolated when the detection window is of a 

proper size. The trade-offs between the  precision of 

detection and the speed of detection has also been 

emphasized. 
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